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Abstract

Background: Extracorporeal membrane oxygenation (ECMO) is a supportive therapy and its success depends on
optimal drug therapy along with other supportive care. Emerging evidence suggests significant interactions
between the drug and the device resulting in altered pharmacokinetics (PK) of vital drugs which may be further
complicated by the PK changes that occur in the context of critical illness. Such PK alterations are complex and
challenging to investigate in critically ill patients on ECMO and necessitate mechanistic research. The aim of this
project is to investigate each of circuit, drug and critical illness factors that affect drug PK during ECMO.

Methods/design: An incremental research plan that encompasses ex vivo experiments for drug stability testing in
fresh human and ovine whole blood, ex vivo drug disposition studies in standard and modified adult ECMO circuits
primed with fresh human or ovine whole blood, PK studies in healthy and critically ill ovine models of ECMO with
appropriate non ECMO controls and an international mutli-centre clinical population PK study will be utilised to
comprehensively define the PK alterations that occur in the presence of ECMO. Novel drug assays that will allow
quantification of multiple drugs in small volumes of plasma will also be developed. Mixed-effects regression models
will be used to estimate the drug loss over time in ex vivo studies. Data from animal and clinical studies will be
analysed using non-linear mixed-effects models. This will lead to generation of PK data that enables the
development evidence based guidelines for antibiotic, sedative and analgesic drug therapy during ECMO.

Discussion: Systematic research that integrates both mechanistic and clinical research is desirable when
investigating the complex area of pharmacokinetic alterations during ECMO. The above research approach will
provide an advanced mechanistic understanding of PK during ECMO. The clinical study when complete will result
in development robust guidelines for prescription of 18 commonly used antibiotic, sedative and analgesic drugs
used in ECMO patients. This research may also pave the way for further refinements in circuitry, drug chemistry and
drug prescriptions during ECMO.
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Background
Extracorporeal membrane oxygenation (ECMO) tem-
porarily supports patients with severe cardio-respiratory
failure that is not responsive to maximal conventional
treatment [1-4]. Following the 2009 H1N1 pandemic,
ECMO has re-emerged as a versatile device that not
only provides cardio-respiratory support when medical
therapy fails but also compliments existing mechanical
cardiopulmonary assist devices, heart /lung transplant-
ation, cardiology and hospital based cardiopulmonary
resuscitation services effectively. As ECMO is a sup-
portive therapy, effective drug therapy directed at re-
versing the underlying disease is critical to ensure
successful liberation from ECMO. Indeed, the clinicians
applying ECMO recognise that contemporary use of
this therapy is far from perfect with patients suffering
ongoing morbidity because the clinicians are no longer
able to confidently achieve the desired effects from
pharmacotherapies. Published data demonstrates that
ECMO dramatically affects pharmacokinetics (PK) in
the most severely ill patients who already have signifi-
cant PK changes [5-8].
It is essential that each of the drug, device and dis-

ease factors affecting PK during ECMO (Figure 1) is
studied to improve treatment and outcomes of pa-
tients. We hypothesise that ECMO negatively alters
the PK of sedative, analgesic and antibiotic drugs and
their metabolites independent of patient and patho-
logical factors, thereby contributing to elevated risk
of therapeutic failure, drug toxicity and/or an emer-
gence of microbial resistance in critically ill patients
receiving ECMO. Our aim is to use an incremental
research approach that include studies investigating
drug, circuit and critical illness factors in isolation
and combined to arrive at meaningful conclusions.
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Figure 1 Three D’s affecting pharmacokinetics during ECMO.
ECMO circuits are not passive conduits for blood
In critically ill patients not receiving ECMO, it has been
shown PK changes can result in highly significant
changes to drug exposure through interactions between
the patient, pathology and the drug [9-12]. The ECMO
system introduces additional variables, which are the cir-
cuit itself, and the effects of systemic inflammation due
to the prolonged use of an extracorporeal circuit. Seques-
tration of drugs in the circuit, increased volume of distri-
bution (Vd) and decreased clearance (CL) are the major
PK changes associated with ECMO [8], although the ex-
tent of change remains poorly characterised. Published
data from neonatal circuit studies highlight the influence
that drug properties such as molecular size, degree of
ionization at physiological pH, lipophilicity and plasma
protein binding have on drug disposition during ECMO
[13,14]. In a manner analogous to the lung it mimics,
ECMO is critically dependent upon the large surface area
of the oxygenator and associated tubing to ensure ad-
equate blood flows through the circuit and facilitate gas
transfer. This bio-synthetic interface results in significant
sequestration of the administered drugs resulting in a
compartmental effect on PK (Figure 2). The type and age
of circuit components including type of the pump, oxy-
genator and tubing as well as circuit priming may influ-
ence the level of drug sequestration [15-18]. Patient
factors such as systemic inflammation, haemodilution,
bleeding and transfusion, organ dysfunction and renal re-
placement therapy all add to the clinical challenges of
drug dosing during ECMO [8].

