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Abstract

Background: Informing health care decision making may necessitate the synthesis of evidence from different
study designs (e.g., randomised controlled trials, non-randomised/observational studies). Methods for synthesising
different types of studies have been proposed, but their routine use requires development of approaches to adjust
for potential biases, especially among non-randomised studies. The objective of this study was to extend a
published Bayesian hierarchical model to adjust for bias due to confounding in synthesising evidence from studies
with different designs.

Methods: In this new methodological approach, study estimates were adjusted for potential confounders using
differences in patient characteristics (e.g., age) between study arms. The new model was applied to synthesise
evidence from randomised and non-randomised studies from a published review comparing treatments for
abdominal aortic aneurysms. We compared the results of the Bayesian hierarchical model adjusted for differences
in study arms with: 1) unadjusted results, 2) results adjusted using aggregate study values and 3) two methods for
downweighting the potentially biased non-randomised studies. Sensitivity of the results to alternative prior
distributions and the inclusion of additional covariates were also assessed.

Results: In the base case analysis, the estimated odds ratio was 0.32 (0.13,0.76) for the randomised studies alone
and 0.57 (041,0.82) for the non-randomised studies alone. The unadjusted result for the two types combined was
049 (0.21,0.98). Adjusted for differences between study arms, the estimated odds ratio was 0.37 (0.17,0.77),
representing a shift towards the estimate for the randomised studies alone. Adjustment for aggregate values
resulted in an estimate of 0.60 (0.28,1.20). The two methods used for downweighting gave odd ratios of 0.43
(0.18,0.89) and 0.35 (0.16,0.76), respectively. Point estimates were robust but credible intervals were wider when
using vaguer priors.

Conclusions: Covariate adjustment using aggregate study values does not account for covariate imbalances
between treatment arms and downweighting may not eliminate bias. Adjustment using differences in patient
characteristics between arms provides a systematic way of adjusting for bias due to confounding. Within the
context of a Bayesian hierarchical model, such an approach could facilitate the use of all available evidence to
inform health policy decisions.
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Background

Health technology assessment has been defined as a multi-
disciplinary field of policy analysis studying the medical,
social, ethical, and economic implications of development,
diffusion, and use of health technology [1]. Evidence on
the effects of interventions from comparative studies is a
critical component of this process. The different types of
study designs (e.g., randomised, non-randomised/observa-
tional) used to assess the effects of interventions can be
arranged into a hierarchy, at the top of which is the rando-
mised controlled trial (RCT) [2]. Randomisation increases
the likelihood that the treatment groups will be balanced
in terms of known and unknown prognostic or confound-
ing variables. Consequently the treatment effects estimated
from RCTs are less subject to the potential confounding
effects of extraneous variables [3]. Evidence from RCTs
alone, however, may not be sufficient to inform decision
makers. In particular, the strict inclusion and exclusion
criteria which are often applied in RCTs may limit their
generalisability relative to non-randomised studies [4,5]. In
some cases, compliance to randomisation, among the ran-
domised studies, might also be an issue. Furthermore, the
scarcity of randomised studies for certain non-drug tech-
nologies, such as medical devices and surgical procedures,
may necessitate the use of evidence from non-randomised
studies in addition to that available from randomised stu-
dies [4]. Contrary to ignoring evidence from non-rando-
mised studies, it has been argued that all available
evidence should be used to inform health care decision
making [4-7]. Such an approach requires methods capable
of synthesising evidence from both randomised and non-
randomised studies.

Bayesian hierarchical modelling [5,8] has recently been
proposed for synthesising evidence from randomised
and non-randomised studies. Prevost et al. [5] applied
their method to combine evidence relating to the rela-
tive risk for mortality from five randomised trials and
five non-randomised studies evaluating mammographic
screening. Other applications of Prevost’s model include
Grines et al. [9] and Sampath et al. [10].

As an extension to the model, Prevost et al. [5] proposed
the inclusion of study covariates to explain differences in
mean effects at the study type level. Although this is impor-
tant, the authors did not model differences between study
arms, which may be a limitation of this approach when
dealing with non-randomised studies due to potential dif-
ferences in baseline characteristics. Adjustment made using
aggregate values will not account for potential imbalances
between study arms resulting from the lack of randomisa-
tion. Another extension proposed by Prevost made use of a
prior constraint, reflecting the assumption that evidence
from non-randomised studies, having been derived from
study designs with potential weaknesses [4], may be more
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biased than evidence from randomised studies. The effect
of the prior constraint is to downweight the evidence from
the non-randomised studies. This approach has been
criticized as it may not eliminate bias [11].

