
SOFTWARE Open Access

Implementation of workflow engine technology
to deliver basic clinical decision support
functionality
Vojtech Huser1,2*, Luke V Rasmussen1, Ryan Oberg1 and Justin B Starren3

Abstract

Background: Workflow engine technology represents a new class of software with the ability to graphically model
step-based knowledge. We present application of this novel technology to the domain of clinical decision support.
Successful implementation of decision support within an electronic health record (EHR) remains an unsolved
research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and
execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the
ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly
representation of clinical logic.

Results: We present our implementation of a workflow engine technology that addresses the two above-
described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of
XML (extensible markup language) process definition language (XPDL). The core components of the system are a
workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We
demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be
executed on retrospective data. The same flowchart-based representation can also function in a prospective mode
where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the
scope of our implementation to decision support content generation (which can be EHR system vendor
independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack
of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based
graphical notation as well as architectural evaluation of our implementation using an established evaluation
framework for clinical decision support architecture.

Conclusions: We describe an implementation of a free workflow technology software suite (available at http://
code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation
seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation
paradigm. With the presented software implementation, we demonstrate that workflow engine technology can
provide a decision support platform which evaluates well against an established clinical decision support
architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect
significant future functionality enhancements that will further improve the technology’s capacity to serve as a
clinical decision support platform.

* Correspondence: vojtech.huser@gmail.com
1Biomedical Informatics Research Center, Marshfield Clinic, Marshfield, WI,
USA
Full list of author information is available at the end of the article

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

© 2011 Huser et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://code.google.com/p/healthflow
http://code.google.com/p/healthflow
mailto:vojtech.huser@gmail.com
http://creativecommons.org/licenses/by/2.0


Background
Currently, there is a strong interest in improving deci-
sion support systems (DSS) [1]. Despite several decades
of effort, we have been unable to develop DSS platforms
that would gain wide adoption [2]. Some solutions are
embedded in a proprietary system or are tied to a parti-
cular electronic health record (EHR) vendor which lim-
its their adoption. Other solutions often introduce a
healthcare-specific representation format and health-
care-specific execution engines, whereas past experience
shows that successful healthcare solutions often rely on
cross-industry standards. Finally, easy authoring or easy
review of DSS logic still remains a considerable chal-
lenge [3]. We present our implementation of a workflow
engine technology [4] which addresses two current chal-
lenges of DSSs.
The first challenge is the ability to evaluate DSS mod-

ules prior to deployment. For seamless testing and
deployment, it is beneficial to be able to easily switch
the execution of a DSS module from prospective to ret-
rospective mode. Traditionally, this problem has been
solved by two approaches, both of them sub-optimal
and requiring additional resources. The first approach
involves deployment of the module at a pilot site prior
to enterprise-wide deployment and fine tuning the logic
directly within the deployment environment. The sec-
ond approach is a separate side-project for each
deployed module which extensively analyses the possible
impact of the intended DSS module. This separate side-
testing usually involves a separate DSS logic representa-
tion for such retrospective testing (compared to the
deployment prospective version of the logic).
The second challenge is the ability of non-program-

ming clinicians (as recipients, reviewers, maintainers, or
authors of decision support) to understand and manipu-
late the logic of a given DSS module. From a perspective
of non-programmers, it can also be described as a
“black-box phenomenon.” A clinician who cannot review
in detail the logic of a given decision support system
may be reluctant to adopt a system that he can not fully
understand.
We were able to address the two above-mentioned

challenges with a system called HealthFlow, which is an
implementation of a workflow engine in the context of
an EHR system. This software category article aims to
provide implementation details for informaticians and
champion clinicians at healthcare organizations that may
be considering workflow engine technology to enhance
their decision support functionality. We use the term
clinical logic to encompass not only decision support
problems, but also knowledge representation for domains
of quality improvement and clinical research alerts [5].
The HealthFlow project is an effort to utilize a workflow
editor and a cross-industry process definition standard to

represent clinical logic and to use a workflow engine to
execute such logic. Key objectives of the HealthFlow pro-
ject are: (1) the ability to switch seamlessly from retro-
spective execution mode for prior-deployment testing to
prospective mode; (2) the ability of non-programmers to
review the executable logic in a user-friendly fashion
(graphical, step-based flowcharts); and (3) the interoper-
ability of the encoded executable logic across different
healthcare institutions. The HealthFlow system described
in this article consists of two components that share a set
of common characteristics. We use the term RetroGuide
for the retrospective mode of operation, and our initial
work with workflow technology focused on modeling ret-
rospective and analytical processes is presented elsewhere
[6] (a comprehensive set of our desired functional
requirements for a healthcare process modeling platform
is published separately [7]). For the prospective compo-
nent of the system, we use the term FlowGuide, and it
was developed later as a distinct component within the
HealthFlow project. The functional specification for the
prospective component did not stem from a fixed set of
initial requirements, but instead were an effort to maxi-
mize the use of functionality already included in a work-
flow technology suite.
Several prior studies report the use of workflow tech-

nology (WT) in healthcare, and we briefly survey some
of these studies. Emanuele [8] presents the use of WT
to improve infection control and proposed a term work-
flow-enabled EHR system, which can communicate bi-
directionally with a Workflow Management System
(WfMS); e.g., send EHR event notifications to the work-
flow engine and display in the EHR system tasks and
alerts generated by the workflow engine. Quaglini et al
[9] piloted the use of the Oracle workflow software suite
to implement a stroke guideline. Their project used a
non-standard and proprietary process definition lan-
guage; the workflow engine generated tasks, and alerts
were delivered to clinicians via email. Peleg [10] dis-
cusses the close relationship of current workflow
engines with clinical decision support engines, and in
collaboration with Mulyar [11,12], compared existing
guideline representation formats with workflow process
definition standards using workflow patterns [13].
Finally, Haux [14] describes a commercial EHR system
that tightly implements a workflow engine with clinical
care information technology (IT) systems to enable
advanced customization of many EHR functions to
address local needs and utilize location-specific
resources. The implementation presented in this article
extends this prior work and proposes a prospective as
well as retrospective operation mode of utilizing a work-
flow engine. Unlike previous implementation, it is also a
solution that relies on established workflow technology
standards rather then proprietary process definition

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 2 of 19



languages. A later subsection of this article (architectural
evaluation) further compares and analyzes workflow
technology-based approach to decision support in com-
parison to other decision support platform using an
architectural evaluation model [15]. In the following sec-
tion, we present the architecture overview of our WT
implementation, typical usage phases, how the system
interfaces with available clinical data and healthcare
environment, and a use case example.

Implementation
Overview of the architecture
HealthFlow system is an implementation of a workflow
management system (WfMS) [4]. Such a system offers
the ability to model a process as a graphical flowchart in
a workflow editor and execute such process in a work-
flow engine. A workflow process would contain steps
involved in a given decision support problem (e.g.,
hypertension screening logic). We prefer to use the term
scenario as a clinician-friendly synonym to a workflow
process in order to better communicate the clinical con-
text of a given workflow process definition.
We currently use Together Workflow Editor http://

sourceforge.net/projects/jawe as our main editor for
viewing and creating executable scenarios. HealthFlow
utilizes a standard XML Process Definition Language
(XPDL) which is a standard defined and maintained by
Workflow Management Coalition (WfMC; http://www.
wfmc.org/xpdl.html). Adherence to this standard
avoids vendor lock-in problems (ability to switch to
workflow suite from a different vendor). It also enables
inter-institutional sharing of the modeled scenarios.
Figure 1 shows a high-level class diagram of the XPDL
standard with the root element of a workflow package
containing individual process definitions. Key compo-
nents of each process definition are applications, parti-
cipants, activities, transitions, and variables [16].
Additional diagrams of the XPDL schema are pre-
sented in [Additional file 1].
For scenario execution, we use Together Workflow

Engine http://sourceforge.net/projects/sharkwf. Our
existing implementation structurally relies on an open
source workflow suite; however, it can also be imple-
mented on more feature-rich, commercial, XPDL-com-
pliant workflow suites (e.g., Tibco business process
management platform from Tibco software (Palo Alto,
CA, USA) or Fujitsu Interstage platform). We chose the
XPDL standard over other workflow definition lan-
guages (e.g., Business Process Execution language
(BPEL), [17]) or Business Process Modeling Notation
(BPMN), [18]) because it has the widest adoption
among the workflow system vendors [19]. Another
advantage of the XPDL standard (in contrast to BPEL)
was its ability to provide a corresponding graphical

flowchart-like version of a processes definition in addi-
tion to a code-like version.
To provide an interface to clinical data and the EHR

system as well as some other custom functionality,
HealthFlow extends the workflow engine and editor
with a set of small and modular external applications
(EAs). The majority of the logic of the clinical scenarios
and the key strengths of our implementation lie in using
XPDL graphical flowchart constructs. External applica-
tions are used only when XPDL constructs are insuffi-
cient or for interfacing with other systems. In our
current implementation, these lightweight and modular
external applications are developed in Java, but other
modalities are possible with most workflow management
systems, such as a web service, a JavaScript script, or
executables programmed in other programming lan-
guages. Also, these applications currently operate on a
native HealthFlow event model, but it is possible to cre-
ate versions of those applications that operate on other
event models; for example event models and data struc-
tures of a vendor based EHR system, openMRS (Open
Medical Records System, [20]), or HL7’s vMR model
(Virtual Medical Record [21]). For a detailed description
and purpose of an event model, we refer the reader to
Huff et al.’s work [22]. In pilot experiments, we have
successfully demonstrated HealthFlow’s ability to oper-
ate on an event model of version 1.3 of i2b2 (as repre-
sented in the i2b2 OBSERVATION_FACT table
schema). i2b2 [23,24] stands for Informatics for Inte-
grating Biology and the Bedside and it is an emerging
platform for storing and querying EHR data, developed
at Partners HealthCare with a grant from the National
Institute of Health, USA. This proves that HealthFlow
capabilities can be easily adopted by sites that converted
and imported their data into an i2b2 repository. We use
HealthFlow event model because it offers a more elabo-
rate event structure than i2b2 native model (version 1.3
of i2b2). In HealthFlow event model certain common
event characteristics are represented as native event data
components (e.g., event type and event subtype), instead
of using i2b2’s event attributes structure. We further
comment on the relationship of HealthFlow and i2b2 in
the discussion section.
Similar to the event model, where HealthFlow EAs

access EHR data, for final delivery of generated decision
support content, it is important to provide similar inter-
face via EAs to the host EHR system. Examples include
the ability to modify or respond to action within EHR
screens handling computerized order entry, problem list
maintenance, results review, and treatment planning
(referral and prescribing). In our work, we focused
mostly on generation of decision support content and
non-standardized basic delivery of this content at a sin-
gle institution (e.g., daily batched delivery of generated

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 3 of 19

http://sourceforge.net/projects/jawe
http://sourceforge.net/projects/jawe
http://www.wfmc.org/xpdl.html
http://www.wfmc.org/xpdl.html
http://sourceforge.net/projects/sharkwf


content to a care coordinator role rather than scenarios
with fully-developed and sophisticated alert delivery and
usability logic). Ability to integrate into the EHR
depends on the decision support platform but also on
the host EHR. Peleg [10] defines this as a third level of
decision support integration, and Emanuele and Koetter
[8] use the term “workflow-engine enabled” EHR system
when the EHR can communicate with a workflow
engine by sending pertinent healthcare event data to the
engine and conversely receive tasks generated by the
engine.

Multiple complexity levels
Various decision support solutions (e.g., Arden Syntax
[25], GLIF (Guideline Interchange Format, [3]), EON
[26], ProForma [27]) have addressed with various
degrees of success many challenges in DSS [10]. We
would like to discuss two factors that we consider
important: (1) a given DSS platform can support multi-
ple levels of complexity on a complexity-functionality
curve; and (2) a DSS platform provides a flexible inter-
face to the outside-world. A common theme in DSS,
since the days of Arden Syntax’s curly braces problem
[28], is the fact that a DSS platform must interface with
external systems (e.g., EHR system or/and Clinical Data
Repository). Dealing with external complexity may in
fact require significantly more expertise then construct-
ing the clinical logic itself. To achieve balance between
complexity and functionality, we have designed the
HealthFlow system to have three different levels of

external complexity (basic, advanced, and ultimate). We
refer to these three levels as HealthFlow usage levels
because they entail multiple aspects. For example, a sim-
ple decision support problem can be fully captured on a
basic usage level (e.g., obtain one most recent laboratory
result for a single test, compare it to a critical threshold,
and alert); whereas, a more complex logic operating
with multiple parameters that may interact with each
other, may require advanced or ultimate HealthFlow
usage level. The first aspect of the usage level is the
complexity and configurability of the external applica-
tions employed by the scenario flowchart. The second
usage level aspect is the overall look of the scenario
flowchart (e.g., basic usage level flowcharts [or flowchart
steps] are easier to understand for non-programmers
than flowcharts at the advanced or ultimate usage level).
We discuss the three usage levels in greater detail in a
later sub-section describing the external applications.

Three HealthFlow usage phases
The use of HealthFlow can be divided into three phases;
(1) scenario creation, (2) scenario testing (RetroGuide),
and (3) scenario deployment (FlowGuide). In most
cases, phases 1 and 2 are repeated iteratively until the
resulting scenario and HealthFlow-generated reports
fully address the knowledge representation problem at
hand. Depending on the nature of the project, the phase
2 scenario testing version may be deployed as a prospec-
tive module with no or small modifications. This ability
directly addresses the first challenge we described in the

Figure 1 XPDL standard. UML Class Diagram showing key XML Process Definition Language (XPDL) classes. Activities and transitions are key
components which form a process definition. Additional process elements are applications, workflow variables and participants.

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 4 of 19



introduction (ability to test clinical logic on retrospec-
tive data). In order to understand the relationship of the
retrospective and prospective mode of HealthFlow
operation, we must first explain the concept of a current
temporal position in the EHR record. In retrospective
mode (RetroGuide) the scenario consumes all available
EHR events; it does not wait for an event to happen,
but instead searches for it beyond the current temporal
position. A data warehouse (or other comparable clinical
data repository entity) is a primary component used in
this mode, as it provides an optimized platform for
searching through all historical clinical data. A given
step in the scenario flowchart simply retrieves retrospec-
tive EHR data. For example, the step may contain logic
to “find date of the next outpatient visit to pediatrics
after discharge from hospital”. In prospective mode
(FlowGuide), however, the “future-oriented” scenario
flowchart steps are switched to wait for a particular
event to arrive via event listener. In this mode, the
engine communicates directly with the EHR system in
real-time. To illustrate this on the previous example of
pediatric visit, the workflow engine would maintain a
status of a scenario instance, which would be in paused
mode, until a pediatric visit would happen. Figure 2
shows the overview of the architecture and depicts the
two modes of operation. It shows that the FlowGuide
component primarily interacts with an EHR system and
point-of-care, whereas the RetroGuide component
works with a data warehouse layer, and scenario conclu-
sions (proposed prospective actions) are merely docu-
mented in a retrospective execution report and not sent
to the point-of-care. Figure 2 also shows additional
components of the architecture, such as the knowledge
base consisting of process definitions (scenarios) and
workflow editor. The set of HealthFlow modular exter-
nal applications (EAs) is included in the additional
external services box. The figure also includes (in gray)
additional architectural components such as the event
model and the ability to analyze workflow logs or obtain

scenario definitions using workflow process mining
techniques [29].
Before describing the individual phases, we need to

more precisely define a HealthFlow scenario. A scenario,
which is in workflow technology terms a fully executable
workflow process definition, consists of two key layers: a
graphical flowchart layer and a hidden code layer. The
flowchart layer can be created and reviewed by users with
limited programming expertise (e.g., champion clinicians
or other non-expert requestors of a clinical logic module
such as administrative and management level healthcare
personnel or researchers). The code layer is hidden behind
the nodes and arrows of the flowchart and contains refer-
ences to modular applications that can (1) obtain EHR
data (or listen/wait for them), (2) provide various analytical
functions using any external technology, or (3) perform an
action within an EHR system at the point-of-care (or
document such action within a report when in retrospec-
tive mode). This hidden code essentially utilizes Health-
Flow EAs, or it can call any external computer application
or a web service. Finally, a HealthFlow scenario has yet an
additional variable layer where relevant information can
be passed between flowchart steps (e.g, average systolic
blood pressure at age 60-65). We will describe each of the
three HealthFlow phases in detail.
First phase: Scenario Development
The first phase of scenario development involves the
creation of a sequence of steps, relying on HealthFlow’s
external applications. Each step is modeled as a node in
a flowchart. Each node may contain the execution of
one or more EAs. Arcs connecting the nodes represent
the flow of logic. See figure 3 for an example scenario.
Six additional scenario examples can also be found in
[Additional file 2]. The graphical nature of a HealthFlow
scenario facilitates collaboration between a (1) requestor
(usually a clinician, but it can also be a researcher,
administrator, or other domain expert) who develops
the scenario using the graphical flowchart and the tex-
tual description fields that specify what each node or arc

Figure 2 Implementation architecture. High-level diagram of the architecture of our implementation of the workflow engine (HealthFlow
system). The key components are shown in bold. The workflow engine is bi-directionally connected to an EHR system layer. The left part shows
a scenario knowledge base, authored within a workflow editor, and external services which include core HealthFlow external applications.

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 5 of 19



should perform, and the (2) collaborating knowledge
engineer, knowledgeable about EAs, who makes the sce-
nario executable by filling in the necessary computer-
interpretable components.
Second phase: Scenario Testing (RetroGuide)
During the second scenario testing (RetroGuide) phase,
the model is executed by the workflow engine using

retrospective data from a set of patients (testing cohort).
The scenario testing phase can be divided into two
major steps: actual execution, and a reports review step.
During the execution step, the workflow engine uses a
single patient modeling and execution approach, where
the scenario is run for each patient as an individual.
Several reports are built during the execution step, cap-
turing the execution trace of the scenario for each exe-
cuted patient from the testing cohort. In addition to a
single patient execution trace, data views are also pro-
vided to enable population view of the execution.
Optional custom reports can also be built, documenting
patients that satisfied certain combinations of steps or
conditions (conclusion steps). The execution by default
proceeds forward in time, and the concept of current
position in the chart is important. The process is analo-
gous to a human research abstractor performing manual
chart review. The process is best understood by envi-
sioning a robot that is browsing a chronologically
ordered series of coded clinical events found in an EHR.
The robot (RetroGuide) hypothetically starts at the first
EHR event and advances through the record according
to the flowchart step-wise instructions.
The second step of reports review involves the analysis

of how well the HealthFlow scenario addresses the clini-
cal problem or logic at hand. This is achieved by using
HealthFlow data visualization components (see figure 2).
Three main data views are available: summary report,
detailed report, and individual patient view. HealthFlow
summary report lists cohort-based statistical results, e.g.,
“How many cohort patients satisfied a particular sce-
nario step, branch or condition?” The second, detailed
report is patient-centered and offers additional details
about scenario execution, e.g., exact values, timestamps
and codes for individual EHR events investigated by the
scenario. Finally, the third report offered by HealthFlow,
the individual patient view (IPV), lists all EHR events
for a particular patient. The review of selected patients
within the detailed report and individual patient view is
the basis for iterative improvements to the scenario
logic. Several examples of scenario flowcharts and
reports can be found on the HealthFlow project website
http://healthcareworkflow.wordpress.com.
During retrospective testing, several aspects of the sce-

nario are evaluated which are mainly oriented towards
whether a meaningful decision support content is gener-
ated out of a proposed scenario logic:

(1) What percentage of the initial testing cohort has
an action/intervention alert generated?
This evaluation aspect is based on the assumption
that a given new scenario checks certain clinical
aspects of a patient which results in no action or
intervention in compliant patients or some new

Figure 3 Retrospective scenario flowchart example. Example of
a RetroGuide osteoporosis scenario flowchart with analytical steps.
This flowchart can operate on retrospective data because it does
not require interaction with a clinician. All steps of the flowchart
involve searching for a prior EHR event. The following logic is
represented: (1) In patients with a fracture after age 65; (2) ensure
female gender; (3) ensure that patient did not have a bone mineral
density test performed; (4) ensure that no osteoporosis prevention
drug has ever been prescribed; and (4) conclude that the patient is
at increased risk for fractures.

