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Abstract
Background:  Although a randomized trial represents the most rigorous method of evaluating a
medical intervention, some interventions would be extremely difficult to evaluate using this study
design. One alternative, an observational cohort study, can give biased results if it is not possible
to adjust for all relevant risk factors.

Methods:  A recently developed and less well-known alternative is the paired availability design
for historical controls. The paired availability design requires at least 10 hospitals or medical
centers in which there is a change in the availability of the medical intervention. The statistical
analysis involves a weighted average of a simple "before" versus "after" comparison from each
hospital or medical center that adjusts for the change in availability.

Results:  We expanded requirements for the paired availability design to yield valid inference. (1)
The hospitals or medical centers serve a stable population. (2) Other aspects of patient
management remain constant over time. (3) Criteria for outcome evaluation are constant over
time. (4) Patient preferences for the medical intervention are constant over time. (5) For hospitals
where the intervention was available in the "before" group, a change in availability in the "after
group" does not change the effect of the intervention on outcome.

Conclusion:  The paired availability design has promise for evaluating medical versus surgical
interventions, in which it is difficult to recruit patients to a randomized trial.

Background
In terms of avoiding bias, the most rigorous method for

evaluating a medical intervention is the randomized con-

trolled trial. However, many clinical investigators are

unable to conduct a randomized trial because of exces-

sive cost or required effort or difficulty overcoming

strongly held beliefs among health care providers or pa-

tients. In these situations, a clinical investigator may

consider a design and analysis based on observational
data (Table 1).

One common method of inference from observational

data is the cohort study with an adjustment for risk fac-

tors using, for example, regression models [1] and pro-

pensity scores [2]. In some situations, estimates from

high-quality cohort studies have been similar to those

from randomized trials [2][3][4][5]. However there are

some notable exceptions, including studies of the effect

of beta-carotene on cardiovascular mortality [6][7], the

effect of hormone therapy on the rate of cardiovascular
disease [8], the effect of epidural analgesia on the proba-
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bility of Cesarean section [9], the effect of beta-blockers

on mortality [10], and the effect of aspirin on the risk of

colorectal cancer [11]. Some of the discrepancy between

the results of these high quality cohort studies and rand-

omized trials may be explained by differences in the in-

tervention, patient population, or duration of follow-up.

Nevertheless, a major reason for bias with cohort studies

is the failure to adjust for all factors related the receipt of

intervention and outcome. This failure may be due to the
inability to identify or collect the necessary data, or the

difficulty measuring or quantifying subjective factors

such as clinical judgment. For a fuller discussion of how

an omitted factor related to receipt of intervention and

outcome can bias results in a cohort study but not a ran-

domized trial see Baker and Kramer [12].

Methods
An alternative and less widely known approach is the

paired availability design for historical controls

[9][13][14]. As we describe in more detail, the paired

availability design consists of comparing outcomes in

multiple hospitals or medical centers before versus after

a change in availability of a medical intervention. To ad-

just for different changes in availability among the hos-

pitals or medical centers, the test statistic for each

hospital or medical center is the difference in outcome

before and after the change in availability divided by the

change in the fraction of patients who receive the inter-

vention. These test statistics are combined in a meta-

analysis, which weights the statistic from each hospital

according to the reciprocal of the variance, a quantity

that depends on sample size and the change in availabil-

ity.

The paired availability design avoids many of the biases

of analyses based on traditional historical controls. With

traditional historical controls, investigators compare

outcome among subjects who receive a new intervention

with outcome among a previous group of subjects who

received the standard intervention. Selection bias often

arises because subjects who receive the new intervention

are typically not comparable to subjects who received the

standard intervention [15]. The paired availability design

reduces selection bias because the comparison is be-

tween all subjects (those who received the intervention
and those who did not) before the change in availability

and all subjects (those who received the intervention and

those who did not) after the change in availability. Thus

the intervention is the availability of treatment, instead

of the receipt of treatment. If the sample of all subjects

eligible for intervention is comparable before and after

the change in availability, one can obtain an unbiased es-

timate of the effect of a change in availability by compar-

ing outcome among all subjects before the change in

availability with the outcome among all subjects after the

change in availability. This is analogous to obtaining an

unbiased estimate of the effect of intent-to-treat by com-

paring outcomes among all subjects in each arm of a ran-

domized trial subject to noncompliance.

