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Abstract
Background: The complex responses of plants to DNA damage are incompletely understood and
the role of members of the serpin protein family has not been investigated. Serpins are functionally
diverse but structurally conserved proteins found in all three domains of life. In animals, most
serpins have regulatory functions through potent, irreversible inhibition of specific serine or
cysteine proteinases via a unique suicide-substrate mechanism. Plant serpins are also potent
proteinase inhibitors, but their physiological roles are largely unknown.

Results: Six Arabidopsis genes encoding full-length serpins were differentially expressed in
developing seedlings and mature tissues. Basal levels of AtSRP2 (At2g14540) and AtSRP3
(At1g64030) transcripts were highest in reproductive tissues. AtSRP2 was induced 5-fold and
AtSRP3 100-fold after exposure of seedlings to low concentrations of methyl methanesulfonate
(MMS), a model alkylating reagent that causes DNA damage. Homozygous T-DNA insertion
mutants atsrp2 and atsrp3 exhibited no differential growth when mutant and wild-type plants were
left untreated or exposed to γ-radiation or ultraviolet light. In contrast, atsrp2 and atsrp3 plants
exhibited greater root length, leaf number and overall size than wild-type plants when exposed to
MMS. Neither of the two serpins was required for meiosis. GFP-AtSRP2 was localized to the
nucleus, whereas GFP-AtSRP3 was cytosolic, suggesting that they target different proteinases.
Induction of cell cycle- and DNA damage-related genes AtBRCA1, AtBARD1, AtRAD51, AtCYCB1;1
and AtCYCD1;1, but not AtATM, was reduced relative to wild-type in atsrp2 and atsrp3 mutants
exposed to MMS.

Conclusion: Expression of specific serpin genes (AtSRP2 and AtSRP3 in Arabidopsis) is required for
normal responses of plants following exposure to alkylating genotoxins such as MMS.

Background
DNA damage results from exposure to specific chemicals
in the environment, UV light, ionizing radiation and
errors in DNA replication and proofreading. Plants utilize
several pathways for DNA repair, including photoreactiva-

tion, nucleotide excision repair, base excision repair, mis-
match repair and double-stranded break repair [1].
Methyl methanesulfonate (MMS) is a simple, direct
alkylating agent recognized as a standard for genotoxicity
assays of environmental pollutants [2]. MMS has been

Published: 11 May 2009

BMC Plant Biology 2009, 9:52 doi:10.1186/1471-2229-9-52

Received: 15 December 2008
Accepted: 11 May 2009

This article is available from: http://www.biomedcentral.com/1471-2229/9/52

© 2009 Ahn et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19426562
http://www.biomedcentral.com/1471-2229/9/52
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Plant Biology 2009, 9:52 http://www.biomedcentral.com/1471-2229/9/52
widely utilized as a γ-radiation mimic in the belief it
causes double-stranded breaks (DSBs). A recent report
found, however, that no MMS-mediated DSBs could be
detected in vivo in yeast or mammalian cells, and those
reported previously were almost certainly artefacts [3].
Molecular responses of organisms to alkylating phytotox-
ins are likely to be distinct from those to ionizing radia-
tion.

Many intra- and extracellular processes in plant growth,
development and responses to stress involve specific pro-
teolytic enzyme activities. The Arabidopsis genome con-
tains 656 known and putative peptidases [4] but the
functions of only a tiny minority are known. Furthermore,
little is known of the control of proteolytic activity in
planta by endogenous peptidase inhibitors, including the
serpins [5,6], which are one of seven families of peptidase
inhibitors in Arabidopsis [4]. Serpins are metastable inhib-
itors with a unique, irreversible mechanism of action [7].

Almost all plant serpins studied are potent inhibitors of
mammalian proteinases of the chymotrypsin family in
vitro [8-12]. An Arabidopsis serpin, AtSerpin1
(At1g47710), was shown to inhibit the endogenous
cysteine proteinase Metacaspase 9 (AtMC9) in vitro [11]
but no other putative endogenous targets for plant serpins
have been identified. Plant serpins are likely to function in
direct defence against proteinases from pests and patho-
gens and in the regulation of endogenous proteolytic
events, but no functions have been demonstrated [5,6].

