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Abstract

Background: Susceptibility variants identified by genome-wide association studies (GWAS) have modest effect
sizes. Whether such variants provide incremental information in assessing risk for common ‘complex’ diseases is
unclear. We investigated whether measured and imputed genotypes from a GWAS dataset linked to the electronic
medical record alter estimates of coronary heart disease (CHD) risk.

Methods: Study participants (n = 1243) had no known cardiovascular disease and were considered to be at high,
intermediate, or low 10-year risk of CHD based on the Framingham risk score (FRS) which includes age, sex, total
and HDL cholesterol, blood pressure, diabetes, and smoking status. Of twelve SNPs identified in prior GWAS to be
associated with CHD, four were genotyped in the participants as part of a GWAS. Genotypes for seven SNPs were
imputed from HapMap CEU population using the program MACH. We calculated a multiplex genetic risk score for
each patient based on the odds ratios of the susceptibility SNPs and incorporated this into the FRS.

Results: The mean (SD) number of risk alleles was 12.31 (1.95), range 6-18. The mean (SD) of the weighted genetic
risk score was 12.64 (2.05), range 5.75-18.20. The CHD genetic risk score was not correlated with the FRS (P = 0.78).
After incorporating the genetic risk score into the FRS, a total of 380 individuals (30.6%) were reclassified into
higher-(188) or lower-risk groups (192).

Conclusion: A genetic risk score based on measured/imputed genotypes at 11 susceptibility SNPs, led to
significant reclassification in the 10-y CHD risk categories. Additional prospective studies are needed to assess
accuracy and clinical utility of such reclassification.

Background
Genome-wide association studies (GWAS) have identi-
fied multiple SNPs as being associated with the risk of
developing common ‘complex’ diseases [1-9]. The
potential use of susceptibility SNPs in individual-level
risk estimation and clinical decision-making is a topic of
considerable interest [10-12]. Since effect sizes (ie, odds
ratio or relative risk) of susceptibility SNPs for common
diseases are modest, whether such variants provide
incremental risk prediction beyond conventional risk
prediction algorithms is unclear. Of note, direct-to-con-
sumer (DTC) companies are already providing genotype

based estimates of risk of common diseases in the
absence of established clinical utility [13].
The 10-year (10-y) risk of coronary heart disease

(CHD) is estimated based on conventional risk factors
using the Framingham risk score (FRS) [14], and enables
preventive measures to be targeted toward individuals
who need these the most. Such individuals can be trea-
ted by lifestyle modification and/or drug therapy [15].
The FRS is based on age, sex, diabetes, smoking, blood
pressure categories, and total and high-density lipopro-
tein (HDL) cholesterol levels.
A SNP on chromosome 9p21 has been tested in several

studies for its utility in refining estimates of CHD risk,
but so far the results are inconsistent [16-18]. Nine SNPs
that influence serum lipid levels were associated with
adverse cardiovascular events but did not improve discri-
mination and only slightly improved reclassification [19].
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A genetic risk score based on 101 SNPs associated with
cardiovascular disease phenotypes and related intermedi-
ate phenotypes was not significantly associated with inci-
dent adverse cardiovascular events after adjustment for
conventional cardiovascular risk factors [20]. However, in
a propective cohort and case-control analysis, a genetic
risk score based on 13 SNPs associated with CHD identi-
fied 20% of the participants who were at ~70% increased
risk of a first CHD event [21].
Electronic medical record (EMR)-based GWAS have

been proposed to overcome the bottleneck of high-phe-
notyping costs and thereby faciltate genomic studies of
diverse medically relevant phenotypes. We investigated
whether measured and imputed genotypes from a
GWAS dataset linked to the EMR alter estimates of
CHD in 1243 individuals from the Mayo electronic
Medical Records and Genomics (eMERGE) cohort
[22,23], which comprises of peripheral arterial disease
cases and controls. We calculated a multiplex genetic
risk score, incorporated it into the FRS, and then
assessed extent of subsequent reclassification of CHD
risk.

Methods
Study participants
In the Mayo eMERGE cohort, peripheral arterial disease
cases had an ankle-brachial index (ABI) of ≤0.9 at rest
or one minute after exercise; or the presence of poorly
compressible arteries; or a history of lower extremity
revascularization. Controls were identified from patients
referred to the Cardiovascular Health Clinic for CHD
screening and had no history of peripheral arterial dis-
ease. For the present study, we excluded control patients
who had CHD, defined as the presence of the Interna-
tional Classification of Disease-9-Clinical Modification
(ICD-9-CM) diagnosis codes 410.33-414.33, or a history
of percutaneous coronary intervention or coronary

artery bypass surgery (ICD-9-CM procedure codes
36.10-36.14). In all, 1243 controls without known cardi-
ovascular disease were identified.
All participants gave their written informed consent

for participation in the study and the use of their data
for future research. The study protocol was approved by
the Institutional Review Board of the Mayo Clinic.