For both the paired availability design and randomized

trials subject to noncompliance, the ideal goal is an unbi-

ased estimate of the effect of receipt of treatment. If cer-

tain requirements hold, which we discuss, a simple

adjustment gives an unbiased estimate of the effect of re-

ceipt of treatment in the paired availability design. Simi-

larly, in certain situations involving randomized trials

with noncompliance, such as switching interventions im-

mediately after randomization, a similar adjustment also

yields an unbiased estimate of the effect of receipt of
treatment [16][17]. Readers interested in a formal math-

ematical statement of these requirements and how they

Table 1: Comparison of Several Methods of Evaluating a Medical Intervention

Method Strengths Weaknesses

Randomized controlled trial 1. No temporal bias 1. Cost and effort
2. No selection bias 2. Recruitment

Observational cohort study 1. No temporal bias 1. Cost of data collection
2. Selection bias if an

important risk factor is
omitted or not
adequately quantified

Paired availability design 1. Lessens selection bias 1. Assumptions in Table 2
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give rise to the simple estimate should consult references

[9][13][14][16][17].

Results
To assist investigators who are contemplating a paired

availability design, we provide an expanded list of re-
quirements for valid inference as well as a simpler meth-

od of data analysis than previously discussed in the

literature.

Design
The paired availability design uses data collected in ei-

ther a prospective or retrospective manner, or a combi-

nation of the two. Although implementing a multi-center

study may initially appear burdensome, two mitigating

factors lessen the burden: (1) randomization is not re-

quired and (2) investigators need not collect data on risk

factors if the requirements hold. The requirements (to

follow) are most likely to hold when the time period for

the entire study is not too long. We recommend limiting

the total study duration to not more than two years, rec-

ognizing there may be exceptions due to patient accrual

rate, intervention, and outcome. If availability changes

gradually, it is often sufficient to split the data halfway

between the start of the "before" period and the end of

the "after" period; although more sophisticated statisti-

cal techniques can be employed [9]

The change in availability between the "before" and "af-

ter" periods can take different forms which do not affect
the design or analysis. With fixed availability, the inter-

vention is available to all subjects who arrive during a

certain time of day or day of the week. With random

availability, the intervention is available only if the nec-

essary personnel or equipment is available, which occurs

at random. In either case, subjects can decide whether or

not to undergo the intervention.

The study design has five requirements for making ap-

propriate inference: stable population, stable treatment,

stable evaluation, stable preference, and no effect of

availability on the effect of intervention (Table 2). Stable

population, treatment, and evaluation, are required for

appropriate inference in any medical study involving

comparisons over time. Stable preference and no effect

of availability on the effect of intervention, are needed to

adjust for differences in availability among hospitals or

medical centers.

Table 2: Requirements for Paired Availablity Design

Requirement Specific Criteria

Stable population 1. Hospital serves one geographic area or
is military medical center

2. No in- or out- migration
3. Eligibility criteria constant over time
4. No underlying change in prognosis

over time

Stable treatment 1. Other patient management constant
over time

Stable evaluation 1. Evaluation criteria constant over time

Stable preference 1. No publicized credible reports
2. No direct-to-consumer advertising

Effect of the intervention on outcome does 1. Effect of intervention does not depend
not change with a change in availability on when the intervention was given
(only applicable when some in "before" during the course of disease
group receive intervention) 2. No learning curve for the intervention
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The first requirement, stable population, is that the com-

position of subjects eligible for the intervention should

not change from the "before" to the "after" period in ways

that would affect outcome. This requirement would be

violated if subjects seek treatment because of the availa-

bility of the treatment under study. The assumption is

therefore violated if hospitals advertise the availability of

a new diagnostic test or medical intervention. In addi-

tion, each hospital or medical center should serve a well-

defined population with little in- or out- migration. Ex-

amples include the only hospital in a geographic region

or a military medical center. The presence of two or more

hospitals in a region could introduce bias if the new in-

tervention were available in only one hospital and it were

not possible to exclude from the analysis patients who

switched hospitals to undergo the new intervention. The

stable population requirement would also be violated by

changes in eligibility criteria over time. If eligibility is de-

termined by a medical diagnosis, the method of diagno-

sis must not change over time. Lastly the stable

population requirement would be violated if the underly-

ing prognosis of patients changed over time. For example
in a study of treatment for a viral infection which is

spreading through a population, the most susceptible

subjects would likely enter the trial first, which would vi-

olate the stable population requirement if they have the

worse prognosis after infection.