The objective of this paper was to extend the Bayesian
three-level hierarchical model developed by Prevost et
al. [5] in order to accommodate the greater potential for
bias among the non-randomised studies by adjusting
study estimates for potential confounders using differ-
ences in patient characteristics between study arms.
Modeling differences between study arms is important
in order to correct for potential imbalances within
studies which could bias the results.

We applied this new model to a subset of studies from a
systematic review of endovascular (EVAR) and open surgi-
cal repair (OSR) in the treatment of abdominal aortic
aneurysms (AAAs) [12]. The results were compared with
those using covariates representing aggregate values for
patient characteristics (e.g., mean age) within studies, as in
Prevost et al. [5] and Sampath et al. [10], and with two
approaches for downweighting biased evidence. Prevost’s
prior constraint to downweight the non-randomised stu-
dies was considered as well as an additional approach that
combined a prior distribution based on the non-rando-
mised studies with data from the randomised studies [8].

Methods
Prevost’s original Bayesian three-level hierarchical model
The three-level Bayesian hierarchical model proposed by
Prevost et al. [5] extends the standard two-level random-
effects meta-analysis [13] to include an extra level to allow
for variability in effect sizes between different types of evi-
dence (e.g., randomised versus non-randomised study
designs). In addition to variability between study estimates
within each study type, this model has the capacity to deal
with any added uncertainty due to study design [14]. The
three levels allow for inferences to be made at the study,
study type, and population levels. Although the model can
accomodate more than two types of study designs, the appli-
cation presented by Prevost et al. [5] combined evidence
from two study types, randomised and non-randomised.
This model can be written as follows:

Vi ~ Normal(\}lij, 31j2 @
Vi ~ Normal(ei,Giz) @
0, ~ Normal(y, t%) ®)

(i =1 or 2 for the 2 study types; j = 1,.., k; studies).
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At the first level of the model (eq.1), y; is the
estimated log relative risk in the jth study of type i,
which is normally distributed with mean y;; and var-
iance sijz. The y;; represent the underlying effect, on the
log relative risk scale, in the jth study of type i. At the
second level of the model (eq.2), the y;; are distributed
about an overall effect for the ith type of study, 0; with
;> representing the between-study variability for studies
of type i. At the third level of the model (eq.3) the
study-type effects are distributed about an overall popu-
lation effect, y, with 1° representing the between-study-
type variability.

To try to explain between study heterogeneity, Prevost
et al. [5] extended their model to include a covariate for
age at the study type level. This is shown in the
equation below.

v ~ Normal(8; + (0 x x;), 6;%) (4)

In equation 4, x;; took the values of 0 and 1 for studies
of women aged less than 50 years and studies of women
50 years and over, respectively. The same approach was
used by Sampath et al. [10] to adjust for study covariates
representing continuous variables such as average age
and proportion of males in each study. Grines et al. [9]
did not conduct covariate adjustment but rather used
funnel plots to assess heterogeneity among individual
study estimates.

Extension of Prevost’s model to adjust for imbalances
between study arms

While heterogeneity refers to unexplained variation, bias
refers to systematic deviations from the true underlying
effect due, for example, to imbalances between study
arms [2]. One potential source of bias is confounding
[15], where an extraneous factor is associated with both
the exposure under study (e.g., treatment) and the
outcome of interest, but is not affected by the exposure
or outcome [16]. Only when the groups being compared
are balanced in all factors, both those that can be mea-
sured and those that cannot, that are associated with
exposure and that affect the outcome (other than treat-
ment) will it be certain that any observed differences
between the groups are due to treatment and not the
result of the confounding effects of extraneous variables.
Randomisation increases the likelihood that the groups
will be balanced not only in terms of the variables that
we recognize and can measure but also in terms of
variables that we may not recognize and may not be
able to measure (i.e., unknowns) but that nevertheless
may affect the outcome [3]. In contrast, the greater like-
lihood of imbalances within the non-randomised studies
could have implications especially when combining both
types of study designs. In order to deal with this
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problem, we extended Prevost’s three-level model to
adjust for differences within studies rather than adjust-
ing for aggregate values at the study type level as in
equation 4. The proposed approach uses the variation
in imbalances across studies to adjust for differences in
patient characteristics between treatment arms within
studies. As with RCTs, the resulting balance in patient
characteristics within studies should avoid the influence
of confounding.