The burden of altered pharmacokinetics during ECMO
There is increasing awareness of the implications of altered
PK during critical illness in adult patients [19-21]. The PK
changes during critical illness appear to be magnified dur-
ing ECMO. This can affect any drug, however given the
scientific and clinical PK gap, robust PK data for sedative,
analgesic and antibiotic drugs are urgently required.

Excessive sedation use and related morbidity
Sedation practices in the ICU are changing and emerging
data supports its judicious use [22,23]. Neonatal studies
consistently demonstrate a need to escalate sedative doses
during ECMO [13,24-26]. In a retrospective review of 30
patients [7], the average 24-hourly dose increased by
18 mg per day for midazolam (95% CI: 8, 29 mg, p=0.001)
and 29 mg per day for morphine (95% CI: 4, 53 mg,
p=0.021) from the first day of ECMO. The VV group re-
quired a daily midazolam dose that was 157 mg higher on
average than the VA group (95% CI: 53, 261 mg, p=0.005).
Patients often received up to 1500 mg of morphine and
midazolam per day despite supplemental sedation with
propofol, dexmedetomidine and thiopentone. By acting as
a reservoir, ECMO may also prolong the pharmacological
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Figure 2 Significant sequestration of drugs in the ECMO circuit increases their volumes of distribution leading to suboptimal drug
concentrations in the body. A mere increase in administered dose for all drugs during ECMO may not suffice, as the less sequestered drugs
may reach toxic levels. A - PVC tubing, B- pump, C- oxygenator (Reproduced with Permission, Shekar et al Journal of Crit Care 2012).
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effect of sedatives even after drugs have been ceased. This
is concerning as it is now well established that excessive
sedation in critically ill patients is associated with increased
mortality and morbidity [27].

Infection, antibiotic failure, drug toxicities and emergence
of microbial resistance
ECMO is a supportive therapy and not a disease modifying
treatment in itself. The success of ECMO, especially in pa-
tients with severe pneumonia or a pandemic viral respira-
tory illness relies heavily on the success of antiviral/
antibiotic therapy. Optimal antibiotic therapy in these pa-
tients is a balance between potency and exposure
[12,28-31]. A recent review of Extracorporeal Life Support
Organization (ELSO) data [32] revealed a total of 2,418 in-
fections during 20,741 (12%) ECMO cases. Infections in-
creased the duration of ECMO, post-ECMO ventilator
support and were associated with an increased risk of
death. Neonatal studies have reported severe PK variations,
however limited data is available to guide antibiotic therapy
in adults [13,16,33-37]. Sub-optimal prescription of antibi-
otics in patients on ECMO can worsen the problem by
selecting for resistant microorganisms [29].

Methods/design
A rational approach to understand the pharmacokinetic
changes
Although data from clinical studies of the impact of
ECMO on altering the PK of drugs used in patients on
ECMO will have great applicability for optimisation of
pharmacotherapy, mechanistic research is required to
identify the specific factors contributing to these PK
changes. To gain insight into these factors, research
using simulated circuits and large animal models are re-
quired so that individual variables can be altered in a
systematic manner enabling the impact of each change
to be quantified in an accurate and cost-effective
manner. Additionally, this will define the interplay be-
tween critical illness and the extracorporeal circuit
that result in altered PK during ECMO. The new
knowledge to be generated has major implications for
improving patient outcomes during ECMO therapy and
extracorporeal technology in general. A proposed re-
search plan that is being currently being implemented
uses an incremental approach as shown schematically
in and Figures 3 and 4. The study drugs are tabulated
in Table 1.

Drug factors
Ex vivo controls to examine baseline stability of drugs at
37°C is an important consideration in interpreting the
PK alterations during ECMO. Stability testing in fresh
human and sheep whole blood will be performed for all
study drugs (Table 1). This is critical as drug losses in
the circuit can only be meaningfully interpreted after
establishing stability. Preliminary results highlight this as
drugs such as meropenem [38] are highly unstable at
37°C.
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Figure 3 Proposed approach to quantify the PK changes and identify factors underlying these changes to inform the development of
guidelines for antibiotic and sedative drug therapy during ECMO. S-SLI-smoke inhalation acute lung injury.
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Circuit factors
These studies will identify the PK changes attributable
to the circuit and drugs and will be used to describe sin-
gle and repeat dose kinetics in standard circuits.

Disposition of drugs in standard ECMO circuit
A validated ex vivo model of ECMO has been previously
published [38,39]. Briefly, Maquet PLS ECMO circuits
will be used (Maquet Cardiopulmonary AG, Hechinger
Straße, Germany). A reservoir bladder (Medtronic R38)
will allow sampling from the closed circuit (Figure 5).
The circuit will be primed with Plasmalyte, 4% albumin
followed by fresh whole blood to obtain a post oxygen-
ator pressure of 230–250 mmHg. The final estimated
volume of the pressurised circuit is 668 mL. A centrifu-
gal pump maintained a circuit flow rate of 4–5 L /min.
Oxygen tension and circuit temperature and pH will be
maintained at 100–150 mm Hg and 37°C. Carbon diox-
ide gas or sodium bicarbonate solution will be added to
Ex vivo drug 
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on ECMO

Drug factors Circuit factors Critical illness 
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Figure 4 Proposed methods to understand the pharmacokinetic chan
oxygenation (ECMO).
the circuit to maintain the pH of the circulating blood in
the range 7.25–7.55. Study drugs (Table 1) will be
injected post oxygenator to achieve clinically relevant
concentrations in the circuit. Serial samples will be
obtained post oxygenator over 24 hours. For re-dose PK
studies, study drugs will be reinjected at 6, 8 or 12 hours
(as per clinical dosing guidelines). This will further in-
vestigate potential saturation of the circuit with time
and its affect on drug disposition during ECMO.

Disposition of drugs in modified ECMO circuit
Circuit primed with fresh whole human Blood
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Table 1 Study drugs for which mechanistic and clinical pharmacokinetic (PK) data will be generated

Studies Sedatives & analgesics Antivirals /antifungals Antibacterials

Ex vivo stability Morphine Fluconazole Ceftriaxone

Ex vivo circuits Morphine -3 -glucuronide Caspofungin Meropenem

Ovine ECMO Morphine -6 –glucuronide Vancomycin

Population PK Fentanyl, nor-fentanyl Ciprofloxacin

Midazolam Gentamicin*

1 & 4 hydroxy midazolam

Ex vivo stability Propofol ,Thiopentone Oseltamivir Piperacillin/tazobactum Ticarcillin/clavulunate

Population PK Dexmedetomidine Voriconazole Cefepime, Linezolid

OC –oseltamivir carboxylate. * Gentamicin will not included in the ex vivo circuit studies due to its incompatibility with other study drugs.
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type of the pump and the oxygenator can influence
drug PK [15].

Circuit at varying flow rates (2.5 and 5.0 L/min)
Flow rates are thought to influence PK [40], however
this has not been adequately tested. Higher ECMO
flows usually reflect greater severity of illness and
identifying the PK alterations is essential to maximise
the chances of survival in this very unwell subgroup
of patients. This experiment will also provide insight
A

B C

D

E
Figure 5 Ex vivo ECMO circuit model. A -reservoir bladder,
B- oxygenator, C- centrifugal pump, D-drug injection and sampling
port, E- circuit tubing.
into whether or not flow rate adjusted standardisation
of drug therapy is required.

Circuits primed with fresh whole sheep blood
Circuit under hyperoxic conditions (PaO2 300–400 mm Hg)
Hyperoxia is not uncommon in patients receiving ECMO
[41]. Hyperoxic conditions may affect PK by changes in the
catalytic activity of drug metabolising enzymes and changes
in membrane permeability, affecting drug distribution [42].
Carbon dioxide gas or sodium bicarbonate solution was
added to the circuit to maintain the pH of the circulating
blood in the range 7.25–7.55.

Circuit under hypothermic conditions (32–34°C)
Hypothermia can affect PK significantly [43,44] however
there is limited published data. Circuits will be primed
with sheep blood as it is relatively easy to replicate an
in vivo experiment if required in sheep. The cooling de-
vice (Jostra™ Heater-Cooler Unit HCU 30 A) will be
added to the ECMO circuit to induce hypothermia. This
is relevant as patients on ECMO following CPR often
receive therapeutic hypothermia as part of their post
resuscitation care. Hypothermia may sometimes be in-
duced to minimise oxygen consumption during VV
ECMO. Patients on cardiopulmonary bypass are rou-
tinely exposed to hypothermia. Understanding the ef-
fect of hypothermia on PK is an important aspect for
optimisation of drug dosing during ECMO.

Host factors
Healthy and critically ill controls
Baseline PK samples will be obtained from healthy
sheep and sheep with smoke inhalation acute lung in-
jury (S-ALI) over a 12 hour period prior to commence-
ment of ECMO. In an appropriately equipped theatre, a
central venous line will be placed in the right internal
jugular vein (IJV) under local anaesthesia. Alfaxalone,
ketamine and midazolam was used for induction and
maintenance of anaesthesia. Buprenorphine 0.01 mg/kg
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will be used for supplemental analgesia. The sheep will
be intubated and ventilated with a Hamilton Galileo ven-
tilator (Hamilton Medical AG). The facial artery will be
cannulated for invasive arterial blood pressure monitor-
ing. A pulmonary artery catheter will provide continuous
measurements of the central venous pressure, mixed
venous saturation and cardiac output (CO). Additional
sheaths will be placed in both IJV to facilitate ECMO
cannulation and intra-cardiac echo (ICE). Sedative study
drug infusions will be titrated to clinical effect. Antibi-
otics will be infused over 30 mins and serial blood sam-
ples will be obtained for drug assays using validated
LC-MS/MS methods, and subsequent PK analysis.
For critically ill control sheep, S-ALI will be induced

using a validated, reproducible technique that has been
published [45]. Briefly, a stainless steel plate will be
heated to 750°C and placed on top of 8 g of cotton in a
cup. The smoke resulting from combustion will be de-
livered to the sheep by manual compression of the bel-
lows (tidal volume VT, 10–12 mL/kg) to achieve a
carboxyhaemoglobin content of 45–50% is achieved.
The sheep will be ventilated using ARDSNet criteria
(VT 4–6 ml/kg, PEEP 10–15 cm H2O) for lung protect-
ive ventilation [46]. Sedative study drug infusions will
be titrated to clinical effect. Antibiotics will be infused
over 30 mins and serial blood samples will be obtained
for drugs assays using validated LC-MS/MS methods,
and subsequent PK analysis. Such an approach will pro-
vide insights into the effects of critical illness on seda-
tive and antibiotic drug PK.

Healthy sheep on ECMO
Following 12 hours of ventilation and PK sampling the
healthy control sheep will be maintained on ECMO for
24 h. We have recently published a detailed description
of our ovine model (Figure 6) of ECMO [39]. Cannula-
tion will be performed in the supine position by rewir-
ing the previously placed IJV venous sheaths. A 21Fr
(50 cm) femoral Carmeda Bioactive Surface coated
(CBASW) venous cannula (Medtronic Inc, Minneapolis,
MN, USA) will be inserted into the right IJV using a
Seldinger technique and positioned using intra cardiac
echocardiography (ICE) [47] in the proximal inferior
vena cava (IVC). A 19Fr (50 cm) Carmeda coated fem-
oral venous cannula will be used for return blood and
also inserted in the right IJV and positioned at the mid
right atrium using ICE. Pump speeds will be titrated to
target flows at least 2/3rd of pre-ECMO CO (or 60–
80 mL/kg). Sedative study drug infusions will be ti-
trated to clinical effect. Antibiotics will be infused over
30 mins upon commencement of ECMO and at 8 and
12 h (for re-dose PK) to obtain serial blood samples
for drug assays using validated LC-MS/MS methods,
and subsequent PK analysis.
Critically ill sheep on ECMO
After 12 h of lung protective ventilation, the control
S-ALI sheep will be maintained on ECMO for 24 h. Can-
nulation, ECMO set up and initiation of ECMO have
been described in earlier sections. Sedative study drug in-
fusions will be titrated to clinical effect. Antibiotics will
be infused over 30 mins upon commencement of ECMO
and at 8 and 12 h (for re-dose PK) to obtain serial blood
samples for drugs assays using validated LC-MS/MS
methods, and subsequent PK analysis. Upon completion
of these studies, PK data from critically ill sheep on
ECMO will be compared with data from controls and
healthy sheep on ECMO to obtain crucial PK data that
will inform our understanding of the factors underpin-
ning the PK changes induced by ECMO that is distinct
from the impact of critical illness itself.
The physiologic data collection for the sheep experi-

ments will include; weight, advanced haemodynamic and
respiratory monitoring data, ECMO flow rates, urine
output, fluid balance, inotrope and vasopressor use and
blood loss if any. Eight hour urinary creatinine clearance,
serum creatinine, serum total protein, serum albumin,
alpha1-acid glycoprotein, serum bilirubin, alanine ami-
notransferase (ALT) measurements will be performed
prior to (controls) and during ECMO. Pharmacokinetic
studies in critically ill patients on ECMO.
An international multi-centre, clinical PK study [48]

will enrol critically ill patients admitted to the inten-
sive care units in Australia and New Zealand. The
study centres include; The Prince Charles Hospital,
Brisbane, St Vincent’s Hospital, Sydney; The Alfred,
Melbourne; Auckland City Hospital, Auckland and
Princess Alexandra Hospital, Brisbane. Informed con-
sent will be obtained from the patients or from their
next of kin as appropriate. A total of 10–12 patients
will be enrolled for each study drug (Table 1) for this
descriptive study. Sedative drugs will be titrated to
clinical sedation scores and bispectral index. Anti-
biotic drug selection and dosing is at the discretion of
the treating clinicians. In some patients, blood sam-
ples relating to only antibiotics may be collected,
whereas in other patients, samples for analysis of an-
algesics and sedatives may also be collected. Patient
selection will be based on the below criteria;

Inclusion criteria

� Age > 18 years and < 90 years
� Currently undergoing ECMO for respiratory and/or

cardiac dysfunction
� Clinical indication for the antibiotics listed in

Figure 3
� Clinical indication for the sedatives and analgesics

listed in Figure 3



Figure 6 Validated ovine ECMO model. Reproduced with permission, Fung et al, ISBT Science Series 2012.
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Exclusion criteria

� No consent
� Known allergy to study drug
� Pregnancy
� Serum bilurubin > 150 μmol/L
� Ongoing massive blood transfusion requirement

(> 50% blood volume transfused in the previous
8 hours)

� Therapeutic plasma exchange in the preceding
24 hours

Our clinical service model of ECMO has been recently
published [49]. Feasibility studies are now completed
and the study protocol has now been validated and pub-
lished [48]. Eight hour urine creatinine or effluent cre-
atinine (in patients on renal replacement therapy [RRT])
will provide estimates for renal clearance. Plasma assays
and PK modelling will be undertaken for the study drugs
(Table 1) using techniques described below.

PK sample analysis
To reduce the sample burden per patient, validated
bioanalytical methods are required to quantify multiple
drugs and their metabolites selectively and sensitively
in small volumes of plasma. A validated bioanalytical
method that uses a fully automated on-line solid phase
extraction (SPE) system (Symbiosis, SPARK Holland)
combined with liquid chromatography-mass spectrom-
etry (LC-MS/MS –API 5000) to simultaneously quan-
tify morphine, morphine 3-β-D-glucuronide, morphine
6-β-D-glucuronide, midazolam, 1- hydroxymidazolam,
4-hydroxymidazolam, fentanyl and nor-fentanyl in samples
of human plasma has been developed [50]. The technique
will also be expanded to analyse propofol, thiopentone
and dexmedetomidine. This approach enables simultan-
eous measurement of the plasma concentrations of these
molecules of interest with high accuracy and precision in
a single specimen. Previously developed and validated
antibiotic assays (HPLC and LC-MS/MS) will be used in
these studies.

PK modelling and statistical analysis
The sample size calculations used 10 circuits/subjects,
with 10 observations over time per circuit/subject, and
an 80% power with a 2-sided 5% significance level. The
detectable differences over time are on a standardised
scale (Cohen’s d). The within correlations are from pre-
vious data. We have the power to detect relatively small
changes with our small sample sizes because of the mul-
tiple observations per circuit/subject.

Circuit studies
Data will be plotted over time and analysed for statisti-
cally significant temporal losses. Mixed-effects regres-
sion models with random slopes will be used to estimate
the loss over time. Octanol-water partition coefficients
(log P) for the individual drugs are available from the
University of Alberta Drug bank website. We will exam-
ine the relation between the partition coefficients and
the extent of drug loss in the circuit using simple linear
regression. Correlation between log P values and drug
loss will be calculated by using two-sided Spearman test.

Animal and clinical studies
Data from these studies will be analysed using non-
linear mixed-effects models. This allows the estimation
of typical population PK parameters and their inter- and
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Figure 7 Challenges in drug dosing during extracorporeal
membrane oxygenation (ECMO). This critically ill patient received
concomitant venovenous ECMO, renal replacement therapy (RRT)
and induced hypothermia, all of which can significantly alter
pharmacokinetics of vital drugs.
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intra-individual variability, plus the estimation of residual
random variability. We will fit random intercepts and
slopes to allow for between patient differences in their
average response and changes over time. This modelling
allows us to visualise the average patient and individual pa-
tients. It also allows PK to be described in the absence of
fixed protocol times, making it ideally suited to calculate
PK parameters from drug concentration data collected at
with varying times during routine care. Differential equa-
tions will be used to describe the population PK of study
drugs and their metabolites expressed as PK parameters.
Where relevant, results will be normalised to a median pa-
tient bodyweight of 70 kg, using allometry.

Ethical considerations
Appropriate ethics approval has been obtained for all
the phases of the ECMO PK project,

� Ex vivo circuit experiments using human blood
(HREC/12/QPCH/90)

� In vivo ovine studies and ex vivo circuit experiments
that utilise sheep blood (approval no. 1100000053)

� Multi-site ethics approval for the clinical studies in
Australia (HREC/11/QPCH/121)

� Single-site ethics approval for the clinical study in
New Zealand (LRS/12/06/020)

Collaborating organisations
This project is co-ordinated by The Critical Care Re-
search Group at The Prince Charles Hospital in Brisbane,
Australia. This group will collaborate closely with The
Burns Trauma and Critical Care Research Centre, and The
Centre for Integrated Preclinical Drug Development, The
University of Queensland in Brisbane for antibiotic and
sedative drug assays. The Critical Care Research Group will
also collaborate closely with all clinical sites involved in the
multi-centre population PK study.

Discussion
This research will not only identify the drugs that are
most suitable for use during ECMO but our findings will
also inform the development of strategies for drug ad-
ministration using PK/PD principles in critically ill pa-
tients receiving ECMO. These patients receive a variety
of pharmacological and other extracorporeal therapies
such as RRT and these modalities have a potential to
interact with each other (Figure 7). A lack of under-
standing of the impact of ECMO on drug Vd and CL
predisposes to an increased likelihood of therapeutic fail-
ure or drug toxicity. PK modelling is crucial to drug
safety. The ECMO PK Project seeks to provide the key
information for development of evidence-based dosing
schedules and sedation protocols for use by clinicians
looking after patients receiving ECMO.
Using the right sedative agent at an appropriate dose
may minimise ICU morbidity related to risk of infec-
tions, duration of mechanical ventilation and length of
hospital stay, inotrope and vasopressor requirement,
drug withdrawal, post traumatic stress etc. This not only
has resource implications but significantly affects patient
outcomes [27]. The clinical study will also evaluate the
adequacy of existing ICU sedation protocols as com-
pared to bispectral index monitoring and provide data to
inform recommendations for improving sedation prac-
tices during ECMO.
There is widespread consensus that in-hospital anti-

biotic resistance influences patient outcome and the
allocation of resources. Optimal antibiotic prescrip-
tion has significant implications not only for the pa-
tient on ECMO but also for other ICU patients and
the community in general. Antibiotic PK studies in
patients receiving ECMO will help the development
of dosing regimes that are effective against the micro-
organism, but not harmful to the patient. The right
dose of the right antibiotic will not only lead to im-
proved microbiological and clinical cure rates in an
individual patient, but also will reduce the emergence
of multi-resistant organisms.
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Conclusions
Systematic research that integrates both mechanistic and
clinical research is necessary when investigating the com-
plex area of pharmacokinetic alterations during ECMO.
The methods described in this paper will result in an ad-
vanced understanding of drug, circuit and critical illness
factors that influence PK during ECMO. This will allow
meaningful interpretation of clinical population PK data so
that rational and robust guidelines may be generated to
guide clinicians in optimising antibiotic, sedative and anal-
gesic drug therapy during ECMO. The research methods
described here are resource intensive and rely on extensive
collaborations. Hopefully such an effort can be extended to
comprehensively investigate many of the other complex is-
sues in intensive care practice.
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