Here we report the differential basal expression of six Ara-
bidopsis serpin genes and the effect of MMS exposure of
seedlings on the activity of AtSRP2 (At2g14540) and
AtSRP3 (At1g64030), both specifically expressed in repro-
ductive tissues. We determine the subcellular localizations
of AtSRP2 and AtSRP3 and examine the growth responses
of atsrp2 and atsrp3 mutants (vs wild-type) to MMS, γ-radi-
ation and UV light treatments. Finally we compare the
induction levels of cell cycle-related genes in the atsrp2
and atsrp3 plants compared to wild-type after exposure to
MMS.

Results
Arabidopsis serpin genes are differentially expressed
PSI-BLAST searching of the Arabidopsis genome revealed
six predicted full-length serpins (~340–440 residues) [6].
The numbering system used for the RCL residues is that of
Schechter and Berger (1967) whereby residues N-terminal
to the proteinase cleavage site are numbered P1, P2, P3,
etc and those C-terminal to the cleavage site are numbered
P1', P2', P3', etc [13]. Reactive centre loop (RCL)
sequences were aligned using the conserved P17 Glu, P14
Thr and P8 Ser/Thr, allowing the reactive centre P1 residue
– the most important for inhibitory specificity – to be

identified for each serpin (Figure 1). One of the Arabidop-
sis serpins (At1g62170) was predicted to be non-inhibi-
tory (based on P10 Thr and P11 Val) but each of the five
remaining serpins was predicted to be inhibitory [5] and
has a unique reactive centre (Figure 1).

We examined basal transcript levels of the six serpins in
mature tissues and in whole seedlings during develop-
ment using semi-quantitative RT-PCR. AtSerpin1
(At1g47710) was the most highly expressed serpin in all
tissues (Figure 2A). This gene and At2g26390 were ubiq-
uitously expressed in the mature plants. In contrast,
AtSRP2 and AtSRP3 transcripts were detected more specif-
ically in siliques, with AtSRP2 also expressed very weakly
in flowers and AtSRP3 in flowers and stems. At3g45220
and At1g62170 expression was not detectable in mature
tissues. AtSerpin1 was ubiquitously expressed throughout
seedling development (Figure 2B). Weak expression of
At2g26390 was detected at day 2 and increased during
days 4 to 8. At3g45220 and At1g62170 expression was
not detectable in seedlings. AtSRP2 and AtSRP3 tran-
scripts were detected at very low levels in seedlings (5 d)
by quantitative RT-PCR (data not shown).

AtSRP2 and AtSRP3 are upregulated following MMS 
treatment of seedlings
Wild-type (5-d) seedlings were transplanted to liquid
media containing 200 ppm MMS and transcript levels of
AtSRP2 and AtSRP3 determined by quantitative RT-PCR.
AtSRP2 and AtSRP3 were induced ~5-fold and ~100-fold,
respectively, after 2 d (Figure 2C). In a separate experi-
ment, wild-type seedlings (5-d) were exposed to MMS for
1 and 3 h but no induction was detected. In untreated
seedlings (5-d) and in seedlings 1 and 3 h after exposure
to γ-radiation (125 Gy) no AtSRP2 and AtSRP3 transcripts
were detected using semiquantitative RT-PCR (data not
shown).

Subcellular localization of AtSRP2 and AtSRP3
GFP-AtSRP2 was localized to the nucleus whereas GFP-
AtSRP3 was localized to the cytosol (as was GFP alone, as
expected) (Figure 2D). DAPI staining confirmed the iden-
tity of the nucleus.