Genetic marker selection and imputation
At the time of conducting this study, 12 SNPs were
reported to be associated with CHD (myocardial infarction
and sudden cardiac death) in GWAS [24]. The 12 suscept-
ibility genes, the corresponding SNPs, risk allele, risk allele
frequencies (RAFs), and the sizes of their effects (ie, odds
ratio and 95% confidence interval) are listed in Table 1.
We used fixed-effects models to calculate the summary
odds ratio and 95% confidence intervals for four out of 12
SNPs (rs599839, rs501120, rs1746048, and rs3008621)
based on published studies (reviewed in Kullo and Cooper
[24]). For the remaining SNPs, the odds ratios and 95%
confidence intervals were derived from the combined or
pooled analyses in the original studies.
Of the 12 SNPs, four (rs3184504, rs6725887,

rs11206510, and rs1746048) were genotyped on the
Human660W-Quad v1 chip used in the Mayo eMERGE
study. The quality control procedures adopted in the
eMERGE network have been described elsewhere [25].
The following criteria were used: SNP call rate > 98%,
sample call rate > 98%, minor allele frequency > 0.05,
Hardy-Weinberg equilibrium P > 0.001, and 99.99%
concordance rate in duplicates. Of the remaining eight
SNPs, genotypes for seven were imputed; however the
genotypes for SNP rs3008621 could not be imputed.
Thus, 11 out of the 12 susceptibility SNPs were used in
the subsequent analyses. We used the program MACH
[26,27], and haplotypes derived from the HapMap II
CEU samples for imputation. The quality of imputation

Table 1 SNPs associated with CHD in genome-wide association studies

SNP Chr. Gene Risk allele ORs (95% CI) Risk allele frequency

Reported Observed

rs10757278 9 CDKN2A/2B G 1.28 (1.22, 1.35) 0.45 0.52

rs599839 1 SORT1 A 1.17 (1.11, 1.22) 0.78 0.78

rs3008621 1 MIA3 G 1.11 (1.04, 1.19) 0.26 NA

rs501120 10 Unknown T 1.30 (1.12, 1.51) 0.84 0.87

rs9818870 3 MRAS T 1.15 (1.11, 1.19) 0.15 0.15

rs3184504 12 SH2B3 T 1.13 (1.08, 1.18) 0.39 0.49

rs9982601 21 MRPS6 T 1.20 (1.14, 1.27) 0.13 0.14

rs12526453 6 PHACTR1 C 1.12 (1.08, 1.17) 0.65 0.67

rs6725887 2 WDR12 C 1.17 (1.11, 1.23) 0.14 0.13

rs1122608 19 LDLR G 1.15 (1.10, 1.21) 0.75 0.77

rs11206510 1 PCSK9 T 1.15 (1.10, 1.21) 0.81 0.82

rs1746048 10 CXCL12 C 1.16 (1.09, 1.24) 0.84 0.87
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was assessed by the average posterior probability for the
most likely genotype and the correlation coefficient R2.
The minimum average posterior probability for imputed
genotypes of seven SNPs was 0.92 and the R2 was 0.90.

Construction of the genetic risk score
To generate a genetic risk score for each individual, we
assumed an additive genetic model in which the geno-
types are coded ‘0’ for non-risk allele homozygotes, ‘1’
for heterozygotes, and ‘2’ for risk-allele homozygotes.
The genetic risk score based on the number of risk
alleles was calculated as:

GRS =
∑

ni, (1)

where ni is the number of risk alleles for SNP i. A
rescaled weighted genetic risk score (r_GRS_W) was cal-
culated by multiplying the logarithm of odds ratio (wi)
by 0, 1, or 2 according to the number of risk alleles car-
ried by each person and rescaled by the rescaling factor
k/

∑
i wi [28] as:

r GRS W =
k∑
i wi

∑
i

wi × ni, (2)

where k is the number of SNPs (k = 11).

Estimating the genotype effects of multiple SNPs
When combining multiple SNPs, we estimated the loga-
rithm of the combined odds ratios for each individual
relative to the average in the population, as follows:

γG =
∑
i

(ni − 2pi)wi. (3)

Intuitively, gG sums the difference between observed
(ni) and expected (2pi) risk allele counts across SNPs,
weighted by the logarithm of odds ratio.
We also estimated the combined risk from multiple

SNPs relative to the general population as follows [29].
Under the assumption of low probability of incident
events, the average population risk for SNP i (Ri) relative
to homozygosity for the non-risk allele, can be approxi-
mated in the multiplicative model as,

Ri = e2wip2i + 2ewipi(1 − pi) + (1 − pi)2. (4)

For each SNP, we expressed the population average
risk [pRR(ni)] relative to the risk for a person with zero
copies of the risk allele as:

pRR(ni) =

⎧⎪⎨
⎪⎩

e2wi/Ri, ni = 2;
ewi/Ri,

1/Ri,

ni = 1;

ni = 0.
(5)

where ni is the number of risk alleles for each geno-
type. Therefore, the combined relative risk from multi-
ple SNPs can be approximated assuming independent
effects between SNPs as,

pRR =
∏
i

pRR(ni). (6)

Incorporating the genetic risk score into the FRS
We used the method of Wilson et al. [14] to calculate
the FRS and the 10-y risk of CHD (base model). Con-
ventional risk factors for cardiovascular disease, includ-
ing age, sex, total, LDL, and HDL cholesterol, blood
pressure, diabetes, and smoking status (Table 2), were
extracted from the Mayo EMR as previously described
[22]. The electronic phenotyping algorithms had an
accuracy of > 90% [22], using manual medical record
review as the gold standard. The 10-y CHD risk was
defined as:

P = 1 − s(10)e
A
, (7)

where eA represents the Framingham-based hazard
ratio for CHD and s(t) is the survival function. The rela-
tive hazard for CHD (eA) was calculated from a Cox-
regression model for conventional risk factors (ie, age,
sex, total and HDL cholesterol, blood pressure, diabetes,
and smoking status) [14].
In order to incorporate genotypes at risk alleles into

the estimation of 10-y CHD risk (base model plus
genetic score), we added the combined effects from
multiple SNPs into the survival function as:

P′ = 1 − s(10)e
A+G

, (8)

where G is the combined effect from the multiple
SNPs: ie, gG from Eq. (3) or logepRR where pRR is from
Eq. (6). In this calculation, we considered gG &logepRR
each as approximations of the genetic hazard ratios.