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 6 of 19

http://healthcareworkflow.wordpress.com


action in non-compliant patients. In the first compli-
ant case, the clinician’s work is not changed and no
interruptions occur. In the second non-compliant
case, the clinician’s work may be affected by one or
several types of new actions. For example, new rele-
vant information is being passively displayed, or the
user is interrupted with a new data entry or choice
selection dialog. In other words, if the scenario logic
checks a quality improvement initiative and the non-
compliant percentage of patients is too high (e.g.,
more then 50%), the new decision support content
could be too aggressive, and other means of inter-
vening may be chosen (e.g., quarterly educational
intervention supported by peer-comparison and ret-
rospective data review, rather then too frequent,
point-of-care decision support). Similarly, if the
number of affected patients is too low (e.g., less then
3%), it may not be cost effective to justify creation
and costly enterprise maintenance of a new decision
support content for this problem. However, this also
depends on the severity of the clinical consequences
in a non-compliant patient. Iterative review and
changes to the trigger criteria, clinical logic thresh-
olds, or number and types of possible output actions
during this second RetroGuide phase can result in
achieving an optimum balance between the pro-
jected impact of the new decision support module
on clinicians, necessary information campaign about
the new module, and significance of the new mod-
ule’s clinical domain.
(2) Does the scenario logic perform similarly on addi-
tional testing cohorts (e.g., other geographic regions,
different physician groups)?
The initial testing is usually done in a cohort sug-
gested by the scenario requestor(s) (e.g., patients
from a given clinic with certain trigger criteria).
After basic scenario logic fine tuning, an integral
part of the retrospective testing phase is execution
on cohorts from other clinics or on an enterprise-
wide cohort, to see whether the same logic can be
deployed enterprise-wide, or whether the new logic
will require more complex local customizations (e.g.,
same logic applied only in selected sub-populations
[physician groups, regions, or patient groups]) or
several versions of the logic with slight modifications
for different contexts. In some implemented scenar-
ios, retrospective testing in additional cohorts signifi-
cantly influences the final logic, and the scenario
authors are surprised with results of this testing and
variability and number of possible data patterns in
different populations. In such cases, there could be
tens of iterations between scenario modifications
and testing.

(3) Do additional exclusion criteria need to be
added, based on review of patients affected by the
new logic?
For example, during retrospective testing of the
newly proposed very high cholesterol patient sce-
nario (patients with recent low-density lipoprotein
[LDL] lab result of 190 mg/dL or more), we addi-
tionally excluded patients coming for oncology and/
or optometry appointments based on the requestors
clinical consensus. It is important to also note, that
while review of retrospective results provides useful
inputs, it may not cover all possible situations
depending on the size of the retrospective cohort. It
complements, but not eliminates, evaluation of the
later prospective scenario deployment.

The functionality of the retrospective RetroGuide
component of our workflow engine implementation can
also be used as a standalone tool for flowchart-driven
data analysis and is closely related to many cohort size
estimation query tools [6]. However, the ability to use
the same flowchart representation paradigm for retro-
spective as well as prospective execution mode distin-
guishes our implementation from many other research
efforts. Additional examples and descriptions of the sec-
ond RetroGuide phase can be found in published case
studies on Hodgkin’s lymphoma [30], hypertension [31],
inpatient glucose control protocol [32], hepatitis C treat-
ment and adverse drug events after use of narcotics [33],
and osteoporosis and cholesterol control [34].
Third phase: Scenario Deployment (FlowGuide)
The third phase of scenario deployment (FlowGuide)
uses the same framework as the retrospective Retro-
Guide phase, with a few exceptions. FlowGuide prospec-
tive scenario may be created from scratch (very
uncommon) or can be based on a retrospective Retro-
Guide scenario (most frequent). We will focus our
description on the second case and also explain what
changes occur when a retrospective scenario is made to
run prospectively. A FlowGuide scenario consists of five
types of possible flowchart steps: trigger, background,
analytical, listen, and action nodes. Two of the types,
background and analytical nodes, are also present in ret-
rospective RetroGuide scenarios. Trigger steps start the
scenario. For example, a visit to rheumatology is sched-
uled for today or a surgical report is filed: there can be
one or multiple trigger steps. Background steps find past
events in the EHR (at runtime). For example, find ear-
liest instance of rheumatoid arthritis diagnosis or find
latest pharmacy record (prescription, renewal, or discon-
tinuation) for a biologic agent such as infliximab. Analy-
tical steps manipulate data obtained via previous
flowchart steps. For example, based on average systolic

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 7 of 19



blood pressure value, determine follow-up frequency cri-
terion (every year or every two years). Listen steps wait
for a given EHR event to occur in real time. For exam-
ple, wait for a discharge event in a patient previously
triggered by a surgical report creation. Listen steps
share the same event data model with background steps.
During retrospective-to-prospective scenario translation,
listen steps are created from background steps by chan-
ging the mode from retrospective search scope (search
for a specific past EHR event in a given patient) to wait-
ing, prospective scope (wait until a specific event occurs
to a given patient). Finally, action steps perform actions
within a given EHR system (or other related system, e.g.,
Clinical Trial Management System). Actions may involve
updating a report or registry, sending an email, generat-
ing an alert, creation of an order, or order cancellation.
Full range of previously identified intervention types
(notify, log, provide defaults, show guidelines, etc.) is
supported with proper interface support of the interven-
tion target system [35,36]. During retrospective-to-pro-
spective scenario translation, action steps are often
created from conclusion steps by changing the action
from ‘retrospective report conclusion creation’ to a par-
ticular prospective action. Although we emphasize the
ability to test a given clinical logic retrospectively, it is
important to note that not all possible prospective sce-
narios can be tested retrospectively. Prospective scenar-
ios that contain manual human steps (e.g., prompt
clinician for symptom severity) cannot be tested retro-
spectively because the new prospectively collected data
are not present in the retrospective dataset used in Ret-
roGuide mode. Limited testing may be performed if the
scenario can be decomposed into smaller sub-scenarios
which are fully functional on retrospective data.

HealthFlow External applications
We designed the HealthFlow system with several usage
groups in mind. Our primary goal was to support the
ability of a non-expert scenario requestor to passively
understand the scenario logic and be able to review the
logic. This also includes the ability to review any itera-
tive changes to a scenario as it is being collaboratively
authored by the requestor and the collaborating knowl-
edge engineer. The scenario-reviewer role is mostly sup-
ported by the graphical nature of the scenario and the
ability to use hierarchical arrangement of scenarios (i.e.,
a node may expand into multiple steps by using sub-
flows). The secondary design goal was to also empower
a non-expert requestor to even be the scenario-author,
or to support very close requestor-knowledge engineer
collaboration. To support a whole range of simple and
complex functionality, we adopted an approach of sev-
eral distinct HealthFlow usage levels (or complexity
levels). This approach was inspired by historical

development of the HealthFlow system, where we kept
adding new, more complex, functionalities while also
retaining their simpler versions for basic problems.
Within this approach, we define three usage levels with
increasing complexity: simple, advanced, and ultimate. A
higher level can always utilize strategies and applications
from all lower usage levels, and a given scenario may
combine nodes (scenario steps) authored at different
levels. During the last six years of developing the
HealthFlow system, each usage level was populated with
an initial set of external applications. However, each
level can evolve and have additional capabilities added.
The division into exactly three usage levels and func-
tionality boundaries of each usage level are based on
our analysis of existing HealthFlow scenarios, our inter-
actions with scenario reviewers and authors, and system
buy-in and training considerations (e.g., short training
time and a favorable learning curve for simple problems,
and non-expert users with the potential for more com-
plex training and system use later).
The simple level uses EAs with a small number of

parameters (zero, one, or two input parameters and one
output parameter) which are easier to understand. A
basic example of a simple EA is a lookup for patient
gender using a step in a flowchart that contains an EA
call of ‘Patient_is_male()’ and returns true if the patient
is male, false if female, and null if gender information is
not in the EHR. In a simple level, a separate EA is
defined for each event type (total of 9 EAs, e.g., Find-
Diagnosis(ICDDxCode), FindLabResult(LabCode), Find-
Visit(AppointmentTypeCode)). Only a single event can
be the result of a simple ‘find event’ instruction, and
only a simple found/not found boolean output is avail-
able for scenario branching logic. All simple level EAs
operate in a “strict pointer mode” which means that the
hypothetical robot moves the current position pointer to
the EHR position where its last step succeeded, or stays
at the previous position if it failed. For example, a step
using FindLabResult(LDL-cholesterol_code) after estab-
lishing the onset of lipid-lowering pharmacotherapy will
return true if such follow-up test is found, and the cur-
rent position pointer will move to a new EHR position.
This behavior is similar to browsing and searching for
events in a book; however, the pointer position can be
manipulated by using “jumping” operations (e.g., Jump-
ToLastEHREvent or JumpForwardXMonths).
The second, advanced level adds complexity to event

finding operations by allowing greater granularity
through more possible input and output parameters. In
the advanced level, the current position pointer behavior
can be modified to better fit user needs by enabling
both strict and custom pointer modes. The custom
pointer mode can restrict each find event operation with
arbitrary time boundaries (usually defined in scenario

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 8 of 19



variables). For example, FindCodedEvent with time
boundaries of chronic kidney disease onset date to regu-
lar dialysis onset date: the outputs of advanced EAs are
also extended and include all event properties such as
event numeric value, coded value, or flag. Find event
operation can return not just a single event, but also a
set of multiple events, and the scenario can perform
simple operations with these sets (e.g., use the count of
events in the result set in branching logic such as if
more than 3 dialysis events are found in the last 12
months since current or other arbitrary position). There
is a total of 7 advanced EAs also with new types of
applications added, such as EAs related to variables
(AssignValueToVariable, IncreaseCounterVariable) and
temporal EAs (EvaluateTwoTime-stampsDifferenceCri-
terion). Because of these additional capabilities,
advanced level scenarios can be more complex to review
for the requestor. The advanced usage level also offers
the ability to export data generated within HealthFlow
(using the HF-Export tool and CSV format) into exter-
nal software packages (e.g., SAS or R). The export capa-
city is performed after scenario execution and could
technically be part of any usage level, but is included in
advanced level mainly for training purposes.
Thirdly, the ultimate level builds again on the pre-

vious levels and offers the ability to analyze averages
and sums of numerical parameters of sets of events (e.
g., average systolic blood pressure in a result set of a
find operation). The ultimate version of the FindCode-
dEvent EA also supports the ability to use value sets
derived from HealthFlow ontology and use terminology
abstraction functionality. This enables it to use all chil-
dren concepts (or only first degree children) with a par-
ticular relationship to a given term (most often the ‘is_a’
relationship). An example would be providing a concept
code of a drug class (e.g., incretin mimetics) and let the
HealthFlow ontology provide the enumeration of all cur-
rent dispensable drugs in this drug class (e.g., exenatide,
liraglutide, and taspoglutide). The ultimate level contains
extended versions of some prior EAs and adds 4 new
EAs and other model infrastructure dealing with retro-
spective to prospective transition (e.g., TriggerEventLis-
tener, RelevantEventListener). From a modeling
perspective, the ultimate level also introduces the use of
looping logic in a flowchart which may be required for
some complex problems (e.g., determining onset of
chronic kidney disease using laboratory criteria). Addi-
tional examples of EAs and their use can be found in
previously published reports [33,37].
Finally, it is important to note that the HealthFlow sys-

tem can be further extended to achieve functionality which
is not covered by the external applications included in the
three levels above. This is done by programming new, pro-
blem-specific external applications. Such new EAs may

provide ‘de novo’ functionality such as: (1) access a legacy
system or data stored within a different data representation
model; (2) call an external web service; or (3) provide inter-
face to advanced analytical features (e.g., call an external
reasoning engine such as Neural Network, Fuzzy Logic,
Hidden Markov Model framework, or other paradigm that
may provide superior capabilities in some domain [e.g.,
dealing with reasoning under uncertainty]). Creation of
such problem-specific EAs involves custom programming
and requires collaboration with a programmer.