Identification of T-DNA insertion mutants
Two T-DNA insertion mutants (SALK_088095 and
SALK_072458) corresponding to AtSRP2 and AtSRP3,
respectively, were identified in the SIGnAl database. No
other T-DNA insertion lines were available for these two
genes. The atsrp2 and atsrp3 mutants have a T-DNA inser-
tion on the right (Figure 3A) and in the middle (Figure
3B) of the second exon, respectively. Genomic PCR using
primer sets corresponding to the 5' and 3' ends of each
gene and to the left border of the T-DNA insert was per-
formed to identify homozygous lines. The absence of full-
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length PCR product using the 5' and 3' primer sets indi-
cated the presence of the T-DNA insertion (~4 kb) in both
copies of the gene (Figure 3C and 3D). To confirm the
knockout of each AtSRP2 and AtSRP3 transcript in the cor-
responding homozygous mutant, total RNA was prepared
from developing siliques and RT-PCR performed. No
transcripts for AtSRP2 and AtSRP3 were detected in the
corresponding mutants, and there was no apparent com-
pensation of AtSRP2 transcript levels in the atsrp3 mutant,
or vice-versa (Figure 3E).

atsrp2 and atsrp3 mutants grow faster than wild-type 
plants when exposed to MMS but not to -radiation or UV-C
Mutants atsrp2 and atsrp3 were phenotypically normal
under standard growth conditions (Figure 3F). Both

mutants produced apparently normal siliques, seeds
(number and size), and wild-type germination rates (data
not shown), indicating that AtSRP2 and AtSRP3 are not
essential for meiosis under standard growth conditions.
1/2 MS and B5 media were used to examine responses of
mutants to MMS versus those of wild-type (similar results
with both media). Surprisingly, when atsrp2 and atsrp3
plants were exposed to MMS, both mutants grew consist-
ently more vigorously than wild-type plants given the
same treatment (Figure 4A). In the absence of MMS, there
was no significant difference in root growth between wild-
type and mutants grown on solid media. For plants grown
on B5 media in the presence of ≥ 55 ppm MMS, however,
roots of atsrp2 and atsrp3 mutants grew longer than wild-
type roots over 2 weeks (Figure 4B). Differences in root

Amino acid sequence alignment of full-length Arabidopsis serpinsFigure 1
Amino acid sequence alignment of full-length Arabidopsis serpins. The alignment was created using ClustalW and 
edited. Locus numbers are given for some of the serpins. Amino acid residues are colour-coded: positively charged, blue; neg-
atively charged, red; polar, green; cysteine, yellow; other residues, black. Dots above the alignment indicate residues identical in 
all six serpins. Putative positions of specific residues in the RCL are indicated below the alignment: P17 Glu, P8 Ser/Thr, P1 
(shown in bold) and P4'. A gap, indicated by an arrow, between the P1 and P1' residues indicates the predicted site of protein-
ase cleavage. The predicted nuclear localization sequence for AtSRP3 is shown in bold italics. Large gaps in the sequences of 
the serpin at At1g62170, AtSRP2 and AtSRP3 (second block from bottom, right side) represent lack of a surface loop lying 
between helix I and strand 5 of β-sheet A (based on the human α1-antitrypsin structure); absence of this loop is not expected 
to affect folding to a metastable structure capable of inhibiting proteinases [5].

