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Abstract

Background: Dormancy associated MADS-box (DAM) genes are candidates for the regulation of
growth cessation and terminal bud formation in peach. These genes are not expressed in the peach
mutant evergrowing, which fails to cease growth and enter dormancy under dormancy-inducing
conditions. We analyzed the phylogenetic relationships among and the rates and patterns of
molecular evolution within DAM genes in the phylogenetic context of the MADS-box gene family.

Results: The peach DAM genes grouped with the SVP/StMADSI | lineage of type Il MIKCC MADS-
box genes. Phylogenetic analyses suggest that the peach SVP/StMADSI |-like gene family, which
contains significantly more members than annual model plants, expanded through serial tandem
gene duplication. We found evidence of strong purifying selection acting to constrain functional
divergence among the peach DAM genes and only a single codon, located in the C-terminal region,
under significant positive selection.

Conclusion: Because all DAM genes are expressed in peach and are subjected to strong purifying
selection we suggest that the duplicated genes have been maintained by subfunctionalization and/
or neofunctionalization. In addition, this pattern of selection suggests that the DAM genes are
important for peach growth and development.

plants, the first has been subdivided into M,,, Mgand M,
types based on the phylogenetic relationships among

Background
MADS-box genes are a family of transcription factors

found in animals, fungi, and plants and all contain a con-
served DNA-binding domain [1]. MADS-box transcrip-
tion factors play fundamental roles in plant development,
as floral organ and meristems identity determination and
transition from vegetative to reproductive growth regula-
tion [2]. Animal, fungal and plant MADS proteins are clas-
sified into two main groups: type I and type II [1]. In

MADS-box domains [3].

Type II MADS-box proteins bind to DNA as dimers or
higher order complexes and are also referred to as the
MIKC-type due to their common structure of four
domains: M domain, I region, K domain and C region. M
represents the MADS domain involved in the DNA bind-
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ing, is approximately 60 amino acids long, and contains
an o-helix followed by a B-strand. The K domain is a
coiled-coil structure that participates in protein-protein
interaction [4], and is subdivided into three a-helix struc-
tures, K;, K,, and K;. The variable I region, consisting of
about 30 amino acids, links the M and K domains. And
finally, the C-terminal region continues the helix structure
of the K; subdomain and is the most variable region
among family members. The C region functions in tran-
scriptional activation of other factors and the formation of
multimeric MADS-box protein complexes [4,5]. The
MIKC-type genes can be further subdivided in two types
based on intron-exon structure [6]: the MIKCC and the
MIKC*, also named M; in Parenicova et al. [3].

Extensive gene duplication and subsequent modification
in various MADS-box family lineages has resulted in
diversified protein functions [7]. MADS-box transcription
factors, besides being involved in floral organ specifica-
tion, are also involved in several pathways of plant growth
and development, such as fruit ripening, embryonic
development, and vegetative development of root and
leaves [6,8-11]. Studies of the evolution of MADS-box
genes that act in non-floral aspects of plant development
could yield general insights into the mechanisms behind
functional diversification of developmental gene families
[12].

One approach to examining the evolution of these gene
families is to test for molecular signatures of natural selec-
tion. The ratio of nonsynonymous (dN) to synonymous
(dS) substitution rates (dN/dS or @) provides a sensitive
test of natural selection. A statistically significant dN/dS
ratio lower than, equal to, or greater than 1.0 can indicate
purifying selection, neutral evolution and positive selec-
tion, respectively. Analysis of MIKC-type genes in Arabi-
dopsis demonstrated periods of both positive selection and
purifying selection [13]. Changes in coding sequences
represented by these periods of selection, in both DNA-
binding and non-DNA-binding regions of MADS tran-
scriptions factors, seem to play important roles during
phenotypic evolution of plants.

Besides PpAG1 [14], a FUL-like and a SHP-like [15], an
AP1-like and a PI-like [16], and three SEP-like genes [17],
six other MIKC-type genes have been described in peach
[Prunus persica (L.) Batsch]. These genes, named dormancy
associated MADS-box (DAM), are candidates for the regu-
lation of growth cessation and terminal bud formation in
peach [18]. The DAM genes are not expressed in the peach
dormancy-incapable mutant evergrowing [18]. To study
the divergence patterns and processes of these genes, iden-
tify the most closely related Populus sp. genes for homol-
ogy studies, and test for redundancy resulting from recent
shared duplication history, we performed phylogenetic
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and evolutionary analyses of the DAM genes as members
of the MIKC-type lineage of the MADS-box gene family.
We found that the PpDAM genes are SVP/StMADS11-like
(SHORT VEGETATIVE PHASE), and were derived by tan-
dem duplications. In addition, we identified significant
patterns of sequence constraint in the PPDAM genes, sug-
gesting a history of natural selection that removes amino
acid-changing mutations in these genes.