The following presents an extension of Prevost’s
model based on odd ratios, but could be extended to
relative risk. This analysis was undertaken using a bino-
mial model in which the odds of the event (e.g., death)
are calculated for each study and study arm level infor-
mation is incorporated in the model. The model can be
written as follows:

(5)

Iy ~ Binomial(p p, n ;)

log odds(p;;) = v;and

(6)
log odds(pj;) = vij + W

M
V;; ~ Normal(6; + Zam(XmTii ~Xme )6l (@)

m=1

6, ~ Normal(y, t%) (8)

(i =1 or 2 for the 2 study types; j = 1,..., k; studies,
m = 1,.., M confounders).

It is assumed that the number of events in each arm
in the jth study of type i (i.e., rc;; and rry; for control (C)
and treatment (T), respectively) follows a binomial
distribution defined by the proportion of patients who
experience the event in each arm in the jth study of
type i (i.e.,, pcij and pry) and the total number of
patients in each arm in the jth study of type i (i.e., ng;;
and nry), as shown in equation 5. Equation 6 describes
the log odds for the event in the control (y;) and treat-
ment (y; + ;) arms of each of the k; studies.

This model assumes that the log odds ratio, j;,
follows a normal distribution with a mean which is the
sum 0; (i.e., the overall intervention effect in the ith type
of studies) and a study specific bias adjustment, o,
(XmTij — Xmcjj), that is proportional to the relative differ-
ences between the study arms in each of the studies
(eq.7). In this expression, X;,1ij and X are the values
of the m-th potential confounder in each of the study
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arms (i.e., treatment and control) in the jth study of type
i while o, represents the mean bias for the m-th poten-
tial confounding variable, across all the studies. The
remaining variables were defined as before.

Prior distributions for the unknown parameters were
intended to be vague. Normal priors with mean zero
and variance 0.26 truncated to be positive, were speci-
fied for both random-effects standard deviations (c;,T).
The priors for o; and t corresponded to the priors used
in Grines et al. [9] as they represented what may be
considered reasonable priors in many situations [13].
These priors support equality between studies while dis-
counting substantial heterogeneity. A Normal prior with
mean zero and variance ten was used for the overall
population effect (p). Vague Normal priors with mean
zero and variance 1000 were assigned to the log odds
(vi’s). These priors were applied to generate results both
adjusted and unadjusted for potential confounders. In
addition to these priors, the adjusted model also
required priors for the bias coefficients (a,,,) for each of
the m-th potential confounders. These were also given
vague Normal prior distributions with mean zero and
variance 1000.

Alternative methods for potentially biased evidence

For comparison purposes, we also considered two
approaches proposed to downweight the evidence from
non-randomised studies. This is generally done by
increasing the variance. The first method considered
was the prior constraint used by Prevost et al. [5] to
assess the influence of the assumption that the rando-
mised studies were less biased than the non-randomised
studies, and hence that |p - 8| < |p - 65|. This approach
increased the relative proportion of the between-study-
type variance (t?) associated with the non-randomised
studies compared to the randomised studies. In so doing
the interpretation of p is altered. Since the constraint
gives more weight to the randomised studies, g no
longer represents the total population studied. The over-
all effects in the randomised and non-randomised stu-
dies are represented by 6; and 60,, respectively. The
second approach was the informative prior distribution
used by Sutton et al. [8] which included the evidence
from the non-randomised studies via the prior for the
treatment effect and combined this with a likelihood
based only on the data from the randomised studies.
Sutton et al. [8] centred their informative prior for the
population mean on the non-randomised pooled esti-
mate but used a variance four times larger than that of
the randomised studies. The same approach was used
for the current analysis, hence an informative Normal
(-0.5619,0.8179) prior distribution was specified for p.
The same prior distributions as previously specified
were used for the other unknown parameters.
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Analyses