Table 2 Sample characteristics

Characteristics Mean/
Count

SD/Proportion
(%)

Sex (female) 503 39.9

Age (y) 60.2 7.1

Total cholesterol (mg/dL) 205.6 36.8

High-density lipoprotein cholesterol
(mg/dL)

57.0 17.5

Low-density lipoprotein cholesterol
(mg/dL)

121.0 32.4

Systolic blood pressure (mmHg) 128.1 17.5

Diastolic blood pressure (mmHg) 77.7 15.2

Diabetes 144 12.9

Smoker 468 37.1
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Reclassification using genetic risk scores
Reclassification refers to the proportion of persons who
change risk categories when prediction models are
updated to incorporate new biomarkers [13]. We mea-
sured how often individuals were estimated to be in dif-
ferent risk categories when the genetic risk score was
incorporated into Framingham risk score. The risk cate-
gories were defined as less than 5% risk (low), 5% to less
than 10% risk (intermediate), 10% to less than 20% risk
(intermediate high), and 20% or higher risk (high). This
was done for both versions of the genetic risk score (gG
and logepRR). In addition, we repeated these calculations
substituting lower and upper confidence limits for all of
the genetic effects. All analyses were performed using R
(http://www.r-project.org).

Results
Genetic risk scores
We included 11 replicated SNPs associated with CHD at
a genome-wide significance level of 5 × 10-8 [24]. The
reported effect sizes (ie, odds ratios), and RAFs are
shown in Table 1. The RAFs in the published reports
were similar to the RAFs in our sample. The mean (SD)
number of risk alleles was similar: 12.31 (1.95) with a
range of 6 to 18. The mean (SD) of the rescaled
weighted genetic risk score was 12.64 (2.05) with a
range from 5.75 to 18.20. The number of risk alleles
and the weighted genetic risk scores were normally dis-
tributed (Figure 1a &1b) and there was a direct correla-
tion (r = 0.96) between the two (Figure 1c). However,
variability was noted in the weighted genetic risk score
for each category of cumulative risk alleles, reflecting
different odds ratios associated with the susceptibility
SNPs. We tested the association of three SNPs known
to be related to lipid traits - rs11206510 in PCSK9,
rs599839 in SORT1, and rs1122608 in LDLR - with total
cholesterol, LDL cholesterol, and HDL cholesterol;

rs11206510 was associated with total cholesterol (P =
0.026) and LDL cholesterol (P = 0.027), and rs599839
was marginally associated with HDL cholesterol (P =
0.050) and LDL cholesterol (P = 0.078). The genetic risk
scores were not correlated with other conventional risk
factors - systolic and diastolic blood pressure, diabetes,
as well as the FRS (P > 0.05 for each).

Effects of combining risk SNPs
The odds ratios and risk relative to the general popula-
tion increased with the number of risk alleles (Figure 2).
As shown in Figure 2, the 25th and 75th percentile of
the combined odds ratio (0.77 and 1.26), corresponded
to the presence of 11 and 14 risk alleles, respectively. If
the number of risk alleles was ≤ 11, the combined odds
ratio or risk relative to the general population was < 1,
indicating that individuals with ≤ 11 risk alleles had les-
ser risk relative to the average risk in the population.
Conversely, if the number of risk alleles was ≥ 14, the
combined odds ratio or risk relative to the general
population was > 1. The risk relative to the general
population (pRR) estimated from the 11 SNPs (Eq. 6)
was highly correlated (r = 0.99) with the combined odds
ratio (egG) obtained from Eq. (3).

Estimation of 10-y risk of CHD
The 10-y CHD risk was estimated based on the FRS and
then revised after inclusion of genotype effects from sus-
ceptibility SNPs. The two genetic risk scores were not
correlated with FRS (P = 0.824 and P = 0.779, respec-
tively). A positive correlation (r = 0.36) was noted
between the weighted genetic risk scores and the 10-y
CHD risk after the inclusion of genotypes.

Reclassification using gG
We next examined reclassification of 10-y CHD risk
after incorporating gG from Eq. 3 (Table 3). Nearly all of
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Figure 1 Distribution of the number of risk alleles (a), the weighted genetic risk score (b), and the correlation between the two (c).
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the individuals reclassified were placed into adjacent risk
categories. Only one patient in the intermediate-high
group was reclassified into the low-risk group. In all, 188
and 192 individuals were reclassified into higher-and
lower-risk groups, respectively, a reclassification rate of
30.6%. The reclassification rate was higher in those
whose FRS placed them in the intermediate category:
41.3% (162 out of 392) were reclassified. The reclassifica-
tion rate in the intermediate-high category was 30.8%
(130 out of 422), similar to the overall reclassification
rate. The reclassification rate in the low- (25.5%; 50 out
of 196) and high- (16.3%; 38 out of 233) categories was
lower than the overall reclassification rate. We also esti-
mated the uncertainty of reclassification by repeating the

above calculations using the lower and upper 95% confi-
dence levels of odds ratio for each genetic variant (Table
3). The reclassification rate was 22.2% (130 and 146 were
reclassified into high- and low-risk groups) and 38.6%
(239 and 241 were reclassified into high- and low-risk
groups) for the lower and upper limits of the odds ratios,
respectively.