Results

Phylogeny of Arabidopsis, peach and poplar MIKCC-type
MADS-box gene

We compared the Arabidopsis [3] and poplar [19] MIKCC-
type MADS-box genes with the peach DAM genes to deter-
mine the phylogenetic relationship between these genes.
A maximum likelihood tree was estimated using the M, I
and K domains (Figure 1). Twelve major lineages could be
resolved and were named according to the Arabidopsis
gene conventions and the ABC-model classification
[5,9,20]. All twelve lineages PI/AP3 (B-related), Bs,
AGL15/AGL18, ANRI, SVP/StMADS11, AG (C/D-
related), AGL12, SOC1, SEP (E-related), AGL6/AGL13,
AP1 (A-related) and FLC clades, were defined with boot-
strap values of at least 79 or higher.

The six PpDAM genes could be unambiguously classified
within the SVP/StMADS11 group, together with 2 Arabi-
dopsis (AGL22/SVP and AGL24) and 8 poplar (PtMADS?7,
PtMADS21, PtMADS26, PtMADS27, PtMADS2S,
PtMADS29, PtMADS47 and PtMADS48) MADS-box
genes (Figure 1). The peach homologs formed a mono-
phyletic group in this clade that was most closely related
to the two poplar homologs, PtMADS7 and PtMADS21.
However, the other poplar homologs grouped into sister
clades or as orthologs to the Arabidopsis gene AGL22/SVP.
Therefore, the estimated tree suggests a single common
ancestor for all six peach DAM genes.

A Bayesian tree estimated using the same data showed a
similar topology with higher resolution due to high sup-
port values in most of the nodes (Additional file 1), and a
maximum parsimony tree showed similar topology and
support (Additional file 2). Thus, in three different analy-
ses, the peach DAM genes formed a monophyletic group
within the SVP/StMADS11 clade.

PpDAM sequence characterization

The alignment of the complete PpDAM protein sequence
revealed high amino acid sequence conservation among
the peach MADS genes (Figure 2). The intron-exon struc-
ture is also conserved in all domains (Figure 3), with the
exception of the C domain of PpDAM4, which contains a
deletion of similar size to that present in PtMADS27. The
modular domain organization of MIKC proteins is
reflected in a conserved intron-exon structure [4].
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Figure |

Maximum likelihood rooted tree of 39 Arabidopsis, 6 peach and 48 poplar MIKCC-type MADS-box genes. The
tree was constructed using nucleotide sequences and a GTR+I+G evolution model. The AGL28 and PtMADS63 sequences
were used as outgroups. The numbers at each interior branch indicate bootstrap support of 1000 replicates. Branches with
less than 50% bootstrap support are collapsed. Branch lengths are proportional to the number of nucleotide changes.
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Figure 2

Alignment of predicted amino acid sequences of the MIKCC-type MADS-box genes of peach. Sequence compari-
son was obtained using Clustal X and utilized for tree estimation and ancestral reconstruction. Sequences included M, |, K and
C domains. A poplar gene (PtMADS27) was included as outgroup.
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Figure 3
Schematic overview of introns and exons of the six peach DAM genes. Boxes represent exons scaled to number of
base pairs. Lines represent introns. Introns are not drawn to scale, but size is indicated by number of base pairs.
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By contrast with the exons, intron sequence similarity was
low. Sequence length in most of the introns among the
PpDAM genes was highly variable (Figure 3). This varia-
bility precluded meaningful intron sequence alignments,
so we could not use the intron sequence to establish rela-
tionships among DAM genes.

Phylogeny of PpDAM genes

To further resolve the phylogenetic relationships of the
PpDAM genes, a maximum likelihood and Bayesian tree
was estimated using the aligned M, I, K and C domains
(Figure 4). The variable C domain was added into the
analysis to increase the number of informative characters
and therefore improve the resolution of the PpDAM tree.
The best fit estimated phylogenetic tree suggested that the
PpDAM genes were derived from serial duplication events
in the following order: PpDAMG, PpDAM4, PpDAMS5,
PpDAM3, PpDAM?2, and finally PpDAM]1. Separate maxi-
mum parsimony tree (Additional file 3) generated the
same topology as obtained by maximum likelihood and
Bayesian trees. However, confidence levels differed: Baye-
sian posterior probabilities showed high support in all
nodes, whereas bootstrap values of maximum likelihood
and parsimony trees were low between PpDAMG6 and
PpDAM4, and also between PpDAM4 and PpDAMS5.