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
AtSerpin1xx-------------------------------------------------------------MDVRESISLQNQVSMNLAKHVITT-VSQNSNVIFSPASI 
At1g62170xxMEPKEKKQKLDTSEVASPSLSKTHLKKKKTKKQKIRKSQEITSPSLSKNTDLVIASPSLSNIDVGEAMKKQNDVAIFLTGIVISS-VAKNSNFVFSPASI 
AtSRP3xxxxx-------------------------------------------------------------MDVREAMKNQTHVAMILSGHVLSS-APKDSNVIFSPASI 
AtSRP2xxxxx---------------------------------MDSKRKNQELSTSETADPSLSKTNKKQKIDMQEAMKNQNEVSLLLVGKVISA-VAKNSNCVFSPASI 
At2g26390xx-------------------------------------------------------------MELGKSIENQNNVVARLAKKVIETDVANGSNVVFSPMSI 
At3g45220xx-------------------------------------------------------------MELGKSMENQTDVMVLLAKHVIPT-VANGSNLVFSPMSI 
 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
AtSerpin1xxNVVLSIIAAGSAG----ATKDQILSFLKFSSTDQLNSFSSEIVSAVLADGSANGGPKLSVANGAWIDKSLSFKPSFKQLLEDSYKAASNQADFQSKAVEV 
At1g62170xxNAALTMVAASSGGEQGEELRSFILSFLKSSSTDELNAIFREIASVVLVDGSKKGGPKIAVVNGMWMDQSLSVNPLSKDLFKNFFSAAFAQVDFRSKAEEV 
AtSRP3xxxxxNSAITMHAAGPGG---DLVSGQILSFLRSSSIDELKTVFRELASVVYADRSATGGPKITAANGLWIDKSLPTDPKFKDLFENFFKAVYVPVDFRSEAEEV 
AtSRP2xxxxxNAVLTVTAANTDN---KTLRSFILSFLKSSSTEETNAIFHELASVVFKDGSETGGPKIAAVNGVWMEQSLSCNPDWEDLFLNFFKASFAKVDFRHKAEEV 
At2g26390xxNVLLSLIAAGSNP----VTKEEILSFLMSPSTDHLNAVLAKIA----DGGTERSDLCLSTAHGVWIDKSSYLKPSFKELLENSYKASCSQVDFATKPVEV 
At3g45220xxNVLLCLIAAGSNC----VTKEQILSFIMLPSSDYLNAVLAKTVSVALNDGMERSDLHLSTAYGVWIDKSLSFKPSFKDLLENSYNATCNQVDFATKPAEV 
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AtSerpin1xxIAEVNSWAEKETNGLITEVLPEGSADS-----MTKLIFANALYFKGTWNEKFDESLTQEGEFHLLDGNKVTAPFMTSKKKQYVSAYDGFKVLGLPYLQGQ 
At1g62170xxRTEVNAWASSHTNGLIKDLLPRGSVTS-----LTDRVYGSALYFKGTWEEKYSKSMTKCKPFYLLNGTSVSVPFMSSFEKQYIAAYDGFKVLRLPYRQGR 
AtSRP3xxxxxRKEVNSWVEHHTNNLIKDLLPDGSVTS-----LTNKIYANALSFKGAWKRPFEKYYTRDNDFYLVNGTSVSVPFMSSYENQYVRAYDGFKVLRLPYQRGS 
AtSRP2xxxxxRLDVNTWASRHTNDLIKEILPRGSVTS-----LTNWIYGNALYFKGAWEKAFDKSMTRDKPFHLLNGKSVSVPFMRSYEKQFIEAYDGFKVLRLPYRQGR 
At2g26390xxIDEVNIWADVHTNGLIKQILSRDCTDTIKEIRNSTLILANAVYFKAAWSRKFDAKLTKDNDFHLLDGNTVKVPFMMSYKDQYLRGYDGFQVLRLPYVE-- 
At3g45220xxINEVNAWAEVHTNGLIKEILSDDSIKT---IRESMLILANAVYFKGAWSKKFDAKLTKSYDFHLLDGTMVKVPFMTNYKKQYLEYYDGFKVLRLPYVE— 