Reclassification using logepRR
The reclassification rate of 10-y CHD risk after incor-
porating the multiplex genetic risk score logepRR (where
pRR is from Eq. 6) is shown in Table 4. For each risk
category, the pattern of the reclassification rate was
similar to that using gG. All of the individuals reclassi-
fied were placed into adjacent risk categories except two
patients in the intermediate-high group who were
reclassified into the low-risk group. In all, 154 and 228
individuals were reclassified into higher- and lower- risk
groups (reclassification rate 30.7%), indicating fewer
individuals were reclassified into higher-risk category.
Using the lower and upper 95% confidence levels of
odds ratios in the calculation of pRR, the reclassification
rate was 22.1% (113 and 162 were reclassified into high-
and low-risk groups) and 38.7% (184 and 297 were
reclassified into high- and low-risk groups), respectively.

Discussion
Genome-wide association studies (GWAS) have identi-
fied multiple susceptibility variants for common ‘com-
plex’ diseases. However, the clinical utility of these
variants and whether GWAS results should be commu-
nicated to study participants is not clear [30]. The

Table 3 Reclassification of 10-y CHD risk after the addition of genotype information (gG)
10-y CHD risk FRS Risk FRS+gG

Low INT INT-high High

Low (≤5%) 196 (15.8%) ORs 146 50 0 0

Lower 156 40 0 0

Upper 138 58 0 0

INT (>5%,≤10%) 392 (31.5%) ORs 76 230 86 0

Lower 55 285 52 0

Upper 91 200 98 3

INT-high (>10%,≤20%) 422 (34.0%) ORs 1 77 292 52

Lower 0 62 322 38

Upper 5 98 239 80

High (>20%) 233 (18.7%) ORs 0 0 38 195

Lower 0 0 29 204

Upper 0 2 45 186

Total 1243 ORs 223 (17.9%) 357 (28.7%) 416 (33.5%) 247 (19.9%)

Lower 211 (17.0%) 387 (31.3%) 403 (32.4%) 242 (19.5%)

Upper 234 (18.8%) 358 (28.8%) 382 (30.7%) 269 (21.6%)

INT: Intermediate; gG: combined odds ratio from Eq. (3)

Lower and Upper: the lower and upper 95% confidence level for odds ratios used to calculate gG
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presence of multiple genetic susceptibility variants in an
individual may lead to additive, clinically relevant
increases in risk of disease and such knowledge may
refine risk stratification. In the present study of 1243
individuals without known CHD who had undergone
high-density genome-wide genotyping, we found that
incorporating genotypes at 11 susceptibility SNPs into
the FRS led to significant reclassification of the esti-
mated 10-y CHD risk. Our study demonstrates that
GWAS genotypes linked to an EMR can be used to cre-
ate a multiplex genetic risk score - based on both mea-
sured/imputed genotypes - that in-turn can be used to
revise the risk estimated based on conventional risk fac-
tors. Most of the selected SNPs were associated with
CHD but not with related risk factors, and therefore the
CHD genetic risk score was not correlated with FRS.
It should be noted that individualized risk estimates

are based on statistical modeling of population level
data, and have a level of uncertainty due to variation
in risk allele frequency, effect sizes, and modeling of
combined effects [31]. Physicians and patients should
be aware of this and avoid attributing an unreasonable
degree of certainty to such estimates, which are often
presented as a single number, ie, ‘the probability of
occurrence of a negative genetic outcome’ [32]. Addi-
tionally, probabilities and risks may be difficult to
interpret, and patients often have poor understanding
and recall of objective risk estimates regardless of the
format in which they were presented and conveyed.
This highlights a need for developing tools to better
communicate genomic components of disease risk to
patients.

Direct-to-consumer (DTC) companies, such as
23andMe [33], deCODEme [34], and Navigenics [35],
disclose risk estimates to ‘customers’ as soon as initial
GWAS are published; instantaneous translation of mul-
tiple risk markers is of unclear clinical benefit and may
be harmful. The three companies use different
approaches to generate a genetic risk score although all
three assume a multiplicative model. 23andMe takes the
product of relative risks of all SNPs and multiplies this
value by the average population risk to generate an esti-
mate of the individual’s lifetime risk [33]. Similar to
what is shown in Eqs. 4-6, deCODEme applies risk of
each SNP to the population and then takes the product.
Navigenics generates an interim ‘genetic composite
index’ number, which incorporates known risk factors,
as well as other information and assumptions such as
the allele frequencies and the prevalence of the disease
[36].
We noted significant reclassification (30.6%) using

combined odds ratios of the susceptibility SNPs. If risk
categories are used to define thresholds for type or
intensity of interventions (eg, cholesterol-lowering
drugs), reclassification can impact clinical management.
In the context of the present study, treatment considera-
tion may change in patients reclassified as high-risk for
CHD [18]. Additional studies are needed to demonstrate
whether the results of genetic testing (eg, a genetic risk
score) motivate patients to make lifestyle changes,
whether physicians understand genetic risk and make
decisions based on the risk, and whether genetic testing
improves outcomes in selected patient populations. The
calibration and discriminative accuracy of genetic risk

Table 4 Reclassification of 10-y CHD risk after the addition of genotype information (logepRR)