Evolutionary analysis of Arabidopsis, peach and poplar
MIKCC-type MADS-box genes

Models of the molecular evolution of the entire MIKCC-
type group from Arabidopsis, poplar, and peach were statis-
tically tested using the same alignment and the inferred
best fit phylogenetic tree estimated using maximum like-
lihood (Figure 1).
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64/98
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PpDAM6

#PtMADSZ7
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Figure 4

Maximum likelihood rooted tree of 6 peach MIKCC¢-
type MADS-box genes. Tree was constructed using nucle-
otide sequences and an HKY evolution model. The
PtMADS27 sequence was used as outgroup. The right num-
bers at each interior branch indicate maximum likelihood
bootstrap support, and the left numbers indicate Bayesian
clade credibility values of 1000 replicates. Branch lengths are
proportional to the number of nucleotide changes. Black cir-
cles in the internal nodes correspond to ancestral sequences
in the reconstruction experiment described in Figure 5.
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To test for statistically different rates of sequence evolu-
tion among branches or sites, data were analyzed using
algorithms implemented in PAML 4. A codon substitution
free-ratio model (model = 1, M) that allows different dN/
dS rate ratios among branches fit the data better than the
model that assumed a homogeneous mean dN/dS rate
ratio for all lineages (model = 0, MO; Table 1). To examine
how dN/dS rate ratios differed among codon positions,
we compared models M0 and M3, which allows 3 differ-
ent rates among sites, and found it to produce a signifi-
cantly better fit (P < 0.001). Purifying selection (@, = 0.02,
®; = 0.12, », = 0.36; Table 1) was found. However, no
positive selection was found at any site. To test if positive
selection promoted divergence between genes, the codon
substitution models that allow positive selection (M2a
and M8) and that assumed nearly neutral selection (M1a
and M7) were compared (M2a vs. M1a and M8 vs. M7;
Table 1). In both cases, we found no significant evidence
of positive selection.

Because positive selection often occurs only during short
stretches of evolutionary history, detection of statistically
significant patterns consistent with past positive selection
events can be difficult when considering average measures
of selection among lineages. The free-ratio model (model
= 1, M) indicated that selection was not homogeneous
among branches. Several branches of the SVP/StMADS11
clade showed a considerable number of changes that
could be related to differential selection pressure. Thus,
variation in selection pressure was evaluated for the
branches that lead to SVP/StMADS11 and DAM clade
genes by comparing models that allow positive selection
and different rates among sites with nearly neutral models
(Table 1). Significant positive selection (0, = 27.63 for
10% of sites) was found in the basal branch of SVP/
StMADS11 clade (P < 0.001 for A1 vs. M1a comparison).
Three significant positive selected sites were also found in
this ancestor: one in the M and two in the K domain.
However, no significant detectable positive selection was
observed in the basal branch of DAM clade (Table 1).

Evolutionary analysis of PPDAM group

Models of molecular evolution within the PpDAM genes
were tested for best fit using the alignment and maximum
likelihood tree (Figure 4). Similar results were obtained
by two programs: MEGA 4 and PAMLA4. Estimation of
pairwise dN and dS rates using MEGA 4 showed signifi-
cant purifying selection and no significant positive selec-
tion for each of the six sequences (data not shown).

A codon substitution free-ratio model (model = 1, PAML
4) that allows different dN/dS rate ratios among branches
did not fit the data better than the model that assumed a
mean dN/dS rate ratio for all the lineages (model = 0, MO;
Table 2). To evaluate whether there was dN/dS rate ratio
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Table I: Evolutionary analysis of the MIKCC-type MADS-box Arabidopsis, poplar and peach genes

Site model: One o ratio for each branch

Nested Model pairs dN/dS?  Parameters estimates? PSScd ¢ Model comparison [Adf] 2¢d

M: free ratio several - - -17495.098 Modell vs. MO [169] 590.92++*

Site model: One o ratio for all branches

Nested Model pairs dN/dS?  Parameters estimatesP PSSed ¢ Model comparison [Adf] 2¢4

MO: one ratio 0.137 ©=0.14 -17790.560

M3: discrete (k = 3) 0.155  py=0.28, p, = 0.46, p, = 0.26 None -17165.244
®o=0.02, » =0.12, ®,=0.36

M3: discrete (k = 2) 0.151  py=0.47,p,=0.53 None -17319.365 M3 vs. MO 4 1250.63%**
o= 0.04, ®, =0.25

Mla: nearlyneutral 0.341 po=0.76,p, = 0.24 Not allowed -17592.704
®o=0.13, ®, = 1.00

M2a: positive selection 0.341 po=0.76, p, = 0.05, p, = 0.19 None -17592.704 M2avs. Mla2 0
®o=0.13, ®, = 1.00, ®, = 1.00