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AtSerpin1xx–-DKRQFSMYFYLPDANNGLSDLLDKIVSTPGFLDNHIPRRQVKVREFKIPKFKFSFGFDASNVLKGLGLTSPFSGEEGLTEMVESPEMGKNLC------ 
At1g62170xxDNTNRNFAMYIYLPDKKGELDDLLERMTSTPGFLDSHNPERRVKVGKFRIPKFKIEFGFEASSAFSDFELD----------------------------- 
AtSRP3xxxxxDDTNRKFSMYFYLPDKKDGLDDLLEKMASTPGFLDSHIPTYRDELEKFRIPKFKIEFGFSVTSVLDRLGLRS---------------------------- 
AtSRP2xxxxxDDTNREFSMYLYLPDKKGELDNLLERITSNPGFLDSHIPEYRVDVGDFRIPKFKIEFGFEASSVFNDFELN----------------------------- 
At2g26390xx–-DKRHFSMYIYLPNDKDGLAALLEKISTEPGFLDSHIPLHRTPVDALRIPKLNFSFEFKASEVLKDMGLTSPFTSKGNLTEMVDSPSN------GDKLH 
At3g45220xx--DQRQFAMYIYLPNDRDGLPTLLEEISSKPRFLDNHIPRQRILTEAFKIPKFKFSFEFKASDVLKEMGLTLPFTH-GSLTEMVESPSIPENLCVAENLF 
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AtSerpin1xxVSNIFHKACIEVNEEGTEAAAASAGVIKLRxGLLMEEDE--IDFVADHPFLLVVTENITGVVLFIGQVVDP-LH----------- 
At1g62170xx–VSFYQKTLIEIDEKGTEAVTFTAFRSAYLxGCALVKP---IDFVADHPFLFLIREEQTGTVLFAGQIFDPSA------------ 
AtSRP3xxxxx-MSMYHKACVEIDEEGAEAAAATADGDCGCxSLDFVEPPKKIDFVADHPFLFLIREEKTGTVLFVGQIFDPSGPCSGSNSDSDDY 
AtSRP2xxxxx-VSLHQKALIEIDEEGTEAAAATTVVVVTGxSCLW-EPKKKIDFVADHPFLFLIREDKTGTLLFAGQIFDPSELSSALDRA---- 
At2g26390xxVSSIIHKACIEVDEEGTEAAAVSVAIMMPQxCLMRNP-----DFVADHPFLFTVREDNSGVILFIGQVLDPSKH----------- 
At3g45220xxVSNVFHKACIEVDEEGTEAAAVSVASMTKDxMLLMG------DFVADHPFLFTVREEKSGVILFMGQVLDPSIH----------- 
||||||||||||||||||||||||||||||||||||||||||||•||||||                         
||||||||||||||||||||||||P17||||||P8|||| P1|||P4  
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lengths between the mutants and wild-type seedlings
grown on 1/2 MS solid media were greatest at 40 ppm
MMS (Figure 4C). Leaf number was significantly higher in
mutants than in wild-type seedlings exposed to 55 ppm
MMS on B5 solid media (Figure 4D) and this effect was
accompanied by an increase in overall plant biomass (Fig-
ure 4E). We also examined the response of atsrp2 and
atsrp3 mutants to UV light and γ-radiation, but no differ-
ential effects (vs. wild-type) could be detected (Figure 5A
and 5B). RT-PCR using RNA isolated from whole seed-