An example use case
To illustrate HealthFlow use, it is perhaps best to opera-
tionalize it. Consider the following clinical scenario in
osteoporosis care in women over the age of 67. Dr.
Jones, a family medicine physician and a medical home
initiative advocate, attends a conference where a case of
a woman with repeated fractures after age 67 is
described and recommended management options are
emphasized (bone density testing and preventive admin-
istration of osteoporosis drugs). Upon returning from
the conference, Dr. Jones wants to write a DSS module
that would facilitate optimal care including the confer-
ence recommendations. He drafts an initial flowchart of
this problem using a workflow process modeling tool.
This tool enables Dr. Jones to model a sequence of ana-
lytical steps over EHR data and is easy to understand
because it resembles a manual chart review. See figure 3
for the resulting initial flowchart.
Mr. Clark, a collaborating knowledge engineer,

receives the process flowchart in an email (XPDL file)
from Dr. Jones and extends the nodes of the process
flowchart with elements that enable execution of the
flowchart. Figure 4 shows an example of a dialog box

Figure 4 External application example. A workflow editor dialog
box showing node properties window within a workflow editor.
Details of the bone density node from osteoporosis scenario are
shown. Ultimate level FindEvent external application was used in
this case allowing the knowledge engineer the largest flexibility.
Bottom parts of the figure shows an XPDL element where scenario-
step specific communication of the requestor with the knowledge
engineer can be achieved.

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 9 of 19



within Together Workflow Editor that specifies execu-
tion and parameters for an EA.
To facilitate communication and consistency, the

knowledge engineer preserves the structure of the flow-
chart (number of nodes, branches, and overall layout of
the flowchart). The knowledge engineer then executes
this extended process definition on a set of patients (e.g.,
4000 females with a fracture) and emails back to Dr.
Jones hyperlinks to web-based scenario retrospective
execution reports (HealthFlow summary, detailed and
IPV reports). Dr. Jones reviews the web-based reports
and, based on a more detailed review of eight carefully
selected patients, he identifies additional codes for bone
density scores observed in the EHR of some of the
patients. He decides to add a new process branch for a
flagship family medicine center that is also collecting
bone density Z and T scores in a structured EHR data
entry form filled by medical assistants, which allows
more specific decision logic within this branch. See figure
5 for the extended scenario. Several iterations of other
process definition improvements occur, and Dr. Jones
eventually concludes that the results of the retrospective
fine-tuning of the process logic indicate that a meaning-
ful and highly specific IT-intervention in a subset of
osteoporosis patients is well justified. Dr. Jones uses the
underlying process flowchart to share the analysis with
his fellow physicians in the family practice clinic, who
agree to a pilot deployment within their clinic. Dr. Jones
sends the final executable scenario to the clinical decision
support (CDS) team. The CDS team runs a

transformation script against the process definition file
which replaces all data retrieval process steps (which run
against the data warehouse) with corresponding data
retrieval calls that run against the production clinical
data repository (CDR). The transformation script also
changes the alerting/recommendation target from a ret-
rospective execution report to a recommendation section
within a patient dashboard screen in the EHR system.
Since the logic prototyping was patient based (rather
than population based), no other transformation for
switching retrospective to prospective functionality is
needed. During the pilot, colleagues of Dr. Jones can see
new types of recommendations being generated, and they
can click on the small view-logic-link next to the new
recommendation. This view displays the same flowchart
they were presented at their meeting with the highlighted
route through the logic for a particular patient in ques-
tion. The view offers them the ability to provide feedback
linked to a specific node of the flowchart or to the flow-
chart as a whole.

Other components of the HealthFlow system
Event Model
The event model used by the HealthFlow system is
based on decomposition of EHR data into events
described by Huff et al [22]. There are two event models
supported: basic and extended. The three levels of EAs
included in HealthFlow (simple, advanced, and ultimate)
utilize the basic model. The extended model can accom-
modate any event structure, and in order to utilize it,
custom EAs at the extended level have to be pro-
grammed. For example, we have piloted the use of the
i2b2 event model.
We further describe only the basic model. At the begin-

ning of our workflow engine implementation project, our
requirement was to create a simple event model that can
cover 80% of the possible use cases, rather than an elabo-
rate and comprehensive model. For example, the basic
event model does not support the ability to recursively
add additional event attributes outside of the provided
basic set of event properties defined. The structure of the
basic model has the following key event characteristics:
patient_id, event date and timestamp, event type, event
subtype, observation and coded value, value numeric, and
value text. Additional characteristics are flag code, termi-
nology2 code, and sequence_id. Each coded field has a
corresponding code column and textual description col-
umn. An example of several observations (using only
description fields) is provided in table 1. Figure 6 shows
the event structure in an entity relationship diagram
together with the ontology structure.
Ontology
Our workflow engine implementation, similar to other
clinical informatics systems, needs a standard way of

Figure 5 Prospective version of the osteoporosis scenario.
Extended logic for flagship facility A. The added branch ensures
that even if the bone mineral density test is present, the scenario
will continue to evaluate the patien’s medications if the density
score indicate further action is needed. Notice that only the
branches which make the scenario proceed need to be addressed.
E.g., no branch for female = = false is needed.

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 10 of 19



representing coded clinical concepts. Chosen representa-
tion approach has a high impact on semantic interoper-
ability of individual scenario steps, and to ensure that
we strive to utilize, as much as possible, existing and
widely-spread terminologies. HealthFlow uses an inter-
nal native ontology that can accommodate standard
established terminologies such as International Classifi-
cation of Diseases (ICD) or Logical Observation Identi-
fiers Names and Codes (LOINC), as well as local,
proprietary ontologies. It supports any relationships
among two concepts; however, the most important

relationship is an “is_a” relationship. The HealthFlow
ontology model also allows a concept to have multiple
parents via the same or different relationship. For exam-
ple, the ICD-9 code for ‘prolonged depressive reaction’
can have one parent of psychiatric disorder and also be
part of the depression Healthcare Effectiveness and Data
Information Set (HEDIS) value set. Another example
would be the concept atenolol can have an ‘is_a’ rela-
tionship to a beta blocker concept and a ‘has_indication’
relationship to the hypertension concept. This enables
the ontology to support the search for drugs that are

Table 1 Event schema example

EV_TIME
(ev_time)

EVENT TYPE
(evtype_desc)

SUBTYPE
(evsbtype_desc)

OBSERVATION
(obs_desc)

CODED VALUE
(cd_val_desc)

FLAG
(flg_desc)

VAL_NUM
(val_num)

TERM2_CD
(term2_cd)

TERM2_DESC
(term2_desc)

1990-01-
01
00:00:00.0

Birth event

2046-04-
23
00:00:00.0

Length of Stay 3

2046-04-
23
00:00:00.0

ICD-9-CM
Diseases

72610 ROTATOR CUFF
SYND NOS

2046-04-
23
00:00:00.0

ICD-9-CM
Procedures

8363 ROTATOR CUFF
REPAIR

2046-04-
23
00:00:00.0

CPT-4 2 J3010 Inj, fentanyl citrate

2046-04-
23
00:00:00.0

CPT-4 29999 ARTHROSCOPY OF
JOINT

2046-04-
23
15:01:00.0

Clinical Text
Data

Operative
Report

2046-04-
23
15:23:00.0

Standard Lab
Data

Lipid Profile Cholesterol,
Plasma Quant.

Higher
Than
Normal

327

2046-04-
23
15:21:00.0

Standard Lab
Data

Urine Mi-
croscopics

Epithelial Cells,
Urine

Occasional

2046-05-
11
13:21:50.0

Problem Event Diagnosis Hyperlipidemia

2046-08-
12
11:12:13.0

Patient Order Pharmacy order Meperidine Hcl,
50 Mg/Ml,
Ampul

2047-01-
18
10:55:01.0

Nurse Note 203.1.10.3.1.10.1.0 PURPOSEFUL
MOVEMENT

2047-01-
18
15:23:30.0

Inpatient Drug 3513816 ELECTROLYTES
(NUTRILYTE) 42.9
ML, VIAL

2047-01-
19
11:02:02.0

Discharged 43 ICU

Only selected sample events are shown. Dates are fictional and only textual meanings of codes are shown. The “ev_time” column shows the event time, the next
four columns contain the basic four attributes (type, subtype, exam, coded value), followed by the flag and numeric value columns. Corresponding columns in
the HealthFlow database schema (see figure 6) are shown in brackets in column headings. Only the event time and type attributes are required for all events.
The last two “Term2” columns are used for storing external terminology original codes.

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 11 of 19



indicated for a given disease (e.g., hypertension) as well
as by drug class (e.g., beta blocker).
In our current implementation, we have ICD-9-CM

and Current Procedural Terminology (CPT) standard
terminologies loaded. Included proprietary terminologies
are local lab codes, local diagnostic codes, and local
codes for medical specialties and vendor-supplied drug
terminology. Additional relationships included for user
convenience are HEDIS tables covering ICD-9 diagnostic
value sets. Ontology relationships can be used only when
ultimate EA sets are used. Our experience with reques-
tors indicates that many of them are not interested in uti-
lizing complex terminology structures and prefer directly
enumerating concepts of interests for a given scenario
step. Figure 7 shows the HealthFlow ontology web-based
browser displaying first degree children of the is_member
relationship of the HEDIS concept of AMM-A value set
(Antidepressant Medication Management, table A: diag-
nostic codes to identify major depression).

