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Abstract
Background: There are few genomic tools available in melon (Cucumis melo L.), a member of the Cucurbitaceae, despite
its importance as a crop. Among these tools, genetic maps have been constructed mainly using marker types such as
simple sequence repeats (SSR), restriction fragment length polymorphisms (RFLP) and amplified fragment length
polymorphisms (AFLP) in different mapping populations. There is a growing need for saturating the genetic map with
single nucleotide polymorphisms (SNP), more amenable for high throughput analysis, especially if these markers are
located in gene coding regions, to provide functional markers. Expressed sequence tags (ESTs) from melon are available
in public databases, and resequencing ESTs or validating SNPs detected in silico are excellent ways to discover SNPs.

Results: EST-based SNPs were discovered after resequencing ESTs between the parental lines of the PI 161375 (SC) ×
'Piel de sapo' (PS) genetic map or using in silico SNP information from EST databases. In total 200 EST-based SNPs were
mapped in the melon genetic map using a bin-mapping strategy, increasing the map density to 2.35 cM/marker. A subset
of 45 SNPs was used to study variation in a panel of 48 melon accessions covering a wide range of the genetic diversity
of the species. SNP analysis correctly reflected the genetic relationships compared with other marker systems, being able
to distinguish all the accessions and cultivars.

Conclusion: This is the first example of a genetic map in a cucurbit species that includes a major set of SNP markers
discovered using ESTs. The PI 161375 × 'Piel de sapo' melon genetic map has around 700 markers, of which more than
500 are gene-based markers (SNP, RFLP and SSR). This genetic map will be a central tool for the construction of the
melon physical map, the step prior to sequencing the complete genome. Using the set of SNP markers, it was possible
to define the genetic relationships within a collection of forty-eight melon accessions as efficiently as with SSR markers,
and these markers may also be useful for cultivar identification in Occidental melon varieties.

Published: 15 July 2009

BMC Plant Biology 2009, 9:90 doi:10.1186/1471-2229-9-90

Received: 31 March 2009
Accepted: 15 July 2009

This article is available from: http://www.biomedcentral.com/1471-2229/9/90

© 2009 Deleu et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19604363
http://www.biomedcentral.com/1471-2229/9/90
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Plant Biology 2009, 9:90 http://www.biomedcentral.com/1471-2229/9/90
Background
Single-nucleotide polymorphisms (SNPs) are the most
frequent type of variation found in DNA [1] and are valu-
able markers for high-throughput genetic mapping,
genetic variation studies and association mapping in crop
plants. Several methods have been described for SNP dis-
covery [2]: SNP mining from expressed sequence tag (EST)
databases [3]; based on array hybridization [4] or ampli-
con resequencing [5]; from the complete sequence of a
genome [6] and more recently, using high-throughput
sequencing technologies [7]. The discovery of SNP mark-
ers based on transcribed regions has become a common
application in plants because of the large number of ESTs
available in databases, and EST-SNPs have been success-
fully mined from EST databases in non-model species
such as Atlantic salmon [8], catfish [9], tomato [10] and
white spruce [11].

Melon (Cucumis melo L.) is an important crop worldwide.
It belongs to the Cucurbitaceae family, which also includes
cucumber, watermelon, pumpkin and squash. The melon
genome has an estimated size of 450 Mb [12] and is a dip-
loid with a basic chromosome number of x = 12. In recent
years research has been carried out to increase the genetic
and genomic resources for this species, such as the
sequencing of ESTs [13], the construction of a BAC library
[14], the development of an oligo-based microarray [15]
and the development of a collection of near isogenic lines
(NILs) [16]. Genetic maps have also been reported for
melon, but they have been constructed with different
types of molecular markers and genetic backgrounds [17-
21], making it difficult to transfer markers from one map
to another. The aim of the International Cucurbit Genom-
ics Initiative (ICuGI) [22], currently in progress, is to
obtain a consensus genetic map by merging genetic maps
available using a common set of SSRs as anchor markers.

A double haploid line (DHL) population from the cross
between the Korean accession PI 161375 (SC) and the ino-
dorus type 'Piel de sapo' T111 (PS) was the basis for the
construction of a genetic map with 221 co-dominant,
transferable RFLP and SSR markers [21]. New EST-derived
SSR markers, added to this map using a bin-mapping
strategy with only 14 mapping individuals, gave a new
map with 296 markers distributed in 122 bins and a den-
sity of 4.2 cM/marker [21]. There is a need for saturating
the SC × PS genetic map with more markers that are ame-
nable for large-scale genotyping, as are SNPs. In a prelim-
inary experiment with melon, amplicon resequencing of
34 ESTs in SC and PS was used for SNP discovery, obtain-
ing a frequency of one SNP every 441 bp and one indel
every 1,666 bp [23]. The availability of more than 34,000
melon ESTs from normalized cDNA libraries from differ-
ent melon genotypes and tissues [13] is a valuable
resource for the identification of SNPs to be added to the
current genetic map.

Genetic markers can also be used for variability analysis
studies. In melon, there have been several attempts to elu-
cidate intraspecific relationships among melon germ-
plasm, using isozyme [24], RFLP [25], RAPD [26], AFLP
[27] and SSR [28] markers, with SSRs the preferred marker
for fingerprinting and genetic variability analysis in melon
[28]. Due to the absence of a known set of SNPs in the
species, this marker has not been compared with other
types for variability analysis. It would be of special interest
to have a set of these markers for a high-throughput sys-
tem to identify the germplasm used in breeding programs,
mainly from inodorus and the cantalupensis melon types.

The objectives of this work were to increase the marker
resolution in the melon genetic map, discovering EST-
SNPs in a melon EST database, and to study the perform-
ance of a subset of EST-SNPs for variability analysis in a
collection of melon accessions.

Results and discussion
SNP discovery
Two strategies were used to discover SNPs in melon. The
first was based on producing amplicons from randomly
selected melon ESTs and resequencing the parental lines
of the melon genetic map PI 161375 (SC) × 'Piel de sapo'
T111 (PS). Primers were designed from 223 melon ESTs
(Table 1). After discarding primers that did not amplify a
PCR product, amplicons that did not produce high quality
sequences and monomorphic amplicons, 93 ESTs
(56.3%) showed at least one polymorphism between SC
and PS.

The second strategy was the validation of in silico SNPs
from the ICuGI database [22]. Three hundred and sixty-six
in silico SNPs found in the database were selected, belong-
ing to two types of SNPs: pSNP and pSCH (Table 1; see
methods). Primers were designed from 269 ESTs contain-
ing pSNP and 97 containing pSCHs. Putative in silico SNPs
were validated in 51.8% and 21.3% of the amplicons for
pSNPs and pSCHs, respectively. In some instances addi-
tional SNPs were detected in the sequenced regions, giv-
ing a slightly higher percentage of polymorphic
amplicons (69.7% and 31.3% for pSNP and pSCH ampli-
cons, respectively). From the ESTs reported by Gonzalez-
Ibeas et al. [13], 47.3% were obtained from two acces-
sions of the 'Piel de sapo' cultivar type (Pinyonet and PS),
and the remainder from two genotypes, the C-35 canta-
loupe accession (29.3%) and the pat81 agrestis accession
(23.4%). The pSNPs and pSCHs were deduced from this
set of EST sequences, with a high proportion found
between pat81 and 'Piel de sapo', and SNPs experimen-
tally validated after resequencing amplicons from PS and
SC. SC belongs to the agrestis melon type as the accession
pat81 but has a different origin, so, as expected not all the
SNPs were conserved between SC and PS, giving a pSNP
validation of 51.8%. On the other hand, only 21.3% of
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the pSCHs were validated, indicating that many may rep-
resent sequencing errors or mutations introduced during
the cDNA synthesis procedure. The SNPs in a subset of
amplicons containing in silico SNPs between 'Piel de Sapo'
and pat81 were validated using different genotyping
methods (see below) rather than resequencing in PS and
SC.

A total of 368 amplicons (random and containing in silico
SNPs) were resequenced in PS and SC and produced
177.5 kb of melon DNA, with 431 SNPs and 59 short
indels, at an average of one SNP every 412 bp and one
indel every 3.0 kb, (Table 2). This is in agreement with the
values obtained in a previous small-scale experiment
using the same two melon accessions, which gave one
SNP every 441 bp and one indel every 1.6 kb [23]. SC and
PS belong to the agrestis (C. melo ssp. agrestis) and inodorus
(C. melo ssp. melo) melon groups, respectively, which are
two of the more distant groups in the species [28]. This
may explain the relatively high frequency of SNPs
between the cultivars.

SNP detection
Various detection methods were used for genotyping the
SNPs in each EST. A restriction site around the SNP posi-
tion, different in the parental sequences, was used to
develop a CAPS marker for 103 EST-SNPs. When more
than one SNP was discovered in one amplicon, we
selected the most suitable SNP for detection using CAPS.
When no restriction enzyme was available to produce a
CAPS marker, we used the SNaPshot SNP detection sys-
tem. Seventy-seven EST-SNPs were genotyped with SNaP-

shot. For 14 ESTs, PS and SC gave a different amplicon
size, so they could be genotyped as SCAR markers. Four
EST-SNPs were genotyped using DNA sequencing and two
were converted into dCAPS. The SNP detection method
used for each mapped EST-SNP is shown in Additional file
1.

SNP variability
Forty-five SNPs (see Additional file 2) were randomly cho-
sen to study their variability in a set of melon accessions
of worldwide cultivar and botanical types (see Additional
File 3). The inodorus cultivars were overrepresented in
order to assess whether SNPs between distant melon
accessions (SC and PS) were also variable among more
closely related genotypes.

All SNPs were polymorphic and the mean major allele fre-
quency was 0.69 (Table 3). Only one SNP (AI_24-H05)
had a rare allele (frequency = 0.08), whereas the frequen-
cies of the two alleles were similar in 28 SNPs (major
allele frequency < 0.65). Average gene diversity (He) was
0.4 (ranging from 0.14 to 0.5). Forty-three SNPs yielded
He > 0.20, demonstrating that most of the chosen SNPs
were highly informative, as found for SNPs in rye [29] but
contrasting with crops such as soybean [30] and wheat
[31] where SNPs yielding rare alleles are more frequent.

The mean gene diversity index for SNPs was considerably
lower than the values reported for SSRs in melon (e.g. PIC
= 0.58 [21], He = 0.66 [28]). To ensure the difference was
not due to sampling, gene diversity indexes were esti-
mated using a subset of genotypes that had been included

Table 1: Amplicons designed from ESTs for SNP discovery

Amplicons Failed Monomorphic Polymorphic Polymorphic amplicons* In silico SNP validation

Random ESTs 223 58 72 93 56.3%

in silico pSNPs 269 41 69 159 69.7% 51.8%

in silico pSCHs 97 14 57 26 31.3% 21.3%

TOTAL 589 113 198 278 58.4%

ESTs were selected at random or chosen because they contained pSNPs or pSCHs in the MELOGEN database. Columns show the number of 
amplicons that failed to amplify or gave bad quality sequences, and monomorphic and polymorphic amplicons between SC and PS. The percentages 
of polymorphic amplicons and in silico SNPs that were validated are shown in the last two columns. (*) Polymorphic amplicons rate was calculated 
without considering failed amplicons.

Table 2: Frequency of SNPs and indels found after resequencing EST-derived amplicons

Amplicons sequenced in SC and PS Length sequenced (bp) SNPs bp per SNP indels bp per indel Reference

368 177,518 431 411.9 59 3,008.8 this report

34 15,000 34 441.2 9 1,666.6 [23]

Data from a previous report using the same two melon parental lines is shown as a comparison.
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in a previous study with SSRs [28] (see Additional file 3).
The differences in gene diversity were confirmed, demon-
strating that they were intrinsic to the different marker
type. SNPs are biallelic, implying that the He value can
not exceed 0.5, whereas SSRs are multiallelic and so it can
be higher. Haplotypes may yield higher gene diversity val-
ues than individual SNPs and provide more efficient
application of SNP markers [29].

All inodorus genotypes could be distinguished with the set
of SNPs, although polymorphism was notably reduced
(Table 3). Fourteen SNPs were monomorphic and 18 were
informative (minor allele frequency > 0.1). As most of the
SNPs were discovered between the agrestis and inodorus
cultivar and not within inodorus, we expected the SNP pol-
ymorphism within inodorus to be lower. Nevertheless,
these results demonstrate that SNPs discovered using a
germplasm sample can be successfully transferred to dif-
ferent germplasm samples in melon.

The genetic relationships among accessions based on SNP
polymorphism were investigated by cluster analysis. The
NJ dendrogram (Figure 1) fits very well with previous clas-
sifications using different markers [26,28,32]. Comparing
the common genotype set in [28], the average pair-wise
distances based on SNPs and SSR were 0.47 and 0.64,
respectively. The correlation between the two distance
matrices was 0.73 (P < 0.00001) according to Mantel's
test, confirming that the current SNP set is as effective as
SSRs in establishing genetic relationships among melon
accessions, as shown in species such as rye [29] and soy-
bean [30].