All of the analyses were conducted using MCMC
simulation implemented in WinBUGS 1.4.3 software
[17]. A ‘burn-in’ of 100 000 iterations was followed by a
further 100 000 iterations during which the generated
parameter values were monitored and summary statis-
tics such as the median and 95% credible interval of the
complete samples were obtained. History plots, autocor-
relation plots, and various diagnostics available in the
package Bayesian Output Analysis [18], performed on
two chains, were used to assess convergence. See addi-
tional file 1: Appendix for WinBUGS codes. The data
are available from the author upon request.

lllustration

Data

Data from a previously published systematic literature
review evaluating EVAR and OSR in the treatment of
AAAs [12] were used to illustrate the impact of adjust-
ing for imbalances between study arms when combining
evidence from randomised and non-randomised studies.
The review identified 79 comparative studies of which
four were randomised and 75 were non-randomised.
One of the primary outcomes was 30-day mortality
reported as an odds ratio.

Evidence of the relative imbalances within the rando-
mised and non-randomised studies, together with infor-
mation on the predictors of perioperative mortality in
patients undergoing OSR, from several risk scoring
methods (e.g., Leiden score) [19], were used to inform
the choice of covariates for adjustment in both the base
case scenario and sensitivity analyses. No adjustment
was made for imbalances in the original study [12]. The
extent to which some covariate data were missing was
also considered in an additional sensitivity analysis, in
which values for the missing covariates were imputed.

Base case scenario

In the base case analysis, the results were adjusted for
imbalances in age, gender, and cardiac disease. For all
three covariates imbalances were greater among the
non-randomised studies. The three covariates were
available in a total of 44 studies, four randomised and
40 non-randomised. A description of the data is given
in Table 1.

Sensitivity analyses

Priors

A sensitivity analysis was conducted to assess the impact
of using different prior distributions for the between-
study (o;) and between-study-type (1) standard devia-
tions. The vague priors used in the base case analysis
(65, T ~ half-normal (0,0.51%)) were compared to the
more informative yet “fairly unrestrictive” priors used by
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Table 1 Covariate Data: Average Imbalance between Study Arms
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Base Case
3 Covariates®
(k = 4 randomised and 40 non-randomised)

Imputed data
5 Covariates®

(k = 4 randomised and 75 non-
randomised)

Study Type Average Difference Average Difference

Non-randomised (EVAR-OSR) (EVAR-OSR)

Male (proportion) 0.09 0.10

Age (years) 240 253

Cardiac disease (proportion) 0.12 0.14

Pulmonary disease not considered as missing in 43% of the 75 non-randomised 0.10

(proportion) studies

Renal disease (proportion) not considered as missing in 54% of the 75 non-randomised 0.05
studies

Randomised

Male (proportion) 0.05 0.05

Age (years) 0.82 0.82

Cardiac disease (proportion) 0.05 0.05

Pulmonary disease not considered as missing in 25% of the 4 randomised studies 0.13

(proportion)

Renal disease (proportion) not considered as missing in 50% of the 4 randomised studies 0.07

a.male, age, cardiac disease, b.male, age, cardiac disease, pulmonary disease, renal disease.

Prevost et al. [5] (o; ~ half-normal(0,0.362), t ~ half-nor-
mal(0,0.18%)) and to a set of less informative priors. The
latter involved Normal truncated to be positive priors
with mean zero and variance one for the between-study
standard deviation for the randomised studies (5,) and
the between-study-type standard deviation (t). A Uni-
form prior over the range (0,10) was specified for the
between-study standard deviation for the non-rando-
mised studies (6,). The prior distributions for the other
unknown parameters remained unchanged from the
base case analysis.
Imputation for missing data
A second sensitivity analysis was conducted to use all the
studies providing comparative information (i.e., 79 studies
including four randomised) rather than a subset of studies
(i.e., 44 studies including four randomised) and to adjust
for additional covariates which could affect the 30-day
mortality risk. Among the other risk factors used to pre-
dict mortality following AAA surgery, the Leiden and
modified Leiden scores both included pulmonary and
renal disease [19]. These may be particularly relevant in
the current context, as imbalances in pulmonary and renal
disease were found to be greater among the randomised
studies than among the non-randomised studies [12].