Results
Current implementation at Marshfield Clinic
The workflow engine and the additional components of
the HealthFlow system have been fully implemented at
Marshfield Clinic (MC), and the system works in real
time. We have created the necessary event listener (see
figure 2) for MC’s EHR (CattailsMD™). Both major
components (RetroGuide as well as FlowGuide) are
operational.
Under an approved RetroGuide Institutional Review

Board (IRB) protocol, 40+ different scenarios were

modeled by several analysts (see [Additional file 2] for
examples) resulting in more than 360 execution reports
being available in the RetroGuide project table. A Retro-
Guide scenario is usually tested on a cohort of 500 to
5,000 patients which is drawn from a larger sample of
75,000 patients. This larger de-identified cohort contains
a total of 145 million coded EHR events. Table 2 shows
an overview of selected event types such as diagnoses,
procedures, laboratory results, and other structured EHR
data. To demonstrate the ability to share decision sup-
port logic at a flowchart level, we have uploaded example
scenarios to a decision support community wiki http://
www.clinfowiki.org/wiki/index.php/HealthFlow.

Figure 6 HealthFlow event and ontology schema. HealthFlow
data model schema showing the event table linked to the ontology
table. For events table examples, see table 2.

Figure 7 Ontology browser. Example showing HealthFlow internal
ontology structure. This web-based applications allows the user to
navigate concept children (HEDIS value set for depression
diagnostic codes is shown). CCD abbreviation denotes a concept
code.

Table 2 Coded EHR events statistics

EHR event type Count

Lab 38,351,151

Diagnosis (ICD) 27,308,067

Procedure (CPT) 20,536,282

Vital signs 12,316,006

Textual report 12,205,115

Appointment 11,587,466

Prescription 7,522,419

Structured EHR value 7,323,129

Wellness 1,437,046

Electrocardiogram 1,122,398

Microbiology 703,451

Social History 302,698

Race and Ethnicity 78,654

Biopsy 28,317

Cancer History 18,557

Death (confirmed) 1,116

The table presents counts of events by type from the larger set of 75,000
patients used for sub-setting smaller testing cohorts for RetroGuide scenarios.

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 12 of 19

http://www.clinfowiki.org/wiki/index.php/HealthFlow
http://www.clinfowiki.org/wiki/index.php/HealthFlow


Under a separate FlowGuide IRB protocol, where real
time EHR data is being used to model prospective sce-
narios, we are currently conducting a validation study of
FlowGuide generated alerts in clinical domains of cho-
lesterol management and rheumatoid arthritis. The cur-
rent scenarios are designed to look at sub-populations
of patients (e.g., patients with a history of LDL choles-
terol above 190 mg/dL) and are triggered by the pre-
sence of a scheduled appointment event for the next
day relative to the execution time. With the two
deployed scenarios, the FlowGuide system daily pro-
cesses between 150 and 400 patients and generates
recommendations on 7.5% of them who are subject to
the currently ongoing alert validation study.

Previous case studies
In addition to the implementation at MC, several Retro-
Guide scenarios were executed against data from Inter-
mountain Healthcare in the past (see [6] for full
overview). The tested clinical domains included female
Hodgkin’s lymphoma patients, hypertension in diabetics,
glucose management in intensive care unit patients,
adverse drug events after use of narcotics, hepatitis C,
osteoporosis, and cholesterol control. Three of those
domains were also executed within RetroGuide using
EHR data from Marshfield Clinic; so for three scenarios
we demonstrated the ability to execute the same logic at
two institutions.

Formal, user-based evaluation
We have conducted a formal evaluation study of the
HealthFlow flowchart-based modeling paradigm (retro-
spective mode only). In this evaluation, we used a group
of 18 non-expert subjects in laboratory settings in a
mixed method design. We quantitatively compared, by
measuring their performance on a test, the ability of
subjects to solve query problems using flowcharts
against a traditional code-based structured query lan-
guage (SQL) representation. The test included 9 task
questions and 5 choice questions. In a task question, the
subject had to create a solution for a given search task.
For example, task T4 was “Find all patients who had at
least 2 creatinine lab results flagged as too high.” In a
choice question that evaluated the ability to review a
solution, the subject was shown an initial solved pro-
blem and was asked to choose from one of the three
presented solutions which correctly extends the initial
solution with additional query elements. In another
example, the extended task C5 was “Find all patients
who experienced the initially mentioned adverse drug
event (naloxone and transfer to ICU within 6 hours)
and also had a record of sleep apnea diagnosis prior to
this adverse drug event.”

In a follow-up qualitative study, we investigated tech-
nology acceptance of the flowchart-based representation
paradigm using the UTAUT model (Unified Theory of
Acceptance and Use of Technology) [38]. A detailed
description of the design and results of this evaluation
has been published separately [6]. The quantitative
results indicated that non-experts achieved significantly
higher scores in problem solving using flowcharts-based
technology as compared to a purely code-based technol-
ogy. The flowchart-based technology had on average 4.8
points higher test scores (SD = 1.8, CI 3.3-5.4; p <
0.0001) on a scale of 0-14 points. The qualitative follow-
up study results showed that 94% of the subjects pre-
ferred flowcharts to code because it was easier to learn,
it better supported temporal tasks, and it seemed to be
a more logical modeling paradigm.

Architectural evaluation
In addition to this laboratory evaluation, we also looked
at the workflow engine implementation in comparison
to other decision support architectures. We used a pre-
viously published evaluation framework [15] (referred to
as CDS-EF = Clinical Decision Support architecture -
Evaluation Framework) for this architectural evaluation.
This evaluation framework has been previously applied
to Arden Syntax, GLIF, SAGE [39], SEBASTIAN [40],
and SANDS (service-oriented architecture for decision
support [15,41]). We briefly comment on each of the
CDS-EF elements of (1) feature determination, (2) exis-
tence and use, (3) utility, and (4) coverage.
(1) Feature determination: HealthFlow was developed

with numerous CDS-EF’s desirable features in mind,
and it evaluates favorable against them. Specifically,
HealthFlow:

• Is shareable, because it is based on a cross-industry
workflow standard.
• Maintains DSS content separate from EHR code by
using a workflow management layer running on top
of an EHR system.
• Content integrates into workflow by directly utiliz-
ing WfMC’s model for modeling participants roles
and building on the concept of tasks and worklist
handlers [16].
• Supports event driven CDS through modeling
appropriate triggers in a process definition and send-
ing corresponding EHR system event data to the
workflow engine.
• Supports non-event driven CDS through pull
requests originating from non-event-driven systems,
such as dashboards or reporting applications.
• Avoids vocabulary issues by implementing a flex-
ible ontology layer and also through the ability to

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 13 of 19



call external terminology services via external
applications.
• Enables composition of rules because XPDL lan-
guage allows subflows where a given piece of logic
can be re-used in multiple scenarios
• Allows black-box services where a scenario can
invoke via multiple mechanism (most likely via a
web-service call) an external inference service with-
out exposing its underlying inner logic to the under-
lying WfMS
• Has free choice of programming language since sce-
nario-referenced external applications can be written
in any language if they comply with the XPDL-
defined standard interfaces.

(2) Existence and use: CDS-EF proposes a four level
spectrum for evaluating the existence and use axis ran-
ging from theoretical discussions (level 1) through wide-
spread adoption (level 4). With RetroGuide, we achieved
level 3 - advanced prototypes that demonstrate sharing
of decision support content across sites. We were able
to demonstrate running the same XPDL logic against
data from two healthcare institutions (Intermountain
Healthcare and Marshfield Clinic). However, when we
consider workflow technology-based process modeling
as a general technology, it also reaches level 4 (imple-
mentation in commercial EHR systems) when we
include examples from Siemens [14] and other case stu-
dies [42].
(3) Utility: The CDS-EF distinguished two faces of uti-

lity: clinical utility and functional utility. Clinical utility
is the ability to use a decision support architecture to
deliver clinically relevant outputs. HealthFlow’s clinical
utility is determined by the clinical utility of the use
cases implemented in it. To date, implemented use
cases were in the domains of retrospective prototyping
of decision support logic, identifying opportunities for
interventions that would improve compliance with
healthcare quality improvement measures, modeling
enrollment or outcome-tracking logic for clinical trials,
and finally validation of prospectively generated decision
support alerts in four clinical domains.
Functional utility is the ability of an architecture to

support a variety of different kinds of clinical decision
support. Selected functional utility aspects of our work-
flow engine implementation are:

• Developer (non restrictive technical architecture):
XPDL is an open, non-proprietary and evolving stan-
dard which covers a robust set of workflow patterns.
• User (wide range of possible DSS target users): a
HealthFlow scenario can include steps for various
roles ranging from clinician, administrator, as well as
patient (e.g., via personal health record)

• Information source (retrieval of data from any sys-
tem): XPDL’s ability to call external systems and
applications ensures ability to obtain data from any
knowledge or data source.
• Clinical purpose (support for full range of potential
use cases): processes defined in a workflow engine
are not restricted to a particular use case and,
depending on the host EHR, can complement diag-
nostic as well as therapeutic scenarios for a single
patient or for a population of patients, and can be
delivered as a passive information display as well as
active interaction with a clinician at the point of care

The described workflow engine implementation evalu-
ates favorably against the remaining functional utility
parameters of supporting several inference types, ability
to combine scenarios via subflows, and can be imple-
mented in various business models.
(4) Coverage: The final element of the CDS-EF is the

ability of a decision support architecture to encode clini-
cal knowledge in comparison to other approaches. This
final evaluation element is based on a taxonomy derived
from a set of 7,120 rules [35] implemented at some
point at Partners healthcare system. The taxonomy
represents a set of functionality features, which many
recent DSS architectures such as SANDS [41], use as a
minimum required functionality set. Our HealthFlow
DSS architecture was specifically extended to be able to
support 100% of possible modalities within the four
categories in the taxonomy. However, it is important to
note, that this compliance assumes that a target EHR
supports all aspects of the HealthFlow active and passive
EHR interaction model (see figure 2).

Discussion
In this paper, we have described our implementation of
workflow technology for the purpose of clinical decision
support. Our implementation addresses the problem of
retrospective testing and user-friendly flowchart repre-
sentation of the clinical logic. We have described the
use of this framework on multiple case studies at two
institutions and results of two evaluations. We will first
look at advantages and disadvantages of our architecture
in general, as well as the currently used software
(Together workflow editor and engine). Finally, we will
discuss the relationship of workflow technology to query
systems and look at possible future developments and
long-term relationship of workflow technology to deci-
sion support engines.

Strengths and limitations of our architecture
Unlike many existing decision support frameworks that
introduce healthcare specific knowledge representation
standards (for example SAGE [39], GLIF [3], ProForma

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 14 of 19



[43] or SANDS [41]), our implementation relies on a
cross-industry workflow technology architecture and
open, well-defined XPDL standard. We see this as a
major advantage since the workflow technology software
tools may improve in time based on usage in other
industries such as manufacturing, shipping, banking, and
insurance industries. Future enhancement to workflow
editors, engines, and other tools are thus not driven by
healthcare alone. The use of a standard workflow repre-
sentation language (XPDL) also ensures that clinical sce-
nario logic developed at one healthcare institution can
be used directly (or with little modification) at another
healthcare institution. Moreover, by utilizing a standard
workflow definition language, it is possible to use differ-
ent underlying workflow engines or editors at different
institutions.
One limitation of our approach is the readability of

very complex scenarios. While every new technology
offers some advantages and simplifies a view of complex
problems, there is an absolute limit to any such simplifi-
cation. Flowchart-based graphical representation of very
complex algorithms will, in extreme cases, naturally
result in a very complex flowchart. Hence, the advantage
of transparency of a graphical format may not be appar-
ent. This limitation can be alleviated by using a hier-
archical arrangement of scenarios where a node in a
higher lever flowchart expands into a sub-flow which
may consist of multiple steps. Long and complex scenar-
ios can thus be reduced to fewer, high-level flowchart
nodes that group related analytical steps. The complex-
ity problem can also be addressed by shifting some of
the logic away from a flowchart into a single rule-based
node, that calls a comprehensive rule-base or other
expert system. In many implemented scenarios, how-
ever, we often chose to represent as much logic as pos-
sible using the flowchart and XPDL constructs (e.g.,
interim decision state nodes and strict use of transition
conditions) to preserve a clinician-friendly scenario
review.

Strengths and limitations of currently used workflow
suite
Workflow suite developed by Together was the leading
open-source workflow software available when we
started our workflow technology implementation pro-
ject, and it continues to be the most robust, XPDL-com-
pliant workflow suite today. For the editor component,
there are two main advantages. The first is the ability to
customize functionality for a particular use case because
the product is open-source and the code is available to
download. This enabled us to implement the flowchart
display feature on HealthFlow summary report by call-
ing a flowchart rendering sub-component into our
visualization component. The second advantage is an

implementation of the flowchart notation that does not
require the use of a separate join and split node for
flowchart branches, [44] which makes the resulting flow-
charts simpler to review. A disadvantage of the editor is
implementation of the XPDL 1.0 standard instead of the
most recent 2.1 version, although this is on the project
future roadmap. For user-friendly editing, the editor also
lacks ability to change size of the flowchart boxes, use
custom colors and fonts, annotate flowchart with addi-
tional notes visible in the graphical flowchart, and
streamline creation of subflows by selecting a set of
nodes in the existing flowchart.
As for the engine component, a major advantage is the

ability to deploy the Together Workflow Engine on multi-
ple operating systems (Windows and Linux) and interact
with it via several platforms (stand-alone, within JBOSS
container, or as a set of integrated web-services). A key
disadvantage, in general, is the focus of the engine on a set
of configurable and programmable components rather
than one integrated and compact product. For example, to
link the event listener with the engine, we had to create
two small pieces of software that materialize the link
between the engine with our Event listener (see figure 2)
for trigger steps and listen steps for FlowGuide. Also,
there are no robust tools provided for exporting or
detailed analysis of the workflow logs of past processes,
which we achieved by analyzing the internal database of
the Together workflow engine. Finally, we have also
encountered clinical scenarios where we wanted to enable
multiple entry points into the decision logic, which is
functionality possible within some medicine-specific
guideline standards (e.g., GLIF). An XPDL process model
can formally have only one starting point; however, it is
possible to solve the problem with one additional dummy
workflow node that is connected via an additional logic of
trigger conditions, and the logic flow is thus routed to the
desired later start point in the flowchart. The resulting
flowchart is, however, somewhat cluttered with extra tran-
sitions resulting from such a solution.

Relationship to query systems
Although HealthFlow’s main focus is on deployment of
clinical logic with impact at the point of care, it can also
be used as a query technology - using strictly the retro-
spective mode and only the RetroGuide component.
RetroGuide could then be compared to cohort estima-
tion (or query building) tools such as i2b2’s query com-
ponent [45] or STRIDE (a proprietary patient cohort
discovery tool developed at Stanford university [46]).
The key difference with such tools is that RetroGuide
execution strategy is to process each patient separately,
which mimics how a decision support module works
(on a single patient, instead of a population). This factor
is important when some complex query elements are

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 15 of 19



considered. The problem can be described as inter-ele-
ment parameter passing and the ability to create and
manipulate interim constructs (e.g., LDL cholesterol
value prior treatment). Any query tool decomposes a
query problem into simpler query elements. For exam-
ple, a query of finding female patients with fractures
would be decomposed into two elements: (1) female
gender and (2) fracture event. In this example, query
elements are independent of each other. However, com-
putation of certain temporal problems or relative value
comparisons makes some query elements depend upon
results of prior query elements. For example, a query
targeted at regular thyroid stimulating hormone (TSH)
screening compliance in patients on levothyroxine
requires determination of levothyroxine therapy onset
(defined as first two levothyroxine pharmacy pick-ups
within a 6 month window), and passing of this time
parameter to later evaluation for regular TSH lab tests
in the following 12-month time window until the
patient’s present visit. An additional problem with the
element dependency phenomenon is that the depen-
dency is usually on a patient level, rather than on a
population level (which is a problem for query tools that
ultimately translate the query into a single SQL-based,
populational query, and which may lack support user-
defined interim constructs).
An example of relative value comparison is the pro-

blem of detecting a clinically significant response to
depression therapy: “find patients with initial PHQ-9
score of 15 or more, who in subsequent testing after a
therapeutic intervention lowered their score by at least
50%” (parameter passed: initial PHQ-9 score). Notice
that the problem is different for different patients (e.g.,
16 reduced to 8, 24 reduced to 12) and it can only be
solved with a somewhat complex population-based SQL
query using interim tables and is not easily solvable with
most SQL-based query tools [24]. Another temporal
example is to “find patients who had a bone mineral
density test prior to their first hip fracture episode”
(parameter passed: date of first hip fracture). Ability to
represent temporal logic is often listed in desired fea-
tures of many query tools; however, it can be considered
a special case of what we define in a more general sense
as inter-element parameter passing.
Our workflow technology implementation, which

builds on a procedural and flowchart-based paradigm
rather than a declarative language, would be able to
solve such problems because (1) it can utilize variables
for inter-elements parameter passing (e.g., initial PHQ-9
score), and (2) it has a built-in single patient execution
level. Query tools utilizing mostly SQL representation
logic can only solve such problems when an interim
construct feature is present. However, most tools do not
support such pre-processing within their graphical user

interface (GUI), and it needs to be done by a program-
mer (see Deshmukh’s evaluation of i2b2 search tool for
examples of pre-processing in i2b2 [24]).
Another unique aspect of the workflow technology

process-based approach can be described as GUI-unrest-
ricted creativity. In most query building tools, the user
usually constructs a query by combining a fixed set of
query features built into a particular user interface, such
as business intelligence authoring tools or Microsoft
Access query wizard. Such user interface can also
involve additional query metaphors such as Venn dia-
grams or PubMed-like advanced search combining
interim search steps with logical operators (e.g., (#4 OR
#8) AND #13). The set of graphical GUI features, or
widgets, is always finite and the non-expert user is
restricted to this set of features within a GUI-based
query building tool. A chosen graphical metaphor of the
query building tool may not support all necessary query
elements. (e.g., within patient aggregation combined
with other query elements: average systolic blood pres-
sure 5 years prior to start of hypertension pharma-
cotherapy). This is in contrast to a direct authorship of
the query code method employed by an experienced pro-
grammer who uses the same underlying query language
as the GUI tool, however, is able to overcome some of
the restricted widget set problems. In many tools there
is an option for dual or combined interface for query
authoring, so the difference may not be apparent in
basic query tasks. However, the advanced nature of
some tasks created via direct code authorship often
breaks the link between these two corresponding repre-
sentations (graphical and code representation) para-
digms. Whereas it is almost always possible to
transform GUI-authored changes into the code form,
the tool (e.g., business intelligence tools) may not always
support the ability to transform changes made directly
in the code back to the graphical user interface repre-
sentation form.
The workflow process, flowchart-like modeling para-

digm is trying to retain a user friendly look for non-
experts and still offer the unrestricted creativity of a
direct code authorship, using a hybrid form combining
both aspects of graphical and code paradigm. In a tradi-
tional search tool GUI, a new solution opens with a
screen with a limited number of widgets or language
constructs. Whereas, in creating a representation of a
new clinical logic problem, he or she is facing a blank-
sheet-of-paper paradigm as opposed to a screen with a
limited set of buttons or features.

Future directions in workflow technology and relationship
to decision support engines
Workflow technology suites have evolved substantially
since the creation of the Workflow Management

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 16 of 19



coalition family of workflow standards. We expect this
trend of feature improvement of workflow suites to con-
tinue, and we plan to incorporate such improvements
into our implementation. For example, several prior sce-
nario display disadvantages (such as direct display of
transition conditions in the flowchart, improved storage
of flowchart layout, and several new interface customiza-
tions) were addressed in a recent upgrade from version
2 to version 3 of Together Workflow Editor. Besides
incorporating further improvement in workflow technol-
ogy, our future work is focused on demonstrating recur-
sion and loops functionality, better utilization of
workflow-engine generated process logs in addition to
existing HealthFlow summary and detailed reports, pro-
viding more options for interacting with the EHR sys-
tem in the prospective execution mode, wrapping some
of HealthFlow’s capabilities into a web service accepting
an HL7’s Clinical Document Architecture (CDA) EHR
data, demonstrating portability of the XPDL format with
additional vendors, and additional cognitive evaluation
of the flowchart-based problem representation paradigm.
From looking at the development of healthcare-speci-

fic decision support engines and workflow technology, it
is also clear that these two technologies overlap signifi-
cantly [10]. Almost all healthcare-specific decision sup-
port engines implement, to some extent, workflow
features; for example, representation of roles and indivi-
duals within an organization, or worklist handler func-
tionality. Conversely, most workflow engines suites or
specific site-implementations increasingly incorporate
more decision support oriented features; for example,
seamless integration of a rule based engine. Both of
these trends are naturally motivated by the simple fact
that both reasoning capabilities (support for workflow as
well as for decision making trade-offs or complexities)
are needed in healthcare. Vendors of both technologies
are well aware of this overlap, and in the future we can
expect more feature-rich and integrated engines. From a
software terminology perspective, we can perhaps even
expect a new software system term, such as comprehen-
sive reasoning engine, which will explicitly describe a
combined decision support and workflow engine.
Another possible future scenario is that one technology
may dominate or even completely subsume the other.
Comparison to other decision support formalisms
The main focus of our article has been on describing an
open-source workflow engine implementation; however,
because of the application domain of decision support,
we briefly comment on the relationship to some health-
care-specific decision support or executable guidelines
formalisms [47]. For a detailed discussion of this topic,
we refer the reader to Peleg’s analysis in a book chapter
titled ‘Guidelines and workflow models’ [10] of recent

DSS books and recent guidelines review studies
[12,48,49]. Peleg [10] defines a subgroup of decision
support formalisms referred to as task-network models,
which include a graphical metaphor for representing
clinical logic. This subgroup is most relevant to a work-
flow engine implementation relying on an XPDL stan-
dard which also natively includes a graphical flowchart
layer. Peleg includes in this group the following repre-
sentation formats: Asbru [50], closely related format
group consisting of EON, PRODIGY [51] and GLIF,
GUIDE/NewGUIDE [52], SAGE, ProForma [53] and
GLARE [54]. Many of these formats have considerable
strengths in modeling workflow and offer more sophisti-
cated medicine-specific modeling constructs. We briefly
comment on differences and the relationship of our
HealthFlow system implementation to some of these
formats. Compared with Asbru, HealthFlow does not
include any tools for transforming textual guidelines
into executable form. Compared with the GLIF group of
formats, HealthFlow does not distinguish between the
two flowchart types of action map (with physical steps)
and decision map (reasoning steps) and lack several
other medicine-specific reasoning extensions of those
formats. GUIDE/NewGuide format is probably the most
related to HealthFlow because it includes a workflow
management system from Oracle [55]. In contrast to
ProForma, HealthFlow lacks constructs for rule-in, rule-
out logic [56] that was later adopted by many other
medicine-specific formats. Unlike many academic-driven
formats, ProForma evolved into a commercially sup-
ported platform [57] which is also the case with work-
flow engine technology. Finally, in contrast to numerous
medicine-specific formats, the XPDL language and our
HealthFlow workflow engine implementation does not
include any built-in support for uncertainty. The exist-
ing implementation operates strictly on coded EHR con-
cepts where all utilized facts are considered fully valid
and only in cases where significant data unreliability is
suspected by scenario authors, the scenario logic may
include some additional information validation steps (e.
g., minimum of two billing diagnostic codes). However,
in some scenarios, we are considering inclusion of steps
with natural language processing of free-text medical
reports. Such scenarios would obviously have to deal
with some uncertainty measure and the HealthFlow
extensibility feature via new EAs or external engines
would most likely be utilized where XPDL-based flow-
chart paradigm would be insufficient. However, some
approach to uncertainty would also have to be adopted
by the host EHR system, and currently there is only lim-
ited support for this in our institution’s retrospective
data or EHR system (e.g., uncertainty constructs within
the problem list management or treatment planning).

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 17 of 19



Conclusion
The described software enables modeling and execution
of clinical decision support problems and addresses two
important challenges of retrospective testing and user-
friendly flowchart representation. Additional advantages
are extensibility via using external applications, native
single patient execution, ability to handle temporal logic,
ability to define and later use interim constructs, and
code-like, unrestricted logic creation paradigm. Using a
cross-industry workflow technology and open source
and freely available components, we were able to create
a decision support platform which evaluates well against
an established clinical decision support architecture eva-
luation framework.

Availability and requirements
The workflow engine technology implementation
described above can be implemented at other institu-
tions. The article describes fully the necessary architec-
ture and software components. The utilized workflow
editor and engine are open-source and free for non-com-
mercial use (GNU General Public License (GPL)). The
Together Workflow Engine (Community Edition) is
freely available for download at http://sourceforge.net/
projects/sharkwf under the GPL v3 license. The Together
Workflow Editor is also freely available for download at
http://sourceforge.net/projects/jawe under the GPL v3
license. Complete source code is also available for down-
load for both components. Installation of the workflow
editor and review of scenarios is a simple task on any
Linux, Windows, or Mac computer with Java Develop-
ment Kit (JDK). A no-installation editor edition (Java
webstart) is also available. Installation and configuration
of the workflow engine requires some technical experi-
ence and can be done on a Linux or Microsoft Windows
server or a workstation with JDK version 5.0 (1.5.0.11 or
above), JBoss Application Server 4.2.x GA, and a database
(such as MySQL Community Server version 5.1 or
above). In our installation, we use the JBoss implementa-
tion of the engine, but it can also run on other J2EE plat-
forms (e.g., TomCat, WebLogic) or as a stand-alone Java
application, and it can be accessed via several possible
APIs (application programming interfaces). Workflow
engine administration is performed via a Java administra-
tion tool or a web-based application. Together workflow
engine can also be linked with an existing LDAP (Light-
weight Directory Access Protocol) server for user authen-
tication, user groups and organizational structure.
Libraries and documentation for the HealthFlow specific
components are freely available at http://code.google.
com/p/healthflow under the GNU General Public
License. Healthcare institutions implementing the above-
described framework may use the provided examples of

decision support logic modules (see [Additional file 2]
and project website) or create new modules that specifi-
cally address their local decision support needs or more
adequately integrate with their local organizational con-
text and clinical user roles.

Additional material

Additional file 1: Additional XPDL standard schema diagrams.
Additional file 1 contains detailed diagrams of the XML Process
Definition Language (XPDL) as defined by the Workflow Management
Coalition standard.

Additional file 2: Additional examples of HealthFlow Scenarios.
Additional file 2 contains six additional examples of HealthFlow scenarios,
including the rheumatoid arthritis scenario deployed currently in
production at Marshfield Clinic for the currently ongoing HealthFlow
validation study.

Acknowledgements
We would like to thank numerous individuals at Marshfield Clinic and
Intermountain Healthcare for their help and contribution to this work; the
main implementation was carried out during VH’s stay at Marshfield Clinic.
We thank collaborating programmers Luke Rasmussen and Ryan Oberg, and
Roberto Rocha and Scott Narus for contributing to the design and
evaluation of the RetroGuide component. The authors wish to thank the
reviewers for their constructive comments and Marie Fleisner for manuscript
editing help. VH received support from Morgridge Institute for Research. This
work was also partially supported by grant 1UL1RR025011 from the Clinical
and Translational Science Award (CTSA) program of the National Center for
Research Resources, National Institutes of Health.

Author details
1Biomedical Informatics Research Center, Marshfield Clinic, Marshfield, WI,
USA. 2Morgridge Institute for Research, Madison, WI, USA. 3Division of
Biomedical Informatics, Department of Preventive Medicine, Feinberg School
of Medicine, Northwestern University, Evanston, IL, USA.

Authors’ contributions
VH conceived the study and planned the initial architecture. VH and LVR
were involved in configuring the workflow engine and editor and
development of site specific components. All of the authors participated in
the study design, coordination, and in preparing the written manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 4 May 2010 Accepted: 10 April 2011 Published: 10 April 2011

References
1. De Clercq P, Kaiser K, Hasman A: Computer-Interpretable Guideline

formalisms. Stud Health Technol Inform 2008, 139:22-43.
2. Greenes RA: Clinical decision support: the road ahead. Amsterdam;

Boston; London: Elsevier Academic Press; 2007.
3. Boxwala AA, Peleg M, Tu S, Ogunyemi O, Zeng QT, Wang D, Patel VL,

Greenes RA, Shortliffe EH: GLIF3: a representation format for sharable
computer-interpretable clinical practice guidelines. J Biomed Inform 2004,
37(3):147-161.

4. van der Aalst WMP, van Hee K: Workflow management: models, methods,
and systems. Cambridge, Mass: MIT Press; 2002.

5. Embi PJ, Jain A, Clark J, Harris CM: Development of an electronic health
record-based Clinical Trial Alert system to enhance recruitment at the
point of care. AMIA Annu Symp Proc 2005, 231-235.

6. Huser V, Narus SP, Rocha RA: Evaluation of a flowchart-based EHR query
system: a case study of RetroGuide. J Biomed Inform 2010, 43(1):41-50.

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 18 of 19

http://sourceforge.net/projects/sharkwf
http://sourceforge.net/projects/sharkwf
http://sourceforge.net/projects/jawe
http://code.google.com/p/healthflow
http://code.google.com/p/healthflow
http://www.biomedcentral.com/content/supplementary/1471-2288-11-43-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2288-11-43-S2.DOC
http://www.ncbi.nlm.nih.gov/pubmed/18806319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18806319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15196480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15196480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16779036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16779036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16779036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19560553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19560553?dopt=Abstract


7. Huser V, Rocha RA, James B: Use of Workflow Technology Tools to
Analyze Medical Data. 19th IEEE CBMS Symposium Proceedings; Salt Lake
City 2006, 455-460.

8. Emanuele J, Koetter L: Workflow Opportunities and Challenges in
Healthcare. In 2007 BPM & Workflow Handbook. 1 edition. Edited by: Fischer
L. Lighthouse Point, Florida: Future Strategies Inc; 2007.

9. Quaglini S, Stefanelli M, Lanzola G, Caporusso V, Panzarasa S: Flexible
guideline-based patient careflow systems. Artificial Intelligence in Medicine
2001, 22(1):65-80.

10. Peleg M: Chapter 13: Guidelines and Workflow Models. In Clinical Decision
Support: The Road Ahead. 1 edition. Edited by: Greenes RA. London; Oxford;
Boston; New York; San Diego: Academic Press; 2007:581.

11. Mulyar N, Pesic M, Aalst WMPvd, Peleg M: Declarative and Procedural
Approaches for Modelling Clinical Guidelines:Addressing Flexibility
Issues. Proceedings of ProHealth Workshop Brisbane, Australia; 2007.