M7: beta 0.166 p=0.61,q=276 Not allowed -17168.752

M8: beta & > 0.166  py,=1.00, p, = 0.00 None -17168.752 M8 vs. M7 [2] 0
p=0.61,q=276 = 1.00

Branch-specific model: ancestral SVP/StMADSI | clade

Nested Model pairs dN/dS?  Parameters estimates® PSSed ¢ Model comparison [Adf] 2¢4

Model Al - Po=0.68, p; =0.22, p,+ p3=0.10 167,26, 124%, 125%*, 139, I51, 169  -17582.792 Al vs Mla [2] 198274
®o=0.13, ®, = 1.00, 0, = 27.63

Model A2 - Po =059, p; = 0.19, p,+ py = 0.17 N/A -17586.128 Al vs A2 [1] 6.67%
®o=0.13, ®, = 1.00, , = 1.00

Model B - po= 0.41, p, =0.45, p,+ p;=0.14 4,7, 16%,26, 50, 124, 125%, 127, -17312.590 B vs M3(k = 2) [2] 13.55%*
o= 0.04, ®, = 0.25, », = 9.54 139, 169, 172, 173

Branch-specific model: ancestral DAM clade

Nested Model pairs dN/dS2 Parameters estimatesP PSSed ¢ Model comparison [Adf] 2¢4

Model Al - Po= 067, p, = 0.22, p,+ py= 0.1 N/A -17592.339 Al vs Mla[2] 0.73
®o=0.13, ®, = 1.00, ®, = 1.00

Model A2 - po=0.67,p, =0.22, p,+ p3=0.11 N/A -17592.339 Al vs A2 [I] 0
®o=0.13, ®, = 1.00, ®, = 1.00

Model B - Po = 0.39, p, = 0.44, p,+ py = 0.17 N/A -17318615 Bvs M3(k = 2)[2] 15

o= 0.04, ®, = 0.25, , = 0.40

aAverage over all sites.

bp;: proportion of sites. p, q: parameters of the f distribution.
¢PSS: Number of positively selected sites. Naive empirical Bayes was used in M3 and Bayes empirical Bayes in M2a and M8.
dAsterisks indicate significance: * P < 0.05, ** P < 0.01, *** P < 0.001.
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Table 2: Evolutionary analysis of the MIKCC-type MADS-box genes of peach

Site model: One ® ratio for each branch

Nested Model pairs dN/dS? Parameters estimatesP PSSed ¢ Model comparison [Adf] 2¢d
M: free ratio several - - -2519.205 Modell vs. MO [ 1] 11.63
Site model: One o ratio for all branches
Nested Model pairs dN/dS? Parameters estimates® PSSed ¢ Model comparison [Adf] 2¢d
MO: one ratio 0434 ©=0434 -2525.019
M3: discrete (k = 3) 0611 py=0.5I,p, =046, 62,79, 185,218,228, 239%  -2486.684 M3 vs. MO [4] 76.67FF*
p,=0.03
®o=0.10, ®, = 0.90,
», = 4.66
Mla: nearlyneutral 0.509 p,=0.55,p, =045 Not allowed -2489.546
®o=0.1l, », = 1.00
M2a: positive selection  0.632  p,=0.54, p, = 0.43, 62,79, 185,218,228, 239 -2486.782 M2a vs. Mla [2] 5.53
p,=0.03
wo=10.12, ®, = 1.00,
®,=5.15
M7: beta 0476 p=0.36,q=040 Not allowed -2491.716
M8: beta & o > | 0.593 p,=0.96, p, = 0.04 62,79,81,83,185,218,228, -2487.434 M8 vs. M7 [2] 8.56*

p =044, q=055 o =394

239%

2Average over all sites.
bp,: proportion of sites. p, q: parameters of the B distribution.

PSS: positively selected sites. Naive empirical Bayes was used in M3 and Bayes empirical Bayes in M2a and M8.

dAsterisks indicate significance: * P < 0.05, ** P < 0.01, *** P < 0.001.

variation among codon positions, models M0 and M3
were compared. As with the entire MIKCC-type tree, the
model M3, which allows three different rates among sites,
was a significantly better fitting model (P < 0.001) within
the PpDAM clade. Approximately one-half of the sites had
patterns consistent with purifying selection, and half were
more consistent with neutral sequence evolution (o =
0.90; Table 2). Three percent of sites showed patterns with
statistically significant positive selection (o = 4.66). To
test if a positive selection model could explain the diver-
gence between PpDAM genes, the codon substitution
models that allow positive selection (M2a and M8) and
that assumed nearly neutral selection (M1a and M7) were
compared (Table 2). In the first case (M2a vs. M1a), no
amino acid showed significant evidence of positive selec-
tion. However, when a B distribution of ratios was applied
(M8 vs. M7), the pattern suggesting positive selection was
statistically significant (P < 0.05) although the percentage
of sites contributing to this significant deviation from
neutrality was very low (4%). The overall analysis of
PpDAM genes showed that most sites were either highly
conserved with a dN/dS rate ratio close to 0 or nearly neu-
tral.

Ancestral reconstruction of a positively selected region in
PpDAM

The Naive empirical Bayes of M3 and M8 models sug-
gested one potential site under significant positive selec-

tion (Table 2): a serine-aspartate change of the C-terminal
region (amino acid position 239 in Figure 2). A maximum
likelihood-based estimated reconstruction of ancestral
sequences around this site is shown in Figure 5. Identical
changes (S to D) at amino acid 239 are present in
PpDAM1 and PpDAMS3. In this section of the alignment,
ancestral sequences of PpDAM genes shared the same
nucleotides with a probability higher than 0.95, except
near PpDAM1 and PpDAM3 genes at the potential posi-
tively selected site. However, ancestral sequences of
PpDAM genes did not shared the same nucleotides (prob-
ability higher than 0.90) in the non-positive selected posi-
tions 238 and 240 around this site (Figure 5).

Discussion

Phylogenetic analyses were used to test alternative models
of sequence evolution in the peach DAM genes, members
of the MADS-box family. Expression of the DAM genes is
lost in the evergrowing peach mutant, which does not form
terminal vegetative buds in response to dormancy induc-
ing conditions. Disruption of gene function for one or
more of these genes may be responsible for the non-dor-
mant phenotype of the mutant [18].

Phylogenetic relationships among MIKCC-type genes of
Arabidopsis and poplar were similar to those obtained pre-
viously in other studies [3,13,19]. MIKCC-type genes were
resolved in 12 subfamilies although the order of diver-
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235 240
. | . . . |

PpDAM1 L(CTT) E(GAA) D(GAT) D(GAC D (GAC)| D (GAC)
PpDAM2 L(CTT) E(GAA) D(GAT) D(GAC S (TCC)| D (GAC)
PpDAM3 L(CTT) G(GGA) D(GAT) D(GAC D (GAC)

PpDAM4 L(CTT) E(GAA) D(GAT) D(GAC S (TCC)

PpDAMS L(CTT) E(GAA) D(GAT) D(GAC S (TCC)

PpDAM6 L(CTT) E(GAA) D(GAT) D(GAC s (TCC)
PtMADS27 P (CCT) R(GCG) Q(CAG) D(GAC D (GAC)

Node#8 B(ccT) 2 ? D (GAC

Node#9 W(ctT) B(Gaa) B(GAT) D(GAC

Node#10 M (CTT) [3(GAR) |B(GAT) D(GAC

Node#11 M (CTT) [3(GAR) |B(GAT) D(GAC

Node#12 M (CTT) [3(GAR) |B(GAT) D(GAC § (Tcc)
Node#13 M (CTT) [3(GAR) |§(GAT) D(GAC § (Tcc)

Posterior probability
BB095<p<100 PEB090<p<095 @a0.50<p<0.90 ?7p<05
Figure 5
Ancestral reconstruction in the region of the posi-
tively selected site 239 in PpDAM genes. Sequence cor-
responds with the rectangular region of Figure 2. Ancestral
names of sequences correspond to internal nodes of Figure
4. The posterior probability for the reconstructed amino acid
at an internal node is indicated. Non-variable sites are not

highlighted.

gence among them was unclear. Nevertheless, the peach
DAM genes were unambiguously recognized as SVP/
StMADS1 1-like genes.

The SVP/StMADS11 group appears to have expanded in
the few perennials for which we have comprehensive data:
poplar (eight) and grapevine (five) carry an increased
number of SVP/StMADS11 genes relative to Arabidopsis
(two) and other annual models such as tomato (two) and
rice (three) [19,21]. The six DAM genes found in the
peach follow the trend of increased SVP/StMADS11 genes
in perennial species. This expansion in three phylogeneti-
caly distinct species could indicate that perennials use
SVP/StMADS11 genes for functions that are no longer
required or needed in annual models. These traits could
include the formation of floral and vegetative bud struc-
tures, regulation of endodormancy cycling, or regulation
of the juvenile to mature transition. The SVP/StMADS11
genes, together with other expanded genes from ANRI,
SOC1 and AGL32 families, are interesting targets for
investigating the functional requirements for the evolu-
tion of perenniality [19].

Several SVP/StMADS11-like genes have been associated
with the vegetative to reproductive meristem transition. In
Arabidopsis, the AGL22/SVP gene acts as flowering repres-
sor [22], whereas its close homolog AGL24 has an oppo-
site function [23]. In rice, OsMADS22, OsMADS47 and
OsMADS55 act as negative regulators of brassinosteroid
responses and modulators of meristem identity [24,25].
However, in tomato, the gene JOINTLESS is involved in
leaf and abscission zone development, in addition to the
flowering time regulation [26,27].

http://www.biomedcentral.com/1471-2229/9/81

In perennial species where SVP/StMADS11 genes have
been found, the genes are expressed in most vegetative tis-
sues and often in bud tissues. In potato, StMADS11 and
StMADS16 are preferentially expressed in vegetative tis-
sues [28]. Similarly, IbMADS3 and IbMADS4 genes of
sweet potato are preferentially expressed in root tissue
[29]. In Paulownia kawakamii, PkMADS1 can act as regula-
tor of shoot morphogenesis [30]. In poplar, at least one of
the SVP/StMADS11-like genes is expressed in cambium
tissue [19]. The five grapevine SVP/StMADS1 1-like genes
are preferentially expressed in bud tissue, although two of
them are also detected in vegetative organs [21]. A rasp-
berry gene putatively encoding an SVP/StMADS11-like
transcription factor [31], a Japanese apricot SVP/
StMADS11-like [32] and the peach DAM genes [18] are all
expressed in bud tissues. The vegetative and/or bud local-
ization of expression of these genes would support the
hypothesis that a perennial habit of growth would require
an increased sophistication of the regulatory pathways
devoted to controlling dormancy and growth cycles of
dormant buds, influencing architecture and survival of
unfavourable growing conditions.

Our phylogenetic analyses suggest that the peach DAM
genes were derived from serial duplications of a common
ancestor. Duplicated genes can be produced either by
genome, segmental or tandem gene duplication. Gene
duplications are especially prevalent in plants [7], and so
the relative proportions for each of these fates is of signif-
icant interest. In poplar, the presence of several gene
regions with fewer than three genes in each gene cluster
[19] suggest that the expansion of the SVP/StMADS11-like
genes was a consequence of combined whole-genome
[33] or segmental duplication with tandem gene duplica-
tions [19]. By contrast, the six peach DAM genes are clus-
tered in one locus of the linkage group 1 (LG1) of the
general Prunus genetic map [18] and form a monophyletic
clade in our analyses. Monophyly strongly suggests that
expansion of the peach DAM gene family occurred by
repeated rounds of tandem duplication. Thus, the dupli-
cations in both poplar and peach provide examples of two
different pathways leading to the origin and maintenance
of an elevated number of duplicated genes. The plant
groups in which these expansions have occurred suggests
that SVP/StMADS11-like genes could play roles in peren-
nial state or bud development.

Duplicated genes can have several alternative long-term
fates: nonfunctionalization, subfunctionalization or the
much rarer neofunctionalization [34-37]. Overall, the
MIKCC-type genes sampled in this study have substitution
patterns consistent with purifying selection. However,
several branches of the MIKCC-type gene tree, including
the branch leading to the SVP/StMADS11-like genes,
appear to be under strong positive selection. We found
three potential positively-selected sites that could have
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modified the DNA binding and protein interaction prop-
erties of the SVP/StMADS11-like genes. By contrast, the
evolution of the PpDAM genes has involved strong puri-
fying selection, suggesting important functions in peach
trees that rely upon the retention of specific sequences.
The Arabidopsis type II MADS-box genes may have been
affected by sporadic positive selection at the origin of new
functions followed by strong functional constraint
[13,38], and our observations in peach and poplar are
consistent with a similar model for evolution in the SVP/
StMADS11 clade. Indeed, since the dN/dS rate ratio
among branches of the PpDAM clade tree was not signifi-
cantly different, the selection intensity and direction
appears to have been constant in all PpDAM genes. The
patterns of strong purifying selection observed in all six
PpDAM genes could also suggest a lack of functional
redundancy among the genes, despite similarity in coding
sequence. Four different seasonally dependent expression
patterns among the PpDAM genes [39] are consistent with
independent roles for these gene groups in growth and
development. Therefore subfunctionalization and/or neo-
functionalization likely contribute to the maintenance of
this paralogous set of genes, although overlapping redun-
dancy may also occur.

Purifying selection appears to be strongest in the MIK
region. The relaxation of functional constraint in the C-
terminal region is consistent with previous studies that
suggest the C-terminus tends to be more divergent than
the MIK region [3,36,40]. Within the C-terminal region of
the DAM genes we identified a potential positively-
selected site. This position had a posterior possibility
higher than 0.95 and could be related to the suspected
functions of the C-terminal region: stabilization of the
interactions mediated by the K domain, formation of
DNA-binding homodimers, activation of transcription, or
contribution to multimer or higher-order complex forma-
tion [4,5,41]. Functional studies of motifs and particular
amino acids have been performed in the C-terminal
domain of B-family proteins [42,43], but similar informa-
tion is not available for the SVP/StMADS11 family.

Conclusion

Our results demonstrate that the peach DAM genes
diverged sequentially by tandem duplications from a
common ancestor related to the two poplar genes,
PtMADS7 and PtMADS21, which are more closely related
to the peach DAM genes than are other SVP/StMADS11
family genes. In addition, the nucleotide substitution pat-
terns and rates of evolution in DAM homologs suggest
strong functional constraints.

Methods

Sequence collection

Arabidopsis MADS-box genes of MIKCC-type were parsed
from the Arabidopsis nucleotide dataset generated by The

http://www.biomedcentral.com/1471-2229/9/81

Arabidopsis Information Resource (TAIR,[44]) using gene
identification numbers reported by Parenicova et al. [3].
Peach genes DAM1 to 6 [GenBank: DQ863253,
DQ863255, DQ863256, DQ863250, DQ863251 and
DQ863252, respectively| were cloned by our laboratory
[18]. Poplar MADS-box genes of the same type were
parsed from Populus trichocarpa genome dataset v1.1 [45]
using gene identification numbers reported by Leseberg et
al. [19] (see supplementary data of Leseberg et al [19] for
correspondence with other nomenclatures, such as the
one proposed by De Bodt [46]).

Phylogenetic analyses

An initial phylogenetic tree was estimated for MADS-box
genes from Arabidopsis, peach and poplar. The Ma-type
MADS-box genes AGL28 from Arabidopsis and PtMADS63
from poplar were used as outgroups to root the MIKCC-
type MADS-box gene phylogeny [3,19]. Nucleotide
sequences from the M, I and K domains were aligned with
reference to the corresponding amino acid alignment
using Clustal X [47] and appropriate settings (pairwise
alignment parameters for gap opening 22.5 and for gap
extend 0.45, multiple alignment parameters for gap open-
ing 12.5 and for gap extend 0.25). This alignment was
then manually refined and end trimmed using BioEdit
version 7.0.5.3 [48]. Poplar genes without identifiable I
and K domains were excluded from these analyses. The
resulting alignment is presented in the Additional file 4.
Maximum likelihood analysis using the nucleotide matrix
was conducted using PAUP* 4.0b10 [49]. Trees were esti-
mated using the Tree Bisection-Reconnection (TBR)
branch swapping algorithm, and the GTR+I+G evolution
model parameters and the best fit tree was assessed using
heuristic searches. The GTR+I+G substitution model was
the best fit model as tested using Modeltest 3.7 [50] hier-
archical likelihood ratio test (hLRTs), corrected Akaike
information criterion (AICc) and Bayesian information
criterion (BIC). Bootstrap resampling [51] was performed
in The Palmetto Cluster (high performance computing
cluster, Clemson University, Clemson, South Carolina,
U.S.A.) to assess support for each node using 1000 repli-
cates with 1 additional sequence replicate for each node.

Bayesian and maximum parsimony analyses for the nucle-
otide matrix were also conducted. Bayesian analyses were
performed using Metropolis-coupled Markov chain
Monte Carlo methods implemented in MrBayes 3.1.2
[52,53] using the best fit GTR+I+G substitution model
without fixed parameters and considering the positions in
each codon differently. The chain was run for 2.5 million
generations starting from random trees, with trees sam-
pled every 500 generations. The first 1250 trees were dis-
carded as "burn-in" to estimate the consensus topologies
and the posterior distribution of trees was used to calcu-
late posterior probabilities for clades. Four chains were
run, with one chain heated at the setting of 0.1. The Baye-
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sian-based tree was rooted using the AGL28 sequence
because MrBayes only allows one taxa as an outgroup.
Maximum parsimony analyses were conducted using
PAUP* 4.0b10 [49]. Maximum parsimony trees were esti-
mated using heuristic searches, and the TBR branch swap-
ping algorithm with 1000 random stepwise taxon
additions. A total of 965 trees were obtained. Bootstrap
resampling [51] was performed to assess support for each
node using 1000 replicates with 10 additional sequence
replicates for each node.

The duplication history of DAM genes was examined
using the estimated best fit phylogenetic trees containing
full length genes. Nucleotide sequences of peach DAM
genes included M, [, Kand C domains and were aligned as
explained above (pairwise alignment parameters for gap
opening 22.5 and for gap extend 0.45, multiple alignment
parameters for gap opening 12.5 and for gap extend 0.25).
One poplar MADS-box gene from the SVP/StMADS11
clade was included as the outgroup (PtMADS27). The
alignment (of translated nucleotides) is presented in Fig-
ure 2. Maximum likelihood analyses, nucleotide substitu-
tion model selection and bootstrap resampling of the
nucleotide distance matrix were conducted as above. The
most conservative substitution model that best fits these
loci as tested using Modeltest 3.7 [50] according to three
sets of criteria (hLRTs, AICc and BIC) was HKY.

Bayesian and maximum parsimony analyses for the nucle-
otide matrix of PpDAM sequences were also conducted.
Bayesian analysis was performed as above using HKY as
the nucleotide substitution model. The chain was run for
10,000 generations starting from random trees, with trees
sampled every 10 generations. The first 250 trees were dis-
carded as "burn-in" to estimate the consensus topologies
and the posterior distribution of trees was used to calcu-
late posterior probabilities for clades. Four chains were
run, with one chain heated at the default setting of 0.2.
Maximum parsimony analysis and bootstrap resampling
was conducted as above, obtaining one more parsimoni-
ous tree.

Molecular evolutionary analyses

Sequence alignments and estimated best fit phylogenetic
trees were used to test for sequence substitution patterns
consistent with models of non-neutral sequence evolu-
tion. Pairwise synonymous (dS) and non-synonymous
(dN) nucleotide substitution rates were estimated using
the Nei-Gojobori method [54] and were performed in
MEGA 4 [55].

The program CODEML from PAML 4 [56] was used to test
whether sequence substitution patterns indicate signifi-
cant variation of evolutionary rates among sequences
(branches) or codon sites within the sequences for both
trees. Significantly different ® (dS/dN rate ratio) of differ-

http://www.biomedcentral.com/1471-2229/9/81

ent branches was tested by comparing a free-ratio model
(model = 1) vs. a model with a mean ratio for all lineages
(model = 0). Site-specific selection was investigated by
comparing the models M3, M2a and M8 vs. the null mod-
els M0, M1a, and M7, respectively, where M3, M2a and
M8 can accommodate positively selected sites. Likelihood
ratio tests (LRT) of different models were used to find the
best fit model for the data. Statistical significance was eval-
uated by comparing twice the log likelihood difference
between models to a y?2 statistic with the degrees of free-
dom equal to the difference in number of parameters
between models.

Variation in selection pressure among specific branches of
the SVP/StMADS11 clade was examined for statistically
significant deviations from the alternative model of no
variation among branches. The branch-site model was
used to test for this deviation from non-variance in substi-
tution rates among branches [57] for the following clades:
ancestral of SVP/StMADS11 clade and ancestral of
PpDAM clade. Patterns consistent with natural selection
were investigated by comparing the following models: A1
vs. the null model MO, A1 vs. the null model A2, and B vs.
the null model M3 with only two site classes (k = 2).

Ancestral reconstruction

The marginal ancestral reconstruction of progenitor peach
DAM genes was estimated using CODEML. For model
M8, a likelihood-based method was employed to com-
pare the probabilities of different character assignments to
an interior node at a site, and to select the character with
the highest posterior probability [58].
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Additional file 1

Bayesian tree of 39 Arabidopsis, 6 peach and 48 poplar MIKCC-type
MADS-box genes. The tree was constructed using nucleotide sequences
considering the positions in each codon differently and an HKY evolution
model. The AGL28 sequence was used as the outgroup. The numbers for
each interior branch indicate Bayesian posterior probabilities. Branches
with less than 50% bootstrap support are collapsed. Branch lengths are
proportional to the number of nucleotide changes.
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Additional file 2

Maximum parsimony tree of 39 Arabidopsis, 6 peach and 48 poplar
MIKCC-type MADS-box genes. The tree was constructed using nucleotide
sequences. The AGL28 and PtMADSG63 sequences were used as out-
groups. The numbers for each interior branch indicate bootstrap support
of 1000 replicates. Branches with less than 50% bootstrap support are col-
lapsed. Branch lengths are proportional to the number of nucleotide
changes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-9-81-S2.pdf]

Additional file 3

Maximum parsimony rooted tree of 6 peach MIKCC-type MADS-box
genes. The tree was constructed using nucleotide sequences. The
PtMADS27 sequence was used as the outgroup. The numbers for each
interior branch indicate bootstrap support of 1000 replicates. Branch
lengths are proportional to the number of nucleotide changes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-9-81-S3.pdf]

Additional file 4

Alignment of the translations of the MIKCC-type MADS-box genes of
Arabidopsis, poplar and peach.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
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