lings (5-d) exposed to γ-radiation showed expression lev-
els of the DNA repair gene AtRAD51 were the same in the
mutants and wild-type (Figure 5C).

Induction of DNA repair- and cell cycle-related genes is 
reduced in atsrp2 and atsrp3 mutants exposed to MMS
After MMS treatment of seedlings grown on 1/2 MS liquid
media, samples were collected at various time points, total
RNA was isolated and real-time RT-PCR performed. In
wild-type plants, exposure to 200 ppm MMS led to a sub-

Expression of Arabidopsis serpin genesFigure 2
Expression of Arabidopsis serpin genes. (A, B) Semi-quantitative RT-PCR. Values in brackets indicate number of cycles. 
Actin2 served as a control. (A) Expression of serpin genes in mature tissues. RNA was extracted from 6-week-old plants. FB, 
flowers and flower buds; Si, siliques; L, leaves; S, stems; R, roots. (B) Expression of serpin genes in whole seedlings during early 
development (2–8 d). (C) Induction of AtSRP2 and AtSRP3 in response to MMS treatment of seedlings (5-d) after 1 and 2 d as 
determined by quantitative RT-PCR. Values are means +/- SE (n = 3). (D) Subcellular localization of AtSRP2 and AtSRP3. GFP 
fusion constructs with AtSRP2 and AtSRP3 full-length cDNAs, respectively, were transformed into Arabidopsis protoplasts. 
Bright-field, chlorophyll, GFP and DAPI-stained images are shown. Expression of GFP alone was a cytosolic marker. DAPI stain-
ing served as a marker for nuclear localization.
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stantial induction after 1 d of all marker genes examined,
with the exception of AtCYCD1;1, which was induced
after 2 d (Figure 6B and 6C; compare to Figure 6A). Inter-
estingly, for both atsrp2 and atsrp3 mutants, expression of
all marker genes except AtATM was lower than that in
wild-type plants 1 d after MMS treatment (Figure 6A–C).
The cell-cycle related gene AtCYCD1;1 was down-regu-
lated 1 day after plant exposure to MMS compared to both
the zero time point and to wild-type levels (Fig. 6A–C).
Recovery of the expression of all of the marker genes
except AtCYCD1;1 to wild-type levels occurred by day 2
(Figure 6A–C). The rapid changes in expression of these
key genes suggest AtSRP2 and AtSRP3 function in
responses to DNA-damage after exposure to MMS.

Discussion
Diversity of Arabidopsis serpin reactive centres and 
differential expression
The reactive centres of the Arabidopsis serpins are highly
diverse (Figure 1), suggesting a range of target proteinases
and therefore distinct biochemical pathways in which the
serpins might participate. The only specific target protein-
ase suggested for a plant serpin to date is the cysteine pro-
teinase Metacaspase 9 (AtMC9) for AtSerpin1 [11].
Differential expression of the serpin genes (Figure 2A and
2B) is corroborated by AtProteome data [14] and provides
more evidence for functional diversity. The nuclear local-
ization of AtSRP2 is consistent with predictions [5] based
on WoLF PSORT and contrasts with the cytosolic localiza-
tion of AtSRP3 (Figure 2D). AtSRP2 contains the nuclear

Schematic representations of atsrp2 and atsrp3 T-DNA insertion mutants and identification of homozygous linesFigure 3
Schematic representations of atsrp2 and atsrp3 T-DNA insertion mutants and identification of homozygous 
lines. (A, B) Genomic sequences of AtSRP3 and AtSRP2 each contain two exons. Primers for screening of homozygous lines are 
indicated by letters a-f and LB (left border). Gray boxes indicate the RCL motif. (C, D) Genomic-PCR analysis for screening of 
homozygous lines using the primers shown in A and B. wt, wild-type. (E) Confirmation of knockout of AtSRP2 and AtSRP3 
expression in each mutant via semi-quantitative RT-PCR. RNA was isolated from developing siliques. Values in brackets indi-
cate number of cycles. Actin2 served as a control. (F) Phenotype of atsrp2 and atsrp3 mutants. Mutants and wild-type plants 
were grown in a growth chamber at 24°C. Photographs were taken at 4 weeks after sowing.
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Responses of atsrp2 and atsrp3 mutants to MMSFigure 4
Responses of atsrp2 and atsrp3 mutants to MMS. B5 and half-strength MS (1/2 MS) media were used for seedling growth. 
(A) Vigour of atsrp2 and atsrp3 mutants compared to wild-type following treatment with MMS. Seedlings (5-d) of equal size 
were grown in 1/2 MS liquid media containing the indicated concentrations of MMS for 2 weeks. Size bars = 10 mm. (B-E) 
Seedlings (wild-type and mutants) were grown in the presence of the indicated concentrations of MMS on single plates to pro-
vide identical growth conditions. (B) Wild-type and mutant plants showing differential root lengths. Seedlings (5-d) were grown 
on B5 solid media. Arrows indicate root tips of mutants and wild-type plants (centre plant in each case) for comparison of root 
lengths. Photographs were taken on day 14. (C) Root lengths. Values are means +/- SE (n = 10). Seedlings (5-d) were grownon 
1/2 MS solid media. (D, E) Seedlings (2-week) were transplanted to B5 solid media containing 55 ppm MMS. (D) Leaf number 
per plant. Counts were made at 4 weeks after transplantation. Values are means +/- SE (n = 4). (E) Wild-type and mutant plants 
showing different plant sizes. Photographs were taken 4 weeks after transplantation. Size bars = 10 mm.
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localization signal PKKK at the distal end of the RCL (Fig-
ure 1); the one-residue difference between this and the
corresponding sequence in AtSRP3, PPKK, appears suffi-
cient to retain the latter serpin in the cytosol.