The second requirement, stable treatment, is that the pa-

tient management unrelated to the intervention is iden-

tical in the "before" and "after" groups. Thus, in studying

the effect of epidural analgesia on the probability of Cae-

sarian section, other forms of obstetric management

should be constant over time. Similarly, in studying the

effect of an intense chemotherapeutic regimen for cancer

on survival, the type of antibiotic should not change of

over time, as new and more effective antibiotics could

lower treatment-related mortality irrespective of the ef-

ficacy of the anticancer regimen.

The third requirement, stable evaluation, is that the

method of evaluation is identical in the "before" and "af-

ter" groups. For example, the use of a new radiologic test

to stage cancer in the "after" group may artifactually im-

prove prognosis of each stage, independent of the thera-

py [18].

Because the paired availability design involves multiple

hospitals or medical centers, random violations of the

stable population, treatment, and evaluation require-
ments will tend to average out, and not affect the conclu-

sion. The main concern is with systematic violations. To

minimize systematic violations, if possible, a wide varie-

ty of hospitals or medical centers should be studied.

Table 3: Example of calculations from data in Baker and Lindeman [Reference 9]

hospital before" group data after group data estimate std error weight

n1 e1 P1 n2 e2 p2 y s w

1 116 .586 .172 103 .223 .184 -.033 .143 44
2 180 .290 .080 180 .440 .090 .067 .196 24
3 373 .131 .110 421 .587 .100 -.022 .048 208
4 1000 .100 .040 1000 .450 .050 .029 .026 313
5 1298 .000 .074 1084 .480 .065 -.019 .022 333
6 1919 .000 .275 2073 .316 .229 -.146 .044 225
7 3195 .010 .030 3733 .290 .031 .004 .015 365
8 4778 .008 .194 4859 .586 .190 -.006 .014 369
9 4685 .187 .149 6170 .551 .125 -.046 .015 352
10 8108 .467 .248 9918 .678 .280 .152 .031 288
11 11159 .328 .209 11869 .499 .209 .000 .031 288

n1 (n2) = number of subjects in "before" ("after") group. el (e2) = fraction of subjects in "before" ("after") group that had epdiural analgesia, p1 (p2) 
= fraction of subjects in "before" ("after") group that had a Cesarean section, y= estimated effect of epidural analgesia on the probability of Cesarean 
section = (p2-p1)/(e2-e1), s= standard error of y= square root of (p2 (1-p2))/n2 + p1 (1-p1)/n1) /(e2-e1)2, w* = weight used in random effects meta-
analysis. We computed the weights as follows. Let i index studies, so yi and si are the values of y and s for study i. It is convenient to define w1 = I/ 
si 2. Following DerSimonian and Laird [Reference 19], to compute v, the variance of the true effect among the k studies, we set v equal to the larger 
of (Q-(k-1)) / (Σwi - Σwi 2/Σwi) and 0, where Q = Σwi (yi - m)2, m = Σyi wi/Σwi. The random-effects weights are w* i= 1/(si 2 + v), and the summary 
statistic is y* = Σyi w* i/Σw* i, with standard error s* = square root of 1/Σw* i. Following Proschan and Follman [reference 20], the 95% confidence 
interval is (y* - tk- s*, y*+ tk-1 s*), where tk-1 is the value of the 97 1/2 percentile of a t-distribution with k-1 degrees of freedom. In this example, k = 
11, Q = 50.1, v = .0025, m =-.007, s* = .019 y* = -.005, t10 = 2.23, y* = -.005 and the 95% confidence interval is (-.047, .037).
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The fourth requirement, stable preference, is strength-

ened in the absence of new information in the "after" pe-

riod that would change a subject's preference for the

medical intervention. This requirement could be violated
by a widely publicized report of a harmful side effect of

the new treatment, or direct-to-consumer advertising of

the intervention to consumers. To the best of our knowl-

edge, in the paired availability design to study the effect

of epidural analgesia on the probability of Cesarean sec-

tion, there were no credible reports of either detrimental

or beneficial side effects to the mother or fetus from epi-

dural analgesia and no relevant direct-to-consumer ad-

vertising. In contrast, if the media reported preliminary

results that radioactive seed implants had fewer side ef-

fects than previous approaches for treating prostate can-

cer, healthier subjects who care most about the side

effects may be more likely to request the new therapy

than less healthy subjects who only care if treatment re-

duces the risk of mortality.

The fifth requirement is that the effect of the interven-

tion on outcome does not change with a change in avail-

ability. Importantly, it applies only when there are some

subjects in the "before" group who undergo the interven-

tion. Mathematically the following two assumptions are

required to estimate method effectiveness [9][13][14].

(1) Subjects in the "before" group who undergo interven-

tion have comparable counterparts in the "after" group

who undergo intervention (which is justified by the other
requirements) and the effect of intervention is the same

in both groups, i.e. it does not depend on a change in

availability. (2) Subjects in the "after" group who do not

undergo the intervention have comparable counterparts

in the "before" group who do not undergo the interven-

tion (as justified by the other requirements) and the ef-

fect of no intervention is the same in both groups. By

definition no intervention is the same in the "before" and

"after" groups, so a change in availability of intervention

would have no bearing on (2). Thus the effect of a change

in availability on the effect of the intervention only per-

tains to (1), where subjects in the "before" group undergo

intervention.

The fifth requirement would be violated if increased

availability caused some subjects to undergo the inter-

vention sooner in the course of the disease, changing

prognosis. The fifth requirement would also be violated

if there were a learning curve with new intervention,

such as a surgical technique that improves with the

number of procedures. If such violations are likely, the

design should be restricted to hospitals or medical cent-

ers where no subjects in the "before" group received the

intervention.

Baker and Lindeman provided a formula to calculate the

required the number of hospitals or medical centers to

achieve sufficient power for hypothesis testing [13].

However, the formula may be difficult to use if the re-
quired information on the likely variability of an effect

over hospitals or medical centers is not readily available.

In such situations, as a rule of thumb, we recommend a

minimum of 10 hospitals or medical centers, with 15

preferable, and 20 ideal.

Analysis
The purpose of the analysis is to estimate the effect of the

receipt of the medical intervention, which is also called

method-effectiveness [16]. As derived by Baker and Lin-

deman [9][13], if the aforementioned requirements hold,

for each hospital or medical center, the estimated effect

of receipt of treatment is

D/F, where

D= difference in outcome before and after change in

availability

F = fraction that received intervention after change in

availability – fraction that received intervention before

change in availability

If the outcome measure is a continuous variable such as

blood measure, D is a difference in the average outcomes
between the "before" and "after" groups. If the outcome

measure is binary, such as success or failure, D is a dif-

ference in the fraction who fail or succeed in the "before"

and "after" groups.

The above estimate, D/F, has an analog in the analysis of

randomized trials when some subjects switch treatments

soon after randomization. With an intent-to-treat analy-

sis, one can estimate use-effectiveness, D*, which is the

effect of random assignment of treatment on outcome.

Similarly, one can estimate F*, the fraction of subjects in

the study group that received the new treatment minus

the fraction of subjects in the control group that received

the new treatment. Invoking an assumption analogous to

the fifth requirement for the paired availability design,

the estimated method-effectiveness is D*/F* [17].

As illustrated in the calculations accompanying Table 3,

we use a standard approach for a random effects meta-

analysis [19] to summarize the estimated effect of receipt

of treatment over all studies. The summary statistic is a

weighted average of the estimated effect of receipt of

treatment for each hospital or medical center, where the

weight for each hospital or medical center is the recipro-

cal of the sum of the sampling variance and the variance
of the true effect over the studies. The sampling variance
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of the estimated effect of receipt of treatment, the varia-

bility due to taking a sample from a hypothetical larger

population, approximately equals the sampling variance

of the numerator, which is a standard calculation, divid-
ed by denominator squared. The variability of the true ef-

fect, which arises because the medical intervention is not

exactly identical among all hospitals, is computed using

the formula in DerSimonian and Laird [19]. The stand-

ard error of the summary statistic is the square root of

the reciprocal of the sum of the weights. An approximate

95% confidence interval is computed as the summary

statistic plus or minus the standard error multiplied by

the 97 1/2 percentile of a t-distribution with degrees of

freedom equal to the number of hospitals or medical

centers minus one [20]. This value can be found in tables

in many statistics books; for example for 11 hospitals,

there are 10 degrees of freedom and the value is 2.23.

Example
Baker and Lindeman applied the paired availability de-

sign to study the effect of epidural analgesia on the prob-

ability of Cesarean section [9]. They identified 11

hospitals or medical centers where epidural analgesia

was introduced, expanded, or discontinued. Stable pop-

ulation and stable treatment requirements were sup-

ported by the reports of the investigators. Stable

evaluation held because of the unambiguous nature of

the outcome. The stable preference requirement likely

held, as there were no widely published reports concern-
ing risks or benefits of epidural analgesia and no direct-

to-consumer advertising of the procedure. Because in-

creased availability would likely cause some subjects to

receive epidural analgesia earlier in the course of labor,

there was concern about violating the fifth requirement

of no effect of availability on the effect of intervention.

However, because a randomized trial had previously

shown that the effect of epidural analgesia on the proba-

bility of Cesarean section did not differ whether epidural

analgesia was initiated early or late in labor, the require-

ment was thought to hold. A slightly simplified version of

the data from Baker and Lindeman [9] is given in Table

3. In particular, to simplify the calculations for the hos-

pital designated as number 11, we regrouped data from

multiple time periods into two time periods.

Using the aforementioned method of analysis, with more

details in the notes for Table 3, the estimated increase in

the probability of Cesarean section due to epidural anal-

gesia was -0.005 with a 95% confidence interval of (-

.047, .037). This is fairly close to the more exact calcula-

tions based on a permutation distribution in [9]. Impor-

tantly, these results were similar to those from a meta-

analysis of randomized trials adjusted for switching of

treatments that yielded an estimate of method effective-
ness of .02 with 95% confidence interval of (-.02, .08)

[9]. In contrast, a high quality propensity score analysis

of cohort data gave a much larger estimate of. 10 with a

95% confidence interval of (.07, .13). The bias may be due

to the omission of a risk factor for intense pain early in
labor [9].

Discussion
The paired availability design has promise for evaluating

medical versus surgical interventions. For such an evalu-

ation, it would be difficult to recruit patients to a rand-

omized trial because few patients want to be randomized

to those options. Also, many physicians feel uncomforta-

ble assigning their patients to invasive versus non-inva-

sive interventions. Thus a validated alternative method

of evaluation would be of considerable value. We think

that, in some cases, the paired availability design would

be well suited for this type of evaluation. The key to the

stable population requirement is having clear and con-

stant eligibility criteria. For stable treatment, ancillary

care and the method of evaluation must be the same over

time. For the stable preference assumption to hold, there

should be no advertising of the medical intervention. For

the requirement of no effect of availability on the effect of

intervention, either the surgical technique should have

stabilized or the design should only include hospitals

with no previous surgeries.

A possible example would be an analysis of surgical re-

moval of liver metastases in patients with colorectal can-
cer. Although liver metastatectomy has been associated

with favorable outcomes, a more rigorous evaluation is

needed. An analysis of prospective cohort data is likely to

be biased because of the difficulty observing or quantify-

ing important risk factors such as patient performance

status, tumor doubling times, and meticulous staging.

Several conditions listed in Table 2 are favorable to a

paired availability design. The surgical approach has

been relatively stable for years. The use of CT scans and

CEA blood testing in follow-up of patients after resection

of the primary tumor has been popular for at least two

decades. Although systemic therapy has changed, effica-

cy of chemotherapy for metastatic disease has reached a

plateau. Metastatectomy is not one of the procedures

heavily advertised by hospitals or medical centers. An

ideal circumstance would be to apply the paired availa-

bility design to hospitals before and after the arrival of a

surgical oncologist who brings the procedure into com-

mon practice for the first time at that hospital.

A well-designed randomized study of liver metastatecto-

my would still give a more statistically valid assessment

of the procedure than the paired availability design.

However, such a randomized study has never been done,
despite the use of metastatectomy for many years. A
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paired availability design would likely be subject to fewer

biases than a cohort study comparing outcomes of pa-

tients who did versus those who did not undergo the sur-

gical procedure.

To decide if a method for analyzing observational data is

generally reliable, one should have experience compar-

ing the results to those obtained from a randomized trial.

In the only application of the paired availability design to

date. Baker and Lindeman obtained similar results from

the paired availability design as from a meta-analysis of

randomized trials. These results differed substantially

from a multivariate adjustment for concurrent controls,

which likely omitted an important risk factor2. Hopefully

this article will spur new studies using the paired availa-

bility design, including some comparing the results to

those from randomized trials.

Conclusion
We wish to emphasize that the randomized trial repre-

sents the strongest form of evaluation and should be im-

plemented if possible. However we recognize that there

are situations where the randomized trial is difficult to

implement, such as comparing medical versus surgical

interventions. If the requirements for the paired availa-

bility design are met, we recommend it as an alternative

with advantages over the usual analyses from observa-

tional studies.
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