10-y CHD risk FRS Risk FRS+logepRR

Low INT INT-high High

Low (≤5%) 196 (15.8%) pRR 151 45 0 0

Lower 161 35 0 0

Upper 148 48 0 0

INT (>5%,≤10%) 392 (31.5%) pRR 88 240 64 0

Lower 59 288 45 0

Upper 112 199 81 0

INT-high (>10%,≤20%) 422 (34.0%) pRR 1 90 286 45

Lower 0 67 322 33

Upper 11 115 241 55

High (>20%) 233 (18.7%) pRR 0 0 49 184

Lower 0 0 36 197

Upper 0 6 53 174

Total 1243 pRR 240 (19.3%) 375 (30.2%) 399 (32.1%) 229 (18.4%)

Lower 220 (17.7%) 390 (31.4%) 403 (32.4%) 230 (18.5%)

Upper 271 (21.8%) 368 (29.6%) 375 (30.2%) 229 (18.4%)

INT: Intermediate; pRR, risk relative to the general population from Eq. (6)

Lower and Upper: the lower and upper 95% confidence level for odds ratios used to calculate pRR
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scores needs to be assessed in prospective studies. So far
such studies have revealed poor discriminative capacity
of genetic risk scores, but potentially useful reclassifica-
tion [18,20,21,37].
The common variants identified in GWAS have mod-

est effect sizes and explain only a small proportion of
heritable risk. However, since the risk alleles are com-
mon, the population attributable risk is significant. It
has been suggested that rare variants make a substantial
contribution to the overall multifactorial inheritance of
a disease [38]. Sequencing of exomes and whole gen-
omes is being used to detect rare variants that mediate
susceptibility to common ‘complex’ diseases, and we
anticipate incorporation of such variants in disease risk
scores in the near future.

Limitations
Several challenges arise in the use of GWAS genotypes
for clinical application. First, different genotyping plat-
forms are employed in GWAS and not all susceptibility
SNPs may have been genotyped on a single platform.
Genotypes for SNPs that were not genotyped directly
have to be imputed. This is typically done using the
HapMap database and several algorithms [26], which
although not perfect, are highly accurate (R2 = 0.90 for
MACH). Second, an issue relevant to the potential clini-
cal use of the genotypes from a GWAS is that genotyp-
ing is typically not performed in a Clinical Laboratory
Improvement Amendments (CLIA) certified laboratory.
Third, we used odds ratios since hazard ratios were not
available from the case-control GWAS. Odds ratios
over-estimate the relative risk in common ‘complex’ dis-
eases. Fourth, we assumed an additive model when
incorporating genotype effects into the risk prediction.
However, other models (eg, multiplicative, recessive, or
dominant) may be operative in common ‘complex’ dis-
eases. Fifth, genetic risk scores will need to be periodi-
cally updated as new susceptibility variants are
identified. Sixth, because the susceptibility SNPs were
identified in adults of European ancestry, use of these
SNPs in other populations would be problematic
because the associations with CHD may not be present
in other ethnic groups. The approach described here is
applicable to patients of diverse ethnicities once suscept-
ibility SNPs for these ethnic groups are identified.
Seventh, incorporating family history in the EMR and
integrating it with multiplex genetic risk scores needs
additional work. The Center for Disease Control and
Prevention has created a ‘Family Healthware’ software,
which is a family history-screening tool for common
chronic diseases and that can be incorporated into the
EMR [39]. Finally, additional prospective studies are
needed to confirm whether susceptibility SNPs identified
in GWAS improve the accuracy of CHD risk

stratification and whether multiplex genetic testing has
clinical utility.

Conclusions
This study demonstrates the use of genotypes from an
EMR-based GWAS to construct a multiplex genetic risk
score and revise the estimated risk of a common disease
- CHD. A genetic risk score based on genotypes at 11
susceptibility SNPs led to significant reclassification in
the 10-y CHD risk. However, the cross sectional nature
of the present study does not allow us to quantify the
accuracy of risk reclassification. Additional prospective
studies are needed to confirm whether susceptibility
SNPs identified in GWAS improve the accuracy of CHD
risk stratification and whether multiplex genetic risk
scores for common diseases have clinical utility.

Acknowledgements
This study was funded by NHGRI-supported eMERGE (electronic MEdical
Records and GEnomics) Network grants to the Mayo Clinic (HG05499 and
HG06379). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Author details
1Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
2Division of Biomedical Informatics and Statistics, Mayo Clinic, Rochester, MN
55905, USA.

Authors’ contributions
Conception and design: IJK. Data analyses: KD and KRB. Manuscript
preparation: KD, KRB and IJK. All authors have given final approval of the
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 5 January 2011 Accepted: 3 November 2011
Published: 3 November 2011

References
1. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T,

Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, Masson G,
Gudbjartsson D, Magnusson K, Andersen K, Levey A, Backman V,
Matthiasdottir S, Jonsdottir T, Palsson S, Einarsdottir H, Gunnarsdottir S,
Gylfason A, Vaccarino V, Hooper W, Reilly M, Granger C, Austin H, Rader D,
Shah S, Quyyumi A, Gulcher J, Thorgeirsson G, Thorsteinsdottir U, Kong A,
Stefansson K: A common variant on chromosome 9p21 affects the risk of
myocardial infarction. Science 2007, 316(5830):1491-1493.

2. The Wellcome Trust Case Control Consortium: Genome-wide association
study of 14,000 cases of seven common diseases and 3,000 shared
controls. Nature 2007, 447(7145):661-678.

3. Samani N, Erdmann J, Hall A, Hengstenberg C, Mangino M, Mayer B,
Dixon R, Meitinger T, Braund P, Wichmann H, Barrett J, Konig I, Stevens S,
Szymczak S, Tregouet D, Iles M, Pahlke F, Pollard H, Lieb W, Cambien F,
Fischer M, Ouwehand W, Blankenberg S, Balmforth A, Baessler A, Ball S,
Strom T, Braenne I, Gieger C, Deloukas P, Tobin M, Ziegler A, Thompson J,
Schunkert H: Genomewide association analysis of coronary artery
disease. N Engl J Med 2007, 357(5):443-453.

4. Coronary Artery Disease Consortium, Samani NJ, Deloukas P, Erdmann J,
Hengstenberg C, Kuulasmaa K, McGinnis R, Schunkert H, Soranzo N,
Thompson J, Tiret L, Ziegler A: Large scale association analysis of novel
genetic loci for coronary artery disease. Arterioscler Thromb Vasc Biol 2009,
29(5):774-780.

5. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE,
Kaplan L, Bennett D, Li Y, Tanaka T, Voight BF, Bonnycastle LL, Jackson AU,

Ding et al. BMC Cardiovascular Disorders 2011, 11:66
http://www.biomedcentral.com/1471-2261/11/66

Page 7 of 9

http://www.ncbi.nlm.nih.gov/pubmed/17478679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17478679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17554300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17554300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17554300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17634449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17634449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19164808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19164808?dopt=Abstract


Crawford G, Surti A, Guiducci C, Burtt NP, Parish S, Clarke R, Zelenika D,
Kubalanza KA, Morken MA, Scott LJ, Stringham HM, Galan P, Swift AJ,
Kuusisto J, Bergman RN, Sundvall J, Laakso M, Ferrucci L, Scheet P, Sanna S,
Uda M, Yang Q, Lunetta KL, Dupuis J, de Bakker PIW, O’Donnell CJ,
Chambers JC, Kooner JS, Hercberg S, Meneton P, Lakatta EG, Scuteri A,
Schlessinger D, Tuomilehto J, Collins FS, Groop L, Altshuler D, Collins R,
Lathrop GM, Melander O, Salomaa V, Peltonen L, Orho-Melander M,
Ordovas JM, Boehnke M, Abecasis GR, Mohlke KL, Cupples LA: Common
variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009,
41:56-65.

6. Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir A, Sulem P,
Jonsdottir GM, Thorleifsson G, Helgadottir H, Steinthorsdottir V,
Stefansson H, Williams C, Hui J, Beilby J, Warrington NM, James A,
Palmer LJ, Koppelman GH, Heinzmann A, Krueger M, Boezen HM,
Wheatley A, Altmuller J, Shin HD, Uh ST, Cheong HS, Jonsdottir B,
Gislason D, Park CS, Rasmussen LM, Porsbjerg C, Hansen JW, Backer V,
Werge T, Janson C, Jönsson UB, Ng MCY, Chan J, So WY, Ma R, Shah SH,
Granger CB, Quyyumi AA, Levey AI, Vaccarino V, Reilly MP, Rader DJ,
Williams MJA, van Rij AM, Jones GT, Trabetti E, Malerba G, Pignatti PF,
Boner A, Pescollderungg L, Girelli D, Olivieri O, Martinelli N, Ludviksson BR,
Ludviksdottir D, Eyjolfsson GI, Arnar D, Thorgeirsson G, Deichmann K,
Thompson PJ, Wjst M, Hall IP, Postma DS, Gislason T, Gulcher J, Kong A,
Jonsdottir I, Thorsteinsdottir U, Stefansson K: Sequence variants affecting
eosinophil numbers associate with asthma and myocardial infarction.
Nat Genet 2009, 41(3):342-347.

7. Willer C, Sanna S, Jackson A, Scuteri A, Bonnycastle L, Clarke R, Heath S,
Timpson N, Najjar S, Stringham H, Strait J, Duren W, Maschio A, Busonero F,
Mulas A, Albai G, Swift A, Morken M, Narisu N, Bennett D, Parish S, Shen H,
Galan P, Meneton P, Hercberg S, Zelenika D, Chen W, Li Y, Scott L,
Scheet P, Sundvall J, Watanabe R, Nagaraja R, Ebrahim S, Lawlor D, Ben-
Shlomo Y, Davey-Smith G, Shuldiner A, Collins R, Bergman R, Uda M,
Tuomilehto J, Cao A, Collins F, Lakatta E, Lathrop G, Boehnke M,
Schlessinger D, Mohlke K, Abecasis G: Newly identified loci that influence
lipid concentrations and risk of coronary artery disease. Nat Genet 2008,
40(2):161-169.

8. Erdmann J, Grosshennig A, Braund PS, König IR, Hengstenberg C, Hall AS,
Linsel-Nitschke P, Kathiresan S, Wright B, Trégouët DA, Cambien F, Bruse P,
Aherrahrou Z, Wagner AK, Stark K, Schwartz SM, Salomaa V, Elosua R,
Melander O, Voight BF, O’Donnell CJ, Peltonen L, Siscovick DS, Altshuler D,
Merlini PA, Peyvandi F, Bernardinelli L, Ardissino D, Schillert A,
Blankenberg S, Zeller T, Wild P, Schwarz DF, Tiret L, Perret C, Schreiber S,
Mokhtari NEE, Schäfer A, März W, Renner W, Bugert P, Klüter H,
Schrezenmeir J, Rubin D, Ball SG, Balmforth AJ, Wichmann HE, Meitinger T,
Fischer M, Meisinger C, Baumert J, Peters A, Ouwehand WH, Italian
Atherosclerosis, Thrombosis, and Vascular Biology Working Group,
Myocardial Infarction Genetics Consortium and Wellcome Trust Case
Control Consortium, Consortium Cardiogenics, Deloukas P, Thompson JR,
Ziegler A, Samani NJ, Schunkert H: New susceptibility locus for coronary
artery disease on chromosome 3q22.3. Nat Genet 2009, 41(3):280-282.

9. Ding K, Kullo IJ: Genome-wide association studies for atherosclerotic
vascular disease and its risk factors. Circ Cardiovasc Genet 2009, 2:63-72.

10. Jakobsdottir J, Gorin MB, Conley YP, Ferrell RE, Weeks DE: Interpretation of
genetic association studies: markers with replicated highly significant
odds ratios may be poor classifiers. PLoS Genet 2009, 5(2):e1000337.

11. Damani SB, Topol EJ: Future use of genomics in coronary artery disease. J
Am Coll Cardiol 2007, 50(20):1933-1940.

12. Wray N, Goddard M, Visscher P: Prediction of individual genetic risk of
complex disease. Curr Opin Genet Dev 2008, 18(3):257-263.

13. Khoury MJ, McBride CM, Schully SD, Ioannidis JPA, Feero WG,
Janssens ACJW, Gwinn M, Simons-Morton DG, Bernhardt JM, Cargill M,
Chanock SJ, Church GM, Coates RJ, Collins FS, Croyle RT, Davis BR,
Downing GJ, Duross A, Friedman S, Gail MH, Ginsburg GS, Green RC,
Greene MH, Greenland P, Gulcher JR, Hsu A, Hudson KL, Kardia SLR,
Kimmel PL, Lauer MS, Miller AM, Offit K, Ransohoff DF, Roberts JS,
Rasooly RS, Stefansson K, Terry SF, Teutsch SM, Trepanier A, Wanke KL,
Witte JS, Xu J: The Scientific Foundation for personal genomics:
recommendations from a National Institutes of Health-Centers for
Disease Control and Prevention multidisciplinary workshop. Genet Med
2009, 11(8):559-567.

14. Wilson P, D’Agostino R, Levy D, Belanger A, Silbershatz H, Kannel W:
Prediction of coronary heart disease using risk factor categories.
Circulation 1998, 97(18):1837-47.

15. Evaluation Expert Panel on Detection and Treatment of High Blood
Cholesterol in Adults: Executive Summary of The Third Report of The
National Cholesterol Education Program (NCEP) Expert Panel on
Detection, Evaluation, And Treatment of High Blood Cholesterol In
Adults (Adult Treatment Panel III). JAMA 2001, 285(19):2486-2497.

16. Talmud P, Cooper J, Palmen J, Lovering R, Drenos F, Hingorani A,
Humphries S: Chromosome 9p21.3 coronary heart disease locus
genotype and prospective risk of CHD in healthy middle-aged men. Clin
Chem 2008, 54(3):467-474.

17. Paynter NP, Chasman DI, Buring JE, Shiffman D, Cook NR, Ridker PM:
Cardiovascular disease risk prediction with and without knowledge of
genetic variation at chromosome 9p21.3. Ann Intern Med 2009,
150(2):65-72.

18. Brautbar A, Ballantyne CM, Lawson K, Nambi V, Chambless L, Folsom AR,
Willerson JT, Boerwinkle E: Impact of adding a single allele in the 9p21
locus to traditional risk factors on reclassification of coronary heart
disease risk and implications for lipid-modifying therapy in the
Atherosclerosis Risk in Communities study. Circ Cardiovasc Genet 2009,
2(3):279-285.

19. Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt N, Roos C,
Hirschhorn J, Berglund G, Hedblad B, Groop L, Altshuler D, Newton-Cheh C,
Orho-Melander M: Polymorphisms associated with cholesterol and risk of
cardiovascular events. N Engl J Med 2008, 358(12):1240-1249.

20. Paynter NP, Chasman DI, Paré G, Buring JE, Cook NR, Miletich JP, Ridker PM:
Association between a literature-based genetic risk score and
cardiovascular events in women. JAMA 2010, 303(7):631-637.

21. Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A,
Guiducci C, Perola M, Jula A, Sinisalo J, Lokki ML, Nieminen MS, Melander O,
Salomaa V, Peltonen L, Kathiresan S: A multilocus genetic risk score for
coronary heart disease: case-control and prospective cohort analyses.
Lancet 2010, 376(9750):1393-1400.

22. Kullo IJ, Fan J, Pathak J, Savova GK, Ali Z, Chute CG: Leveraging informatics
for genetic studies: use of the electronic medical record to enable a
genome-wide association study of peripheral arterial disease. J Am Med
Inform Assoc 2010, 17(5):568-574.

23. Kullo IJ, Ding K, Jouni H, Smith CY, Chute CG: A genome-wide association
study of red blood cell traits using the electronic medical record. PLoS
ONE 2010, 5(9):e13011.

24. Kullo IJ, Cooper LT: Early identification of cardiovascular risk using
genomics and proteomics. Nat Rev Cardiol 2010, 7(6):309-317.

25. Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT,
Andrade MD, Doheny KF, nathan L, Haines J, Hayes G, Jarvik G, Jiang L,
Kullo IJ, Li R, Ling H, Manolio TA, Matsumoto M, McCarty CA, McDavid AN,
Mirel DB, Paschall JE, Pugh EW, Rasmussen LV, Wilke RA, Zuvich RL,
Ritchie MD: Quality control procedures for genome-wide association
studies. Curr Protoc Hum Genet 2011, , 68: 1.19-19.18, Chapter 1:Unit1.19.

26. Li Y, Willer C, Sanna S, Abecasis G: Genotype imputation. Annual review of
genomics and human genetics 2009, 10:387-406.

27. MACH program. [http://www.sph.umich.edu/csg/abecasis/mach/index.
html].

28. Lin X, Song K, Lim N, Yuan X, Johnson T, Abderrahmani A, Vollenweider P,
Stirnadel H, Sundseth SS, Lai E, Burns DK, Middleton LT, Roses AD,
Matthews PM, Waeber G, Cardon L, Waterworth DM, Mooser V: Risk
prediction of prevalent diabetes in a Swiss population using a weighted
genetic score-the CoLaus Study. Diabetologia 2009, 52(4):600-608.

29. Risk Calculation in deCODEme. [http://www.decodeme.com/health-watch-
information/risk-calculation].

30. Thanassoulis G, Vasan RS: Genetic cardiovascular risk prediction: will we
get there? Circulation 2010, 122(22):2323-2334.

31. Yang Q, Flanders WD, Moonesinghe R, Ioannidis JPA, Guessous I,
Khoury MJ: Using lifetime risk estimates in personal genomic profiles:
estimation of uncertainty. Am J Hum Genet 2009, 85(6):786-800.

32. Shiloh S: Decision-making in the context of genetic risk. In The troubled
helix: Social and psychological implications of the new human genetics.. xvii
edition. Edited by: Marteau T, Martin R. New York, NY: Cambridge:
Cambridge University; 1996:82-103.

33. The 23andMe website. [http://www.23andme.com].
34. The deCODEme website. [http://www.decodeme.com].

Ding et al. BMC Cardiovascular Disorders 2011, 11:66
http://www.biomedcentral.com/1471-2261/11/66

Page 8 of 9

http://www.ncbi.nlm.nih.gov/pubmed/19060906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19060906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19198610?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19198610?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19198612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19198612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19750184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19750184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19197355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19197355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19197355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17996556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18682292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18682292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19617843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19617843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19617843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9603539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11368702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11368702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11368702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11368702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18250146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18250146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19153409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19153409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20031596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20031596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20031596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20031596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18354102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18354102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20159871?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20159871?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20971364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20971364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20819866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20819866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20819866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20440292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20440292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19715440?dopt=Abstract
http://www.sph.umich.edu/csg/abecasis/mach/index.html
http://www.sph.umich.edu/csg/abecasis/mach/index.html
http://www.ncbi.nlm.nih.gov/pubmed/19139842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19139842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19139842?dopt=Abstract
http://www.decodeme.com/health-watch-information/risk-calculation
http://www.decodeme.com/health-watch-information/risk-calculation
http://www.ncbi.nlm.nih.gov/pubmed/21147729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21147729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19931039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19931039?dopt=Abstract
http://www.23andme.com
http://www.decodeme.com


35. The Navigenics website. [http://www.navigenics.com].
36. Genetic composite index in Navigenics. [http://www.navigenics.com/

static/pdf/Navigenics-TheScience.pdf].
37. Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver WR,

Thun MJ, Cox DG, Hankinson SE, Kraft P, Rosner B, Berg CD, Brinton LA,
Lissowska J, Sherman ME, Chlebowski R, Kooperberg C, Jackson RD,
Buckman DW, Hui P, Pfeiffer R, Jacobs KB, Thomas GD, Hoover RN, Gail MH,
Chanock SJ, Hunter DJ: Performance of common genetic variants in
breast-cancer risk models. N Engl J Med 2010, 362(11):986-993.

38. Bodmer W, Bonilla C: Common and rare variants in multifactorial
susceptibility to common diseases. Nat Genet 2008, 40(6):695-701.

39. Family Healthware. [http://www.cdc.gov/genomics/famhistory/famhx.htm].

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2261/11/66/prepub

doi:10.1186/1471-2261-11-66
Cite this article as: Ding et al.: Genotype-informed estimation of risk of
coronary heart disease based on genome-wide association data linked
to the electronic medical record. BMC Cardiovascular Disorders 2011 11:66.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ding et al. BMC Cardiovascular Disorders 2011, 11:66
http://www.biomedcentral.com/1471-2261/11/66

Page 9 of 9

http://www.navigenics.com
http://www.navigenics.com/static/pdf/Navigenics-TheScience.pdf
http://www.navigenics.com/static/pdf/Navigenics-TheScience.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20237344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20237344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18509313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18509313?dopt=Abstract
http://www.cdc.gov/genomics/famhistory/famhx.htm
http://www.biomedcentral.com/1471-2261/11/66/prepub

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Study participants
	Genetic marker selection and imputation
	Construction of the genetic risk score
	Estimating the genotype effects of multiple SNPs
	Incorporating the genetic risk score into the FRS
	Reclassification using genetic risk scores

	Results
	Genetic risk scores
	Effects of combining risk SNPs
	Estimation of 10-y risk of CHD
	Reclassification using γG
	Reclassification using logepRR

	Discussion
	Limitations

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history