12. Mulyar N, van der Aalst WM, Peleg M: A pattern-based analysis of clinical
computer-interpretable guideline modeling languages. J Am Med Inform
Assoc 2007, 14(6):781-787.

13. Aalst WMPvd AHM, ter Hofstede BK, Barros AP: Workflow Patterns.
Distributed and Parallel Databases 2003, 14(3):5-51.

14. Haux R, Seggewies C, Baldauf-Sobez W, Kullmann P, Reichert H, Luedecke L,
Seibold H: Soarian - workflow management applied for health care.
Methods Inf Med 2003, 42(1):25-36.

15. Wright A, Sittig DF: A framework and model for evaluating clinical
decision support architectures. J Biomed Inform 2008, 41(6):982-990.

16. Workflow Management Coalition Technical Document: Terminology and
Glossary (TC 1011). [http://www.wfmc.org/standards/docs/TC-
1011_term_glossary_v3.pdf].

17. Business Process Execution Language Specification. [http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf].

18. Business Process Modeling Notation specification. [http://www.omg.org/
bpmn].

19. Ko RKL: A computer scientist’s introductory guide to business process
management (BPM). Crossroads 2009, 15(4):11-18.

20. Seebregts CJ, Mamlin BW, Biondich PG, Fraser HS, Wolfe BA, Jazayeri D,
Allen C, Miranda J, Baker E, Musinguzi N, et al: The OpenMRS
Implementers Network. Int J Med Inform 2009, 78(11):711-720.

21. HL7: Virtual Medical Record specification. [http://wiki.hl7.org/index.php?
title=Virtual_Medical_Record_%28vMR%29].

22. Huff SM, Rocha RA, Bray BE, Warner HR, Haug PJ: An event model of
medical information representation. J Am Med Inform Assoc 1995,
2(2):116-134.

23. Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, Kohane I:
Serving the enterprise and beyond with informatics for integrating
biology and the bedside (i2b2). J Am Med Inform Assoc 2010,
17(2):124-130.

24. Deshmukh VG, Meystre SM, Mitchell JA: Evaluating the informatics for
integrating biology and the bedside system for clinical research. BMC
Med Res Methodol 2009, 9:70.

25. Kim S, Haug PJ, Rocha RA, Choi I: Modeling the Arden Syntax for medical
decisions in XML. Int J Med Inform 2008, 77(10):650-656.

26. Tu SW, Musen MA: The EON model of intervention protocols and
guidelines. Proc AMIA Annu Fall Symp 1996, 587-591.

27. Fox J, Patkar V, Thomson R: Decision support for health care: the
PROforma evidence base. Inform Prim Care 2006, 14(1):49-54.

28. Pryor TA, Hripcsak G: Sharing MLM’s: an experiment between Columbia-
Presbyterian and LDS Hospital. Proc Annu Symp Comput Appl Med Care
1993, 399-403.

29. Huser V, Starren JB: EHR Data Pre-processing Facilitating Process Mining:
an Application to Chronic Kidney Disease. AMIA Annu Symp Proc 2009.

30. Huser V, Rocha RA, Huser M: Conducting Time Series Analyses on Large
Data Sets: a Case Study With Lymphoma. Medinfo 2007.

31. Huser V: Running Decision Support Logic Retrospectively to Determine
Guideline Adherence: a Case Study With Diabetes. Spring AMIA2007
symposium 2007.

32. Huser V, Rocha RA: Retrospective Analysis of the Electronic Health Record
of Patients Enrolled in a Computerized Glucose Management Protocol.
CBMS 2007 2007.

33. Huser V, Rocha RA: Analyzing medical data from multi-hospital
healthcare information system using graphical flowchart models.
Biomedical Informatics and Cybernetics Symposium; Orlando 2007.

34. Huser V, Rocha RA: Graphical Modeling of HEDIS Quality Measures and
Prototyping of Related Decision Support Rules to Accelerate
Improvement. Proc AMIA Annu Fall Symp 2007.

35. Wright A, Goldberg H, Hongsermeier T, Middleton B: A description and
functional taxonomy of rule-based decision support content at a large
integrated delivery network. J Am Med Inform Assoc 2007, 14(4):489-496.

36. Wright A, Sittig DF, Ash JS, Sharma S, Pang JE, Middleton B: Clinical
decision support capabilities of commercially-available clinical
information systems. J Am Med Inform Assoc 2009, 16(5):637-644.

37. Huser V: Analyzing biomedical datasets using executable graphical
models: RetroGuide system. VDM Verlag; 2009.

38. Venkatesh V, Morris MG, Davis GB, Davis FD: User acceptance of information
technology: Toward a unified view. MIS Quarterly 2003, 27(3):425-478.

39. Tu S: SAGE:Guideline Modeling: Motivation and Methodology.
Proceedings of CPG 2004 Prague 2004.

40. Kawamoto K, Lobach DF: Design, implementation, use, and preliminary
evaluation of SEBASTIAN, a standards-based Web service for clinical
decision support. AMIA Annu Symp Proc 2005, 380-384.

41. Wright A, Sittig DF: SANDS: a service-oriented architecture for clinical
decision support in a National Health Information Network. J Biomed
Inform 2008, 41(6):962-981.

42. Hess R: The Chester County Hospital: Case Study. In 2007 BPM and
Workflow Handbook. 1 edition. Edited by: Fischer L. Lighthouse Point,
Florida: Future Strategies Inc; 2007.

43. Fox J, Johns N, Lyons C, Rahmanzadeh A, Thomson R, Wilson P: PROforma:
a general technology for clinical decision support systems. Comput
Methods Programs Biomed 1997, 54(1-2):59-67.

44. Huser V, Rasmussen L, Starren JB: Representing clinical processes in XML
process definition language (XPDL). AMIA Spring Symposium Orlando,
Florida; 2009.

45. Murphy SN, Mendis M, Hackett K, Kuttan R, Pan W, Phillips LC, Gainer V,
Berkowicz D, Glaser JP, Kohane I, Chueh HC: Architecture of the open-
source clinical research chart from Informatics for Integrating Biology
and the Bedside. AMIA Annu Symp Proc 2007, 548-552.

46. STRIDE tool. [http://clinicalinformatics.stanford.edu/STRIDE].
47. OpenClinical portal for knowledge management for medical care.

[http://www.openclinical.org].
48. Peleg M, Tu SW: Design patterns for clinical guidelines. Artif Intell Med

2009, 47(1):1-24.
49. de Clercq PA, Blom JA, Korsten HH, Hasman A: Approaches for creating

computer-interpretable guidelines that facilitate decision support. Artif
Intell Med 2004, 31(1):1-27.

50. Shahar Y, Miksch S, Johnson P: The Asgaard project: a task-specific
framework for the application and critiquing of time-oriented clinical
guidelines. Artif Intell Med 1998, 14(1-2):29-51.

51. Johnson PD, Tu S, Booth N, Sugden B, Purves IN: Using scenarios in
chronic disease management guidelines for primary care. Proc AMIA
Symp 2000, 389-393.

52. Ciccarese P, Caffi E, Quaglini S, Stefanelli M: Architectures and tools for
innovative Health Information Systems: the Guide Project. Int J Med
Inform 2005, 74(7-8):553-562.

53. Fox J, Johns N, Rahmanzadeh A: Disseminating medical knowledge: the
PROforma approach. Artif Intell Med 1998, 14(1-2):157-181.

54. Terenziani P, Montani S, Bottrighi A, Torchio M, Molino G, Correndo G: The
GLARE approach to clinical guidelines: main features. Stud Health Technol
Inform 2004, 101:162-166.

55. Quaglini S, Stefanelli M, Lanzola G, Caporusso V, Panzarasa S: Flexible
guideline-based patient careflow systems. Artif Intell Med 2001,
22(1):65-80.

56. Sutton DR, Fox J: The syntax and semantics of the PROforma guideline
modeling language. J Am Med Inform Assoc 2003, 10(5):433-443.

57. Arezzo Clinical Decision Support Technology. [http://www.infermed.com/
index.php/arezzo/arezzo_technology].

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2288/11/43/prepub

doi:10.1186/1471-2288-11-43
Cite this article as: Huser et al.: Implementation of workflow engine
technology to deliver basic clinical decision support functionality. BMC
Medical Research Methodology 2011 11:43.

Huser et al. BMC Medical Research Methodology 2011, 11:43
http://www.biomedcentral.com/1471-2288/11/43

Page 19 of 19

http://www.ncbi.nlm.nih.gov/pubmed/11259884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11259884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17712087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17712087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12695793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18462999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18462999?dopt=Abstract
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.omg.org/bpmn
http://www.omg.org/bpmn
http://www.ncbi.nlm.nih.gov/pubmed/19157968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19157968?dopt=Abstract
http://wiki.hl7.org/index.php?title=Virtual_Medical_Record_%28vMR%29
http://wiki.hl7.org/index.php?title=Virtual_Medical_Record_%28vMR%29
http://www.ncbi.nlm.nih.gov/pubmed/7743315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7743315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20190053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20190053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19863809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19863809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18321775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18321775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8947734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8947734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16848966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16848966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8130503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8130503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17460131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17460131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17460131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19567796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19567796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19567796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16779066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16779066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16779066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18434256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18434256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9290920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9290920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18693896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18693896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18693896?dopt=Abstract
http://clinicalinformatics.stanford.edu/STRIDE
http://www.openclinical.org
http://www.ncbi.nlm.nih.gov/pubmed/19500956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15182844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15182844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9779882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9779882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9779882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11079911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11079911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16043084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16043084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9779888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9779888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15537221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15537221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11259884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11259884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12807812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12807812?dopt=Abstract
http://www.infermed.com/index.php/arezzo/arezzo_technology
http://www.infermed.com/index.php/arezzo/arezzo_technology
http://www.biomedcentral.com/1471-2288/11/43/prepub

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Overview of the architecture
	Multiple complexity levels
	Three HealthFlow usage phases
	First phase: Scenario Development
	Second phase: Scenario Testing (RetroGuide)
	Third phase: Scenario Deployment (FlowGuide)

	HealthFlow External applications
	An example use case
	Other components of the HealthFlow system
	Event Model
	Ontology


	Results
	Current implementation at Marshfield Clinic
	Previous case studies
	Formal, user-based evaluation
	Architectural evaluation

	Discussion
	Strengths and limitations of our architecture
	Strengths and limitations of currently used workflow suite
	Relationship to query systems
	Future directions in workflow technology and relationship to decision support engines
	Comparison to other decision support formalisms


	Conclusion
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history