Responses of AtSRP2 and AtSRP3 are specific to MMS-
induced DNA damage
A test of cross-sensitivity of a collection of MMS-sensitive
yeast mutants to hydroxyurea, UV light and γ-radiation
found only 41 of 103 mutants showed cross-sensitivity to
all three treatments [15]. Deficiency in ATM (ataxia tel-
angiectasia mutated gene) in plants and mammals confers
hypersensitivity to γ-radiation and MMS but not to UV
light [16,17]. These and other studies show different
sources of DNA damage cause distinct types of lesions and
forms of cell cycle arrest. This is consistent with the differ-
ential responses of our serpin mutants (vs. wild-type) to
MMS but not to UV-C or γ-radiation.

Knockouts of AtSRP2 and AtSRP3 transiently reduce 
responses to MMS exposure
Mutants atsrp2 and atsrp3 exposed to MMS displayed
lower levels of induction of AtBRCA1, AtBARD1, AtRAD51
and AtCYCB1;1, as well as a downregulation of
AtCYCD1;1, after 1 d compared to wild-type. Expression
levels returned to wild-type levels 2 d after MMS exposure
(Figure 6A–C). Thus AtSRP2 and AtSRP3 may be required
for relatively early responses to alkylation damage. In
humans, BRCA1 appears to be involved in all phases of
the cell cycle [18] and BRCA1 deficiency causes abnormal-
ities in the S-phase and G2/M checkpoint [19]. RAD51 is
involved in homologous DNA repair and interacts with
BRCA1 [20]; moreover, transcription of RAD51 (and
AtRAD51) is highest in S-phase [21]. Yeast is most sensi-
tive to MMS during S-phase [22]. Thus down-regulation of
AtBRCA1 and AtRAD51 in the atsrp2 and atsrp3 mutants
may be associated with abnormal S-phase and a defective
G2/M checkpoint.

Transcripts of mitotic cyclin AtCYCB1;1 are reported to
accumulate around the G2/M transition [23], whereas
AtCYCD1;1 promotes not only transition through G0/G1/
S but also S/G2/M [24]. Cyclins (type D) are expressed
throughout the cell cycle in proliferating plant tissues
[25]. The CYCD1 interaction with cyclin-dependent pro-
tein kinase A (CDKA) acts at the G1/S and the G2/M
boundaries in Arabidopsis [24]. These results suggest
AtSRP2 and AtSRP3 may be involved in the regulation of
different cell-cycle checkpoints in response to MMS-
induced DNA damage. Interestingly, we detected no dif-
ference in AtATM expression between mutants and wild-
type (Figure 6A–C). The Arabidopsis atm mutant is hyper-
sensitive to γ-radiation and MMS but not to UV light [17].
The functions of AtSRP2 and AtSRP3 may be overlapping,
as is found for AtATM and AtATR [26], and they may be

independent of AtATM in a DNA damage-response path-
way; alternatively, both serpins may act downstream of
AtATM.