The population structure was estimated using the STRUC-
TURE software [33]. The a posteriori probability of the data
increased rapidly from K = 1 to 4 and begun to reach a pla-
teau for K = 5, inferring that our collection can be divided
in five populations. Genetic variability among melon
germplasm seems to be highly structured. The subdivision
of the accessions in 5 populations agrees with the botani-
cal classification and the cluster analysis (Figure 1): group
1 included all the inodorus cultivars from Spain; group 2, a
diverse group of traditional inodorus landraces and similar

ones from the Near-East region such as elongated (chate
and flexuosus) and Asiatic ananas and chandalak types;
group 3, modern cantalupensis cultivars; group 4, mainly
traditional varieties and wild melons from India and
Africa and group 5 included conomon accessions from the
Far East. The population structure should be taken into
account when establishing a collection of genotypes for
association mapping studies in melon and models includ-
ing population structure should be used [34]. Alterna-
tively, melon collections without structure, as we found
with the inodorus melon accessions included in our stud-
ies, could be used.

These results demonstrate that SNPs discovered using a
small germplasm sample can be transferred to different
cultivar groups, being useful for depicting genetic rela-
tionships as well as for cultivar identification.

SNP mapping using a bin-mapping strategy
Two hundred and seventy-eight SNP-containing ESTs
(Table 1) plus twelve additional SNP-containing ESTs pre-
viously discovered between the two parental lines [22]
were used for mapping in the SC × PS genetic map using
14 DHLs of the melon bin-mapping population [21]. In
total, 199 EST-derived SNPs were mapped, yielding 200
new markers (Figures 2 and 3). F112 produced two SCAR
markers (F112a and F112b) that mapped to groups I and
V, respectively. Our previous melon bin-map contained
296 markers distributed in 122 bins, with a density of 4.2
cM/marker and 2.4 markers per bin [21]. With the addi-
tion of 35 candidate genes previously reported for resist-
ance to virus and fruit ripening [23,35,36] and the SNPs
now described, the new bin-map contains 528 markers,
distributed in 145 bins, with an increased density of 2.35
cM/marker and 3.64 markers per bin. The SNP-based
markers defined 23 new bins with an average bin length
of 8.55 cM. Some of the new bins were located in regions
with poor marker density in the previous SC × PS melon
map [21], such as HS_30-B08 in group XI, AI_12-B08 in
group VII, A_38-F04 in group VI or P06.05 in group III.

Essentially the new version of the melon bin-map is a
gene-based map, with 412 markers (78%) obtained from

Table 3: Gene diversity indexes for SNP and SSR alleles using all, inodorus or genotypes described in a previous study [28]

Genotypes Marker type Major allele frequency Ho He He range

all SNP 0.69 0.10 0.40 0.14–0.50

inodorus SNP 0.85* 0.07 0.15 0–0.50

group used in [28] SNP 0.63 0.09 0.47 0.16–0.50

group used in [28] SSR 0.47 0.14 0.64 0.51–0.83

Ho, observed heterozygosity; He expected heterozygosity. * Major allele frequency was only calculated for polymorphic SNPs.
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gene sequences. Additionally, 114 RFLPs derived from
ESTs were previously mapped in an F2 population from
the cross SC × PS [37], and their approximate position can
also be plotted in the corresponding bin-map. As a large
proportion of the markers are codominant and based on
gene sequences, this makes this map a very useful tool for
melon breeding and comparative analysis in cucurbit spe-
cies.

With the advent of next generation sequencing technolo-
gies, SNP discovery has become more feasible in non-
model crop species, allowing the discovery of thousands
of SNPs in a single experiment [7]. In Eucalyptus grandis
more than 23,000 SNPs were discovered using 454
sequencing technology, with a validation rate of 83%

[38]. In melon, a preliminary analysis of 100,000 reads
obtained after 454 sequencing of leaf cDNAs from SC and
PS produced more than 1,000 SNPs (Garcia-Mas, unpub-
lished). This indicates that the use of next generation
sequencing technologies is the next step towards satura-
tion of the melon genetic map.

Conclusion
The set of 200 SNP markers discovered and mapped have
increased the marker resolution of the melon genetic map
by defining new bins. The genetic map contains more
than 500 gene-based codominant markers (SNPs, RFLPs
and SSRs), which can be used as anchor points with other
genetic maps in this species. This genetic map is also a use-
ful resource for comparative mapping in the Cucurbita-
ceae, for the construction of the melon physical map and
for sequencing the melon genome. Additionally, the set of
SNPs has proven to be as useful as microsatellites for stud-
ying genetic relationships in melon and for varietal iden-
tification.

Methods
Plant material and DNA extraction
The parent lines of the melon double haploid line (DHL)
mapping population, PI 161375 'Songwan Charmi' (SC)
and 'Piel de sapo' line T111 (PS), were used for SNP dis-
covery [20]. Fourteen DHLs from the SC × PS segregating
population were used to bin-map the SNP set [21]. The 48
melon genotypes selected for analysis with a subset of
SNPs (see Additional file 3) were obtained from the germ-
plasm collection maintained at COMAV (Valencia, Spain)
and from a previous study of germplasm variability using
SSRs [28]. DNA from all genotypes was extracted using a
modified CTAB method [27]. DNA of the forty-eight
melon accessions was extracted from leaves of five indi-
viduals per accession to take into account the genetic var-
iability within heterogeneous accessions.

SNP discovery and detection
SNPs were discovered using two different strategies.
Firstly, random ESTs were selected from the International
Cucurbit Genomics Initiative (ICuGI) webpage [22].
Primer pairs were designed from each EST using the
Primer3 software [39] with an average length of 20 nucle-
otides, a melting temperature around 60°C and an
expected PCR product of 500–700 bp. Genomic DNA
from the parental lines of the melon mapping population
was amplified with each primer pair as previously
described [23]. Amplified fragments were purified with
Sepharose columns and sequenced using the ABI Prism
BigDye Terminator Cycle Sequencing kit (Applied Biosys-
tems, Foster City, CA, USA) in an ABI Prism 3130
sequencer (Applied Biosystems, Foster City, CA, USA).
Sequences were aligned and screened for polymorphism
with the Bioedit software [40]. Putative SNP positions
were visually verified on the sequence chromatogram, and

Dendogram and population structure based on the variability of 45 SNPs in 48 melon accessionsFigure 1
Dendogram and population structure based on the 
variability of 45 SNPs in 48 melon accessions. The 
neighbor-joining (NJ) tree based on Nei genetic distances 
[44] for the selected melon accessions is shown on the right. 
The subdivision based on STRUCTURE is shown on the left; 
each accession on the NJ is colored according to its group 
assignation defined from STRUCTURE analysis.
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the genomic sequences compared with the original EST
sequence to identify any introns. In the second strategy, in
silico SNPs previously identified [13] using EST2uni [41]
were classified as i) pSNPs, corresponding to SNPs present
in at least two EST sequences from the same genotype in a
given contig and with the same base change and ii)
pSCHs, corresponding to single nucleotide variations in
sequence that did not follow the above criteria for pSNPs.
Selected pSNPs and pSCHs were verified in most cases
after resequencing the parental lines of the melon map-
ping population. For a small subset, the SNP was verified
with an appropriate SNP detection method.

Bioedit software was used to generate restriction maps
from sequences obtained from SC and PS. SNPs (or
indels) showing differential restriction maps were used to

develop cleaved amplified polymorphic sequence (CAPS)
markers. When no differential restriction maps were avail-
able, the ABI Prism SNaPshot ddNTP Primer Extension Kit
(Applied Biosystems) was used for SNP genotyping [23].
Markers F112, 46d_11-A08, FR12J11, 15d_17-G01,
P01.45, PSI_26-B12, F012, PS_18-F05, PS_16-C09, F088,
A_02-H11, AI_13-G03 and FR15D10 produced ampli-
cons of different sizes in the parental lines, which were
not sequenced and were genotyped as sequence character-
ized amplified region markers (SCARs) after electrophore-
sis in agarose gels or using a LI-COR IR2 sequencer (Li-Cor
Inc, Lincoln, Nebraska, USA). Markers PSI_12-D08 and
PSI_35-F11 were converted into dCAPS markers [42].
Markers F028, F149, F080 and PSI_25-B05 were geno-
typed using direct sequencing.

EST-SNP bin map of Cucumis melo obtained by selective genotyping of fourteen DHLsFigure 2
EST-SNP bin map of Cucumis melo obtained by selective genotyping of fourteen DHLs. Linkage groups are repre-
sented by vertical bars, divided in bins defined by the joint genotype of the selected DHLs. The mapped SNPs in this report are 
shown in bold. Underlined markers are candidate genes previously reported [23,35,36]. The other markers have been 
described in [21]. Genetic distances are shown on the left, indicating the position of the last marker included in the bin accord-
ing to the framework map in [21]. Markers defining new bins are shown in italics. The hypothetical position of the last marker 
of these bins is indicated by a dashed horizontal line within the linkage group bar, without the genetic distance.
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SNP mapping
SNPs and indels were mapped by selective genotyping
using the bin-mapping strategy [43], adapted for the
melon mapping population [21]. Fourteen out of 72
DHLs from the melon mapping population were selected
to obtain the maximum resolution with a minimum
number of genotypes. SNPs and indels were placed in the
bin map by visual inspection of the genotypes predicted
by the markers and genotypes in the bin set.

Genetic variability analysis
Forty-five SNPs from 44 amplicons (two SNPs were
selected from F241) were chosen for genetic variability
analysis. SNPs were genotyped as CAPS or by pyrose-
quencing as shown in Additional file 2. Thirty SNPs,
described in Additional file 1, were used. Twelve SNPs
that were not polymorphic between SC and PS were also
included in the variability analysis, and the primers for
each amplicon are provided in Additional file 2. The SNPs
CmERF1, CmPm3 and CmXTH5 have been previously
described [36].

Eight SNPs were genotyped by minisequencing the region
surrounding the polymorphism (two SNPs were detected
for F241 in the same reaction). Pyrosequencing was per-
formed using a PSQ™ HS 96 system (Pyrosequencing AB,
Uppsala, Sweden) following the manufacturers' instruc-
tions. Primers were designed with the Pyrosequencing™
Assay Design Software (Biotage AB, Uppsala, Sweden).
One of the amplifying primers was 5' end labeled with
biotin, allowing the immobilization of the fragment onto
M-280 streptavidin coated Sepharose™ dynabeads (Dynal
AS, Oslo, Norway). The genotyping primer was hence
designed to anneal several nucleotides upstream of the
SNP. After denaturation of the streptavidin-captured PCR
fragments, the single stranded DNA fragments were
released into the wells of the PSQ HS 96 plate. Pyrose-
quencing was performed using the PSQ HS SNP Reagent
kit (Pyrosequencing AB, Uppsala, Sweden), and biolumi-
nometric quantification of pyrophosphate (Ppi) released
as a result of nucleotide incorporation during DNA syn-
thesis was measured with the PSQ™ HS 96 system.

EST-SNP bin map of Cucumis melo obtained by selective genotyping of fourteen DHLsFigure 3
EST-SNP bin map of Cucumis melo obtained by selective genotyping of fourteen DHLs. Linkage groups are repre-
sented by vertical bars, divided in bins defined by the joint genotype of the selected DHLs. The mapped SNPs in this report are 
shown in bold. Underlined markers are candidate genes previously reported [23,35,36]. The other markers have been 
described in [21]. Genetic distances are shown on the left, indicating the position of the last marker included in the bin accord-
ing to the framework map in [21]. Markers defining new bins are shown in italics. The hypothetical position of the last marker 
of these bins is indicated by a dashed horizontal line within the linkage group bar, without the genetic distance.
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Allele frequencies, major allele frequency, gene diversity
(measured as expected heterozygosity, He [44]), genetic
distances and neighbor-joining (NJ) tree were calculated
using Powermarker 3.25 [45]. The NJ tree was plotted
with MEGA 3.0 [46]. Distance matrices were compared by
the Mantel test [47].

The number of populations in our collection was deduced
with the STRUCTURE software [33]. This package uses a
Bayesian clustering approach to identify subpopulations
and to assign individuals to these populations on the
basis of their genotypes. Given a sample of individuals, K
populations are assumed (where K may be unknown) and
individuals are assigned to these populations. A posteriori
probability for each K (Pr(K)) can be calculated, which is
very small for K values lower than the appropriate value.
Usually, the researcher fixes a minimum K (for example K
= 1), recording Pr(K) after the analysis, and tests increas-
ing Ks, plotting K against Pr(K). The final K is defined
when Pr(K) reaches a plateau for higher K values. Conse-
quently, in the current report, several number of popula-
tions (from K = 1 to 8) were tested with the software and
the total number of populations was set when the proba-
bility reached a plateau for higher K.
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