Since all five covariates were present together in less
than one third of all studies (i.e., two randomised and
23 non-randomised studies), missing covariate values
were imputed. Multiple imputation was conducted using
R 2.9.2 software [20] assuming that the covariates were
missing completely at random.

This approach implemented the bootstrap method to
first impute values for each missing variable by

randomly selecting from the observed outcomes of that
variable and then generated multiple imputations (three
datasets) using iterative regression imputation, looping
through until approximate convergence. The data are
described in Table 1. The result was a single imputed
dataset of 79 studies (four randomised and 75 non-ran-
domised) which was then analysed, in WinBUGS,
adjusting for imbalances in age, gender, cardiac disease,
pulmonary disease, and renal disease. Results were gen-
erated using all three types of priors described in the
sensitivity analysis.

Results

Base case scenario

Unadjusted for potential confounders

The four randomised and 40 non-randomised studies
were first analysed separately without adjusting for dif-
ferences in study arms using a standard Bayesian two-
level hierarchical model [13] together with a Normal
(0,10) prior distribution for the population mean and a
Normal(0,0.26) truncated to be positive prior distribu-
tion for between-study standard deviation. This pro-
duced estimates of the pooled median odds ratio for the
randomised studies alone of 0.32 (95% credible interval
(CrI) 0.13,0.76) and for the non-randomised studies
alone of 0.57 (95% CrI 0.41,0.82).

In comparison, the Bayesian three-level hierarchical
model estimated the pooled median odds ratio for the
randomised studies to be 0.43 (95% CrI 0.19,0.75) and
for the non-randomised studies to be 0.54 (95% Crl
0.40,0.76). When randomised and non-randomised evi-
dence was combined, the overall median odds ratio
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from the three-level model was 0.49 (95% Crl 0.21,
0.98). This comparison illustrates the effect of the three-
level hierarchical model allowing the cross contribution
of evidence between the randomised and non-rando-
mised studies. As a result, the estimated odds ratios for
the study types were drawn towards one another and
the uncertainty associated with them was reduced. The
relative discrepancy in the number of randomised and
non-randomised studies resulted in the pooled estimate
for the randomised studies being greatly influenced by
the non-randomised studies’ estimate. The odds ratio in
the non-randomised studies however, was drawn in by a
much smaller amount.

Adjusted for differences in age, gender and cardiac

disease between study arms

Upon synthesising the randomised and non-randomised
evidence, the three-level hierarchical model adjusting for
imbalances between study arms in terms of age, gender
and cardiac disease (eq.7) was applied to the data. Impor-
tant differences were observed compared to the unad-
justed analysis. Posterior median odds ratios were 0.35
(95% CrI 0.17,0.63) for the randomised studies and 0.39
(95% CrlI 0.25,0.61) for the non-randomised studies. The
overall estimated odds ratio was 0.37 (95% CrI 0.17,0.77).

’Naive” adjustments made using the mean age, propor-
tion of males and proportion of patients with cardiac
disease in each study, as in Prevost and Sampath [5,10],
produced estimates of 0.57 (95% Crl 0.27,1.03) for the
randomised studies and 0.62 (95% CrI 0.44,0.87) for the
non-randomised studies. The estimated population odds
ratio was 0.60 (95% CrI 0.28,1.20).

Alternative methods for potentially biased evidence

The prior constraint resulted in estimated posterior
median odds ratios of 0.44 (95% CrlI 0.20,0.76) and 0.54
(95% Crl 0.40,0.76), respectively for the randomised and
non-randomised studies and an overall estimate of 0.43
(95% CrlI 0.18,0.89). An informed prior distribution
centred on the pooled estimate from the analysis of the
non-randomised studies alone with a variance four
times that of the randomised studies generated a single
overall estimate of 0.35 (95% CrI 0.16,0.76).

Figure 1 compares the estimated odds ratios obtained
from separate analyses of each type of study design
using a two-level Bayesian hierarchical model with a
three-level Bayesian hierarchical model synthesising
evidence from both types of designs. In addition the
estimates obtained when adjusting for differences in age,
gender and cardiac disease between study arms or using
aggregate study values are also presented. Estimates
resulting from approaches downweighting the non-ran-
domised evidence are displayed as well. All odds ratios
are described in terms of the numerically approximated
(via MCMC) median value of their posterior distribution
and the associated 95% Bayesian Crl.
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Sensitivity analysis

Priors

As shown in Table 2, all three sets of priors produced
similar values for the study type effects 0, (randomised), 6,
(non-randomised) and for the overall odds ratio y, though
the precision of the credible intervals varied. Our vaguest
priors produced an overall estimate which was not statisti-
cally significant.

Imputed dataset

Adjustment for imbalances in pulmonary and renal dis-
ease in addition to age, gender and cardiac disease
increased the estimated posterior median odds ratios for
each of the study types and for the overall estimated
odds ratio, though the inferences remained the same
(Table 2).

Discussion

We expanded the methods initially proposed by Prevost
et al. [5] to take into account differences in patient char-
acteristics between study arms. Comparison of the esti-
mated odds ratios between the unadjusted three-level
model, dominated by the 40 non-randomised studies,
and the model adjusted using study arm differences
revealed an overall odds ratio that had moved closer to
the pooled estimate from the four randomised studies
alone. The estimate was more precise than the rando-
mised studies’ estimate, reflecting the additional infor-
mation from the adjusted non-randomised studies.
‘Naive’ adjustments made using aggregate values in each
study (centred about their respective mean values across
all the studies) resulted in estimated odds ratios that
were relatively closer to the pooled estimate from the
non-randomised studies alone. The prior constraint pro-
posed by Prevost et al. [5] did not alter the type level
estimates to any noticeable extent. It did however
change the contribution that each made towards the
population level estimate. Relative to the unadjusted
model, the introduction of the constraint resulted in a
population level estimate which had moved towards the
randomised studies’ estimate both in terms of its
location and precision. However, the shift and the preci-
sion of the credible interval were both less than when
the model was adjusted for study arm differences. Sut-
ton et al.’s [8] informative prior approach resulted in an
overall odds ratio that was slightly closer to the rando-
mised estimate than the model adjusted for imbalances.
Its estimate was also slightly more precise.

All of the methods, with the exception of the model
using aggregate study values for adjustment, produced
population level estimates that had moved towards the
randomised studies’ estimate. While this lends credence
to the ability of the extended model to adjust for poten-
tial confounders, this new model, in its current form,
has some potential limitations. Because the imbalanced
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Randomised Studies (2-level hierarchical model) [13]

Non-randomised Studies (2-level hierarchical model) [13]

Randomised and Non-randomised Studies (3-level
hierarchical model unadjusted for covariates) [5]

Randomised Studies

Non-randomised Studies

Covariate Adjustment 2 Types of Studies (3-level hierarchical
model adjusted for differences between study arms)

Randomised Studies

Non-randomised Studies

"Naive' Covariate Adjustment 2 Types of Studies (3-level
hierarchical model adjusted for aggregate study values) [5]

Randomised Studies

Non-randomised Studies

Prior Constraint (3-level hierarchical model downweighted
non-randomised evidence) [5]

Randomised Studies

Non-randomised Studies

Informative Prior (2-level hierarchical model downweighted
non-randomised evidence) [8]

Odds Ratio
(95% Crl)

+ 0.32 (0.13,0.76)
—_—— 0.57 (0.41,0.82)
+ 0.49 (0.21,0.98)
e 0.43 (0.19,0.75)
— 0.54 (0.40,0.76)
—_— 0.37 (0.17,0.77)
e 0.35 (0.17,0.63)
—— 0.39 (0.25,0.61)
+ 0.60 (0.28,1.20)
+ 0.57 (0.27,1.03)
—_— 0.62 (0.44,0.87)
+ 0.43 (0.18,0.89)
—_— 0.44 (0.20,0.76)
—— 0.54 (0.40,0.76)
— 0.35 (0.16,0.76)

Figure 1 Estimated overall (1) and study type (0,, 6,) odds ratios from Bayesian hierarchical models. Perioperative mortality in studies of
EVAR and OSR for the treatment of abdominal aortic aneurysms (four randomised controlled trials and 40 non-randomised studies)

02 04 06 08 1 12 14 16 18 2

Odds Ratio (95% Crl)

Favours EVAR Favours OSR

studies are adjusted, but not downweighted the credible
intervals do not reflect the uncertainty due to this
source of bias [15]. While downweighting itself may not
eliminate bias, in conjunction with adjustment, it would
give the biased studies less weight in the analysis. Ide-
ally, this would be achieved by inflating the variances in

such a way that, like the study specific bias adjustments,
the downweighting was proportional to the relative dif-
ferences between the study arms. Also, in its current
form the proposed model does not address the extent to
which variation in age, gender, and cardiac disease
across studies may explain variation in study estimates.
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Table 2 Adjustment for Differences in Patient Characteristics between Study Arms: Sensitivity to Prior Distributions

Type of Prior

Dataset Posterior Estimate Base Case Analysis: Sensitivity Analysis: Sensitivity Analysis:
Median OR (95% credible interval) “Reasonably Vague” (Grines) “Fairly Unrestrictive” (Prevost) “Vaguest”
Overall (p) 0.37 (0.17,0.77) 0.37 (0.23,0.60) 0.37 (0.18,1.25)
Base Case Randomised (0,) 035 (0.17,0.63) 0.36 (0.21,0.59) 0.34 (0.13,0.74)
3 Covariates®
(k = 44)
Non-Randomised (0,) 0.39 (0.25,061) 0.38 (0.25,0.57) 040 (0.23,0.68)
Overall (p) 045 (0.20,0.95) 047 (0.28,0.74) 044 (0.13,1.31)
Imputed Randomised (0,) 042 (0.18,0.78) 046 (0.25,0.73) 0.39 (0.14,0.87)
5 Covariates®
(k =79)
Non-Randomised (0,) 049 (0.33,0.72) 049 (0.33,0.71) 049 (0.32,0.74)

a.male, age, cardiac disease, b.male, age, cardiac disease, pulmonary disease, renal disease.

Rather, the objective of this study was to propose a
method to adjust for differences in patient characteristics
within studies, as a way of controlling for potential con-
founders. A practical limitation, as evidenced by this
example, is the availability of arm level data from the pri-
mary papers. Any analysis could only be based on a sub-
set of studies for which information on potential
confounding variables happened to be available. This
could bias the results if the observations were not miss-
ing at random [21]. Assuming that the covariates were
missing completely at random the current analysis
attempted to impute the missing values, though admit-
tedly the two-stage nature of the current approach may
appear inelegant (i.e., using R to impute the data and
then analysing the new data in WinBUGS). A more nat-
ural solution would be to include the unobserved covari-
ate values along with the unobserved parameters inside
the MCMC, although this may add an additional layer of
complexity. Due to the focus of the paper being Bayesian
hierarchical models for combining randomised and non-
randomised studies rather than methods to impute miss-
ing data, and for convenience, we decided to generate the
missing values using R. Finally, adjustment cannot
address the problem of unknown potential confounders
[21].

Despite these limitations, we believe that the approach
presented in this paper provides a systematic way of
incorporating potentially biased evidence, relying on bias
adjustment rather than arbitrarily downweighting the
evidence. Prevost’s and Sutton’s approaches to down-
weighting assume the evidence from non-randomised
studies is uniformly more biased, which, if there are well
balanced non-randomised studies, may not necessarily
be the case. Future research would be required to assess
the generalisability of the proposed model beyond this
single applied example. In particular, simulation studies
would be necessary to ascertain its broader applicability.
Part of the justification for combining evidence from

both randomised and non-randomised studies rests on
an all available evidence approach to health care deci-
sion making. The extent of missing covariate data in the
current example suggests authors should be encouraged
to better report the main characteristics of their study
populations. The current example also illustrates the
impact of different prior distributions on the precision
of the results. The choice of prior could have implica-
tions in terms of informing health care decision making
and may be particularly important in situations in which
the data are not very informative [22].

Conclusion

Synthesising evidence from both randomised and non-
randomised studies requires methods for incorporating
potential biases. In this paper, we propose a new
approach to deal with bias due to confounding when
combining randomised and non-randomised studies.
This approach uses differences in patient characteristics
to adjust for imbalances between study arms. Including
aggregate study values for patient level covariates does
not account for imbalances and downweighting may not
eliminate bias. Within the context of a Bayesian hierarch-
ical model the proposed approach could facilitate the use
of all available evidence to inform health policy decisions.

Additional material

[ Additional file 1: Appendix. WinBUGS codes. ]
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