Regulation of the cell cycle includes mechanisms for cell
cycle arrest following DNA damage to allow time for
repair of the DNA [1]. Failure of these checkpoint
responses leads to a build up of harmful mutations. Cell
cycle arrest results in reduced rates of growth and a delay
in the development of tissues. Lesions such as specific
gene knockouts can interfere with the signal transduction
required for the detection of DNA damage and responses
including cell cycle arrest. We observed greater rates of
growth of our atsrp2 and atsrp3 mutant plants exposed to
MMS than that of wild-type plants given the same treat-
ment. Thus we speculate that knockouts of these serpin
genes result in de-repression of cell division following
MMS treatment, thereby implicating AtSRP2 and AtSRP3
in the normal signal transduction required for the relevant
checkpoint responses. It is important to note that Hefner
et al. (2006) found that plant cell-cycle responses to ion-
izing radiation that were observed in meristematic tissues
did not occur in strictly somatic tissues [27].

Serpin-mediated control of proteolysis and its links to DNA 
damage responses
Sequence analysis strongly suggests AtSRP2 and AtSRP3
are inhibitory serpins [5,6]. AtSerpin1 can inhibit AtMC9,
which is Arg/Lys specific [11]. In contrast, we predict
AtSRP2 and AtSRP3 inhibit proteinases that cleave at
small residues (Figure 1). Since AtSRP2 is localized to the
nucleus, its candidate targets are different than those for
AtSRP3, which was localized to the cytosol (Figure 2D).
Seventeen expressed genes encoding serpins with either
P1 Gly or P1 Cys were recently identified from several
monocots and eudicots [5]. Thus it is likely that serpins in
other plant species are functional homologues of AtSRP2
and AtSRP3.

Conclusion
The inhibitory serpins encoded in the Arabidopsis genome
display a variety of reactive centres, suggesting a range of
target proteinases, and are differentially expressed, indi-
cating a diversity of functions. Our results strongly suggest
a new role for plant serpins, which is likely to involve
inhibition of specific endogenous proteinases that target
Gly and Cys residues to regulate plant responses to
alkylating DNA damage. AtSRP2 and AtSRP3 are found in
the cytosol and nucleus, respectively, and thus may per-
form distinct tasks in the signalling required for these
responses. The requirement for AtSRP2 and AtSRP3 in
responses to exposure to alkylating genotoxins but not to
UV-C or γ-radiation provides support for distinct bio-
chemical pathways associated with these stresses. We sug-
Page 7 of 11
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Response of atsrp3 and atsrp2 mutants to UV radiation and γ-radiationFigure 5
Response of atsrp3 and atsrp2 mutants to UV radiation and γ-radiation. (A) Seedlings (5-d) were exposed to UV radi-
ation (1, 2, 3 and 10 J cm-2) and grown at 24°C for 3 weeks. Photographs were taken on day 21 after exposure. (B) Seedlings 
(5-d) were grown on B5 solid media and subjected to γ-radiation at doses of zero (control) and 125 Gy. Photographs were 
taken 2 weeks after irradiation. (C) Expression of DNA damage-related gene RAD51 in whole seedlings (5-d) following expo-
sure to γ-radiation was determined using semi-quantitative RT-PCR.
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Expression of DNA damage- and cell cycle-related genes in wild-type and mutants atsrp2 and atsrp3 following MMS treatmentFigure 6
Expression of DNA damage- and cell cycle-related genes in wild-type and mutants atsrp2 and atsrp3 following 
MMS treatment. Seedlings (5-d) were transplanted to MS liquid media containing 200 ppm MMS and samples collected at the 
indicated time points. Expression of marker genes in (A) wild-type, (B) atsrp2 and (C) atsrp3 seedlings was determined by quan-
titative RT-PCR. Values are means +/- SE (n = 2).
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gest our data have potential importance for development
of crops with greater resistance to alkylating genotoxins.

Methods
Plant materials and treatments with MMS, UV-C and -
radiation
Seeds of Arabidopsis thaliana (Col-0) were sterilized in 4%
sodium hypochlorite for 5 min and rinsed five times with
sