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multiple imputed data sets
David Vergouw1*, Martijn W Heymans1,2, George M Peat3†, Ton Kuijpers4, Peter R Croft3†, Henrica CW de Vet1†,
Henriëtte E van der Horst1†, Daniëlle AWM van der Windt1,3

Abstract

Background: In prognostic studies model instability and missing data can be troubling factors. Proposed methods
for handling these situations are bootstrapping (B) and Multiple imputation (MI). The authors examined the
influence of these methods on model composition.

Methods: Models were constructed using a cohort of 587 patients consulting between January 2001 and January
2003 with a shoulder problem in general practice in the Netherlands (the Dutch Shoulder Study). Outcome
measures were persistent shoulder disability and persistent shoulder pain. Potential predictors included socio-
demographic variables, characteristics of the pain problem, physical activity and psychosocial factors. Model
composition and performance (calibration and discrimination) were assessed for models using a complete case
analysis, MI, bootstrapping or both MI and bootstrapping.

Results: Results showed that model composition varied between models as a result of how missing data was
handled and that bootstrapping provided additional information on the stability of the selected prognostic model.

Conclusion: In prognostic modeling missing data needs to be handled by MI and bootstrap model selection is
advised in order to provide information on model stability.

Background
In healthcare predicting how long it takes for an episode
of musculoskeletal pain to resolve can be difficult. Out-
come varies between patients and over time. Although
clinicians can be relatively good “prognosticians” [1,2]
clinical judgment and intuition can be incorrect and dif-
ficult to quantify or to be made explicit. To understand
the ingredients that contribute to correct prognosis and
to improve upon clinical judgment, clinical prediction
rules can be useful. These provide a quantitative esti-
mate of the absolute risk of particular outcomes of
interest for individual patients, which may subsequently
be used to support decisions regarding treatment. Until
now, several clinical prediction rules have been devel-
oped in the field of musculoskeletal pain, for example to
estimate the outcome of low back [2-4], knee [5] or
shoulder pain [6].

In the development of clinical prediction models,
researchers frequently use a regression analysis with a
backward or forward selection strategy. However, this
methodology may result in overoptimistically estimated
regression coefficients, omission of important predictors
and random selection of less important predictors. As a
result derived models may be unstable [7]. Incorporating
a bootstrap resampling procedure in model development
has been suggested to provide information on model
stability [8-11]. Since bootstrapping mimics the sam-
pling variation in the population from which the sample
was drawn it is expected to produce a model which bet-
ter represents the underlying population [9-11].
Another problem occurring in prognostic studies is

missing data. Multiple imputation (MI), which uses all
observed information, was shown to be superior to
other imputation techniques like single regression impu-
tation [12,13]. Though, MI is not yet frequently used in
predictive modelling and model stability is hardly ever
accounted for in MI approaches. It has been shown that
for low back pain extending MI with a bootstrapping
procedure provides an accurate model selection and
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information on model stability [14]. However generaliz-
ability of this method was never tested in other patient
datasets.
Therefore, the objective of our research was to exam-

ine the influence of bootstrapping and multiple imputa-
tion on model composition and stability in a shoulder
pain data set with missing values.

Methods
Study population
We used data from the Dutch Shoulder Study (DSS)
[15]. This cohort consists of 587 patients who consulted
their general practitioner (GP) with a new episode of
shoulder disorders. Inclusion criteria were: no GP con-
sultation or treatment received for the afflicted shoulder
in the preceding three months. Exclusion criteria were:
dementia, severe psychiatric of physical conditions (i.e.
fractures or dislocation in the shoulder region, rheu-
matic diseases, neoplasms, neurological of vascular dis-
orders). The ethics review board of the VU University
medical centre approved the study protocol.

Outcome measures
We focused on two outcome measures; persistent
shoulder disability (16-item SDQ; 0-100) [16] and per-
sistent shoulder pain intensity (Numeric Rating Scale; 0-
10) [17]. To define ‘persistence’ baseline scores were
subtracted from follow-up scores. An optimal cut-off
point was defined by studying the relationship between
the change scores and a secondary outcome measure
‘patient perceived recovery’ [6]. Patients were denoted as
recovered when they characterized their complaints as
‘fully recovered’ or ‘very much improved’. By construct-
ing Receiver Operating Characteristic (ROC) curves with
patient perceived recovery as the external criterion, the
optimal cutoff point (i.e. that point that yields the lowest
overall misclassification) was determined [18]. According
to this analysis a 50% decrease in disability and pain
intensity compared to baseline was considered a mini-
mal important change, and was used as a cut-off value
to dichotomize both outcome measures. Patients who
improved less then 50% were denoted as having persis-
tent pain or disability. Outcomes were measured three
months after enrolment by postal questionnaire.

Prognostic factors
Based on a systematic review of the literature [19] a set
of candidate predictors was selected, including demo-
graphic variables, characteristics of the shoulder pain
problem, physical and psychological factors (see Table
1). The following questionnaires were used to gather

Table 1 Patient characteristics at baseline

variable n (%)

Demographic

Age (years); mean (SD) 51 (14)

gender (male) 292 (50)

education

low* 210 (36)

middle 234 (40)

high 135 (23)

Disease characteristics

shoulder complaints in the past year 321 (55)

neck complaints in the past year 252 (43)

duration of complaints

0-6 weeks 205 (35)

7-12 weeks 139 (24)

> 3 months 242 (41)

gradual onset (vs. acute) 363 (62)

shoulder pain (0-10); mean (SD) 4.8 (2)

shoulder disability (0-100); mean (SD) 59.9 (24)

both shoulders afflicted 74 (13)

co-morbidity 469 (80)

upper extremity joint pain 245 (42)

neck pain 197 (34)

upper extremity joint pain 174 (30)

low back pain 139 (24)

high back pain 53 (9)

Psychological factors

psychological complaints 55 (9)

pain coping (0-6); mean (SD) 2.98 (0.98)

catastrophizing (0-6); mean (SD) 2.2 (0.8)

internal locus of control (0-6); mean (SD) 3.3 (0.9)

external locus of control(0-6); mean (SD) 3.2 (0.88)

anxiety (0-6); mean (SD) 0.3 (1.2)

depression (0-6); mean (SD) 0.2 (1.3)

somatisation (0-6); mean (SD) 3.3 (4.1)

distress (0-6); mean (SD) 2.3 (4.5)

fear-avoidance (0-6); mean (SD) 14.1 (5.6)

kinesophobia (0-6); mean (SD) 3.2 (3.5)

Physical factors

physical load at work (0-5); mean (SD) 1.2 (1.5)

physical activity

less active than others 110 (39)

equally active 245 (42)

more active 226 (19)

inability to perform daily activities last year

1-30 days 184 (31)

1-12 months 61 (10)

sporting activities 230 (39)

cause of shoulder problem: sporting injury 29 (5)

SD = standard deviation
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information on psychological factors: the Pain Coping
and Cognition List (PCCL [20]: pain coping, catastro-
phizing, internal and external locus of control), the 4
Dimensional Symptom Questionnaire (4DSQ [21]: anxi-
ety, depression, somatisation, distress), the Fear-Avoid-
ance Beliefs Questionnaire (FABQ [22]: fear-avoidance)
and the Tampa Scale for Kinesiophobia (TSK [23,24]:
kinesiophobia). Within 10 days after consulting the GP,
participants completed a baseline questionnaire to assess
potential predictors.

Analysis
For all continuous predictors the linearity assumption
was checked. When the relationships between variables
and outcome did not resemble linearity, variables were
categorized (3 categories) or dichotomized. Although
this causes loss of information [25], these procedures
were retained since they are part of the frequently used
standard statistical methodology in predictive modeling.
Variables were checked for (multi)collinearity using
Pearson’s r, given that correlated variables can disturb
variable selection in multivariable regression [26]. In
case of correlation (r≥0.5) the variables which could
most easily be obtained in clinical practice by the physi-
cian were retained.
To reduce the initial number of variables, an univari-

able analysis (a > 0.157) was performed in both the
imputed and unimputed data sets, thus all analyses were
preceded by this pre-selection. The subsequent analyses
were all based on a multivariable analysis with a back-
ward selection strategy and a stopping rule of a = 0.157.
This significance level is available in many statistical
software packages and results have been shown to be
comparable with the more complex Akaike Information
Criterion (AIC) [27]. The number of events per variable
(EPV) was calculated for each method to check whether
the analysis was sufficiently powered (EPV > 10) [28].
The checklist proposed by Harrell [29] for multivariable
modeling was followed where possible. To study the
effect of missing data and model stability on model
composition, the following four methods were
compared:
1) Complete Case Analysis (CCA)

To handle missing data, subjects with missing values
on any of the variables were omitted and only those
subjects with information on all variables in the
model were included for analysis.

2) Multiple imputation (MI-5)
Missing values were imputed using a Multivariate
Imputation by Chained Equations (MICE) procedure
with the “predictive mean matching” as imputation
method [30]. All available data including outcome
measure were used in the imputation method [13].
We generated five imputed data sets (MI-5).

Multivariable regression was applied to each of the 5
imputed data sets. From these 5 models, predictors
which appeared in at least 2 models (a Inclusion
Fraction of ≥40%) qualified for the final model.
Whether these predictors significantly contributed to
the final model was tested using a likelihood ratio
test [31] with a critical P-value of P = 0.157. Predic-
tors were dropped from the final model in case of a
nonsignificant (P > 0.157) likelihood ratio.

3) Bootstrapping (B)
A two-step bootstrap model selection procedure
[9,11] was applied to provide information on model
stability. First 500 samples with replacement were
taken from the complete case data set. In each sam-
ple a multivariable model was built. To be consistent
with the MI-5 method, predictors which appeared in
≥40% of these models qualified for the second step.
In this second step 500 new complete case samples
were taken and in each of which a multivariable
model was built using the predictors from the first
step. These 500 models provided information on
model stability (i.e. which combination of predictors
is most frequently selected in the model).

4) Multiple imputation + bootstrapping (MI-5+B)
Missing data was imputed using the MICE proce-
dure and five imputed data sets were created. In
each of the five imputed data sets the two step boot-
strap model selection procedure as described above
was applied. Information on model stability was pro-
vided by studying which combination of predictors
occurred most frequently in 2500 data sets.

Internal validation
The apparent performance of a predictive model is typi-
cally better in the data set in which the model has been
developed compared to its performance in another simi-
lar data set [32]. This phenomenon is called overopti-
mism. Using a n = 200 samples bootstrap procedure for
internal validation [33] the performance of each devel-
oped model was tested in similar populations as in the
derivation sample. This method was used to estimate
the overoptimism of the derived models, and to adjust
the measures of performance.

Model evaluation
Derived models were evaluated by comparing the mod-
el’s composition (combination of predictors). Next sev-
eral measures of predictive performance were
considered. Discrimination refers to how well a model
distinguishes between patients with and without persis-
tent symptoms and is quantified by the c-index that, for
binary outcomes, is identical to the area under the ROC
curve (AUC) [34]. The c-index varies between 0.5 and 1,
with 0.5 indicating no discrimination above chance and
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1 indicating perfect discrimination. The agreement
between predicted probabilities and observed probabil-
ities is called calibration and was measured by comput-
ing the slope of the calibration plot (predicted
probabilities against observed frequencies). Well-cali-
brated models have a slope of 1. As a measure of the
explained variance Nagelkerke’s R2 was computed.

Software
All analyses were performed using the R-statistics soft-
ware (version 2.4.0). The R Design package was used for
the CCA, MICE was used for the MI and additional
routines were developed for applying the bootstrap.

Results
The baseline patient characteristics are listed in Table 1.
After three months 517 patients (88%) returned the fol-
low-up questionnaire. Subjects lost to follow-up were
younger (mean difference of 7 years) and showed more
often an acute onset (47% versus 37%). Due to non-
response the percentage of missing data was largest for
the outcome measures (shoulder disability 12.3% and
shoulder pain intensity 12.9%). Other (baseline) variables
had missing values within the range of 0 to 9.2%. The
combination of missing values in CCA resulted in the
exclusion of 24.7% (disability model) and 28.8% (pain
intensity model) of participants.
In the CCA 12 variables showed a univariable associa-

tion with persistent disability and 16 with persistent
pain, resulting in an EPV of 11.9 for pain intensity and
17 for shoulder disability. In the five imputation data
sets the EPV varied between 19.1 and 19.6 for disability
and between 13.5 and 13.8 for pain intensity. This
means that the analyses were sufficiently powered (with
a sufficient number of cases in the models) to reliably
estimate the associations between predictors and
outcome.

Model composition
For all presented models, the directions of the associa-
tions (i.e. regression coefficients) between the selected
predictors and outcome were the same for both disabil-
ity and pain (data not presented). Tables 2 and 3 show
that for both measures of outcome, model composition
was influenced by missing data (CCA vs. MI-5). When
models were derived from imputed data, model compo-
sition diverged from the CCA model. For both measures
of outcome predictors with lower predictive abilities in
the CCA (i.e. rank order according to regression coeffi-
cient estimates) were not included in the MI-5 (e.g. con-
comitant lower extremity pain for shoulder disability
and for pain intensity; sporting activities and higher
physical workload). Predictors that were no part of the
CCA model entered the MI-5 model for persistent

shoulder disability (e.g. duration of complaints, somati-
sation, external locus of control and age) were included
in the MI-5 model.
Tables 4, 5, 6 and 7 show the results of assessing

model stability by the bootstrap model selection proce-
dure. CCA and MI-5 models were not identified as the
most frequently occurring combination of predictors for
both outcome measures (Tables 4, 5, 6). Only the

Table 2 Complete case and multiple imputed model
compositions for the outcome measure persistent
shoulder disability

missing values CCA MI-5

rank rank

persistent shoulder disability* 72 (12.3%)

inability to perform daily activities 8 (1.4%) 1 4

shoulder complaints in the past year 27 (4.6%) 2

both shoulders afflicted 0 (0%) 3 3

concomitant lower back pain 0 (0%) 4 1

concomitant lower extremity pain 0 (0%) 5

more disability at baseline 2 (0.3%) 6 7

longer duration of complaints 1 (0.2%) 2

higher scores for somatisation 3 (0.5%) 5

higher scores for external locus of
control

33 (5.6%) 6

older age 0 (0%) 8

CCA - complete case analysis

MI -5 - multiple imputation using 5 imputation files

rank - the order of appearance of predictors in the derived model
arranged by their predictive ability (regression coefficient)

* - outcome measure

Table 3 Complete case and multiple imputed model
compositions for the outcome measure persistent
shoulder pain intensity

missing values CCA MI-5

rank rank

persistent shoulder pain intensity* 76 (12.9%)

sporting injury 0 (0%) 1 1

concomitant lower back pain 0 (0%) 2 3

longer duration of complaints 1 (0.2%) 3 2

both shoulders afflicted 0 (0%) 4 4

inability to perform daily activities 8 (1.4%) 5 5

concomitant upper extremity pain 0 (0%) 6 6

sporting activities 0 (0%) 7

higher physical workload 0 (0%) 8

CCA - complete case analysis

MI -5 - multiple imputation using 5 imputation files

rank - the order of appearance of predictors in the derived model
arranged by their predictive ability (regression coefficient)

% - inclusion frequency; the proportion of times that a variable with a
univariable association with the outcome is retained in the automated
backward selected models. When a variable was selected in each of the
replications, the inclusion frequency was 100%

* - outcome measure
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persistent shoulder disability MI-5 method was identical
to its bootstrapped enhanced version (Table 7). Model
selection frequencies for the most frequently selected
models were uniformly low (ranging from 24.0% to
3.6%). Indicating on a large variability in model compo-
sition within the bootstrap replicate data sets. When
fewer potential predictors are retained after the first
step of the bootstrap model selection procedure, this
variability seemed to decrease and model selection fre-
quency increased.

Model performance
Table 8 presents the performance of the models derived
with the four methods for both outcome measures. The
slopes of the calibration plots ranged from 0.973 to
1.077, which indicates good calibration. Explained var-
iance ranged from 8.8% to 12.0% for disability and from
13.5% to 18.8% for pain. The apparent c-indices varied
between 0.645 and 0.667 for disability and between
0.684 and 0.717 for pain intensity. CCA models were
more optimistic compared to the other models.

Table 4 Complete case bootstrap model selection for the outcome measure persistent disability

most frequently selected models rank

Predictors* 1 2 2 4 5 B CCA

inability to perform daily activities X X X X X 1 1

both shoulders afflicted X - - X X 2 3

shoulder complaints in the past year X X X X - 3 2

concomitant lower extremity pain X X X X X 4 5

more disability at baseline X X X X X 5 6

concomitant lower back pain - - X X X - 4

older age - - - - - - -

longer duration of complaints - - - - - - -

acute onset - - - - - - -

Count 33 23 23 22 16

% 6.6 4.6 4.6 4.4 3.2

* - only those predictors that appeared in ≥40% of the first bootstrap model selection step are presented

rank - the order of appearance of predictors in the derived models arranged by their predictive ability (regression coefficient estimates)

B - the complete case date based bootstrap selected model (i.e. the most frequently occurring combination of predictors in 500 replicate data sets of the
second bootstrap model selection step)

CCA - the complete case data based model derived without additional bootstrap was the fourth most occurring combination of predictors in the bootstrap
model selection procedure

Count - the number of times the model was selected in the 500 replicate data sets of the second bootstrap model selection step

Table 5 Complete case bootstrap model selection results for the outcome measure persistent pain intensity

most frequently selected models rank

Predictors 1 2 3 4 5 B CCA

longer duration of complaints X X X X X 1 3

concomitant lower back pain X X X X X 2 2

both shoulders afflicted X X - X X 3 4

concomitant upper extremity pain X X X - - 4 6

shoulder complaints in the past year X - X X - 5 -

sporting injury* - 1

inability to perform daily activities* - 5

sporting activities* - 7

higher physical workload* - 8

Count 120 96 58 47 37

% 24.0 19.2 11.6 9.4 7.4

* - predictors that appeared in ≥ 40% in the first step of the of the bootstrap model selection are not used in the second step in model selection

rank - the order of appearance of predictors in the derived models arranged by their predictive ability (regression coefficient estimates)

B - the complete case date based bootstrap selected model (i.e. the most frequently occurring combination of predictors in 500 replicate data sets of the
second bootstrap model selection step)

CCA - the complete case data based model derived without additional bootstrap did not occur in the bootstrap model selection since some of the included
predictors occurred ≥ 40% in the first selection step

Count - the number of times the model was selected in the 500 replicate data sets of the second bootstrap model selection step
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Following adjustment for overoptimism the corrected c-
indices were within the range of 0.639 - 0.646 for persis-
tent shoulder disability and within the range of 0.667 -
0.688 for persistent shoulder pain.

Discussion
Prognostic research aims at identifying the ingredients
that contribute to a correct prognosis for a specific

subgroup of patients. Though, finding a stable set of
predictors that can consistently be used in a broad
patient population proves to be difficult. Several metho-
dological issues (missing data and model stability) which
are not accounted for by the standard statistical metho-
dology are expected to complicate this matter. We
showed that accounting for missing data by MI and pro-
viding information on model stability by bootstrapping

Table 6 Imputed bootstrap model selection results for the outcome measure persistent pain intensity

most frequently selected models rank

Predictors* 1 2 3 4 5 MI-5+B MI-5

sporting injury X X X X X 1 1

longer duration of complaints X X X X X 2 2

concomitant lower back pain X X X X X 3 3

both shoulders afflicted X X X X X 4 4

inability to perform daily activities X X X X X 5 5

higher level of education X X X - X 6 -

shoulder complaints in the past year X X - - X 7 -

concomitant upper extremity pain X - X X X 8 6

higher physical workload X X X - X 9 -

Count 163 158 113 111 105

% 6.5 6.3 4.5 4.4 4.2

* - only those predictors that appeared in ≥40% of the first bootstrap model selection step are presented

rank - the order of appearance of predictors in the derived models arranged by their predictive ability (regression coefficient estimates)

MI-5+B - the multiple imputation based bootstrap selected model (i.e. the most frequently occurring combination of predictors in 2500 replicate data sets of
the second bootstrap model selection step)

MI-5 - the multiple imputation based model using 5 imputed data sets was the fourth most occurring combination of predictors in the bootstrap model
selection procedure.

Count - the number of times the model was selected in the 2500 replicate data sets of the second bootstrap model selection step

Table 7 Imputed bootstrap model selection results for the outcome measure persistent disability

most frequently selected models rank

Predictors* 1 2 3 4 5 MI-5+B MI-5

concomitant lower back pain X X X X X 1 1

longer duration of complaints X X X X - 2 2

both shoulders afflicted X X X X X 3 3

inability to perform daily activities X X X - X 4 4

higher scores for somatisation X X X X X 5 5

higher scores for external locus of control X X X X X 6 6

more disability at baseline X X X X X 7 7

older age X X - X X 8 8

shoulder complaints in the past year - X X - X - -

concomitant lower extremity pain - - - - - - -

Count 91 77 56 54 52

% 3.6 3.1 2.2 2.2 2.1

* - only those predictors that appeared in ≥40% of the first bootstrap model selection step are presented

rank - the order of appearance of predictors in the derived models arranged by their predictive ability (regression coefficient estimates)

MI-5+B - the multiple imputation based bootstrap selected model (i.e. the most frequently occurring combination of predictors in 2500 replicate data sets of
the second bootstrap model selection step)

MI-5 - the multiple imputation based model using 5 imputed data sets was also the most frequently occurring combination of predictors in the 2500
bootstrap replicate
data sets

Count - the number of times the model was selected in the 2500 replicate data sets of the second bootstrap model selection step.
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are instructive methods when deriving a prognostic
model.
In the standard statistical methodology the use of a

backward or forward selection strategy has been criti-
cized. It may result in overoptimistically estimated
regression coefficients, omission of important predictors
and random selection of less important predictors.
Derived models may therefore be unstable. Research has
focussed on how to derive stable models. One frequently
used method is the bootstrapping approach suggested by
Austin and Tu [35]. It considers the strength of evi-
dence that identified variables are truly important pre-
dictors in re-sampled data. Although this approach is
often claimed to reduce model instability [8,10,14,35,36],
separating strong from weak predictors was shown to
perform comparative to automated backward elimina-
tion in identifying the true regression model [37].
Furthermore, this approach has limited abilities when
there is a high number of potential prognostic factors.
For these situations a modified bootstrapping procedure
was suggested [11]. Our study showed that the applica-
tion of this two-step bootstrap model selection proce-
dure provides valuable information on model stability.
As frequently described, model size and model com-

position are also affected by missing data. Especially in
standard statistical methodology where subjects with
missing values on any of the recorded variables are
omitted from analysis. When missing data does not
depend on observed or unobserved measurements
(Missing Completely At Random, MCAR), this leads to
loss of costly gathered information, decreased statistical
power, altered associations between predictors and
therefore differences in model composition
[12,13,38-41]. In this context our study findings formed
no exception. Model composition varied as a result of

whether cases with missing data were omitted from ana-
lyses (CCA) or whether the values of the missings were
estimated using MI. Since missing values appeared to be
related to other observed information, the MCAR condi-
tion did not hold and CCA was expected to be biased.
Most of the missing data was observed in the outcome
because participants did not consent to follow-up. As
subjects lost to follow-up showed more often an acute
onset (47% versus 37%), were younger (mean difference
of 7 years) and the variable age is included in the MI
model for the outcome measure persistent shoulder dis-
ability, it is plausible to assume that these missings are
MAR. For that reason, accounting for missing data by
MI using 5 imputed data sets was in our multivariate
data setting the most optimal choice to reduce the
uncertainty in model derivation caused by missing
values. The use of even more data sets in the imputation
routine is possible (up to 20), however 5 was shown to
be an sufficient number in order to get stable results
[30]. Yet the addition of a bootstrap model selection
procedure showed that the MI-5 model might still be
unstable. A possible source for this instability might be
the suboptimal variable selection procedure applied in
the MI-5 procedure. However, how to optimally perform
variable selection in multiple imputed data is still a sub-
ject of discussion [42]. As illustrated by our study, the
bootstrap model selection procedure may provide valu-
able additional information on model stability when
deriving a prognostic model in multiple imputed data.
To study the effects of accounting for missing data

and incorporating model stability we used a large clini-
cal data set in which we empirically evaluated different
methods of deriving a prognostic model. By this, the
uncertainties researchers commonly face when knowl-
edge of the true predictors of outcome is lacking, were

Table 8 Model performance parameters.

Persistent disability Persistent shoulder pain intensity

CCA MI-5 B MI-5 + B CCA MI-5 B MI-5 + B

calibration
slope

0.978 0.978 1.077 0.978 0.985 0.973 0.998 0.986

R2N 0.119 0.120 0.088 0.120 0.188 0.162 0.135 0.174

Ac 95% CI 0.666
0.616,0.715

0.667
0.624,0.710

0.645
0.596,0.694

0.667
0.624,0.710

0.717
0.668,0.766

0.702
0.660,0.745

0.684
0.637,0.732

0.710
0.668,0.752

Opt 0.027 0.022 0.023 0.022 0.030 0.014 0.018 0.022

Oc 0.639 0.646 0.622 0.646 0.686 0.688 0.667 0.688

Ac - apparent c-index

B - bootstrapping based on a complete case data set

CCA - complete case analysis

MI-5+B - multiple imputation combined with bootstrapping

MI-5 - multiple imputation using 5 imputation files

Oc - optimism corrected c-index

Opt - estimation of the overoptimism

R2N - explained variance (Nagelkerke’s R-squared)

95% CI - 95% confidence interval
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illustrated. Furthermore, the practical utility of the addi-
tional information provided by the bootstrap model
selection procedure in prognostic modeling is demon-
strated. Though results need to be interpreted with cau-
tion, as our approach limits us from identifying a
superior methodology. Although performance para-
meters for each derived model are presented, these play
no role in the decision on the superiority of a certain
method. They only show that the performance of all
derived models was comparable to that from existing
clinical prediction rules on shoulder pain [6,15]. For
deciding on the superiority of a certain method, a simu-
lation study in which true predictors and noise variables
are assigned would be needed. Such data is not pre-
sented by this study.

Conclusions
Our study showed that in this particular dataset of
shoulder pain patients, model composition varied as a
result of how missing data was handled. Furthermore,
the bootstrap model selection routine gave additional
information on model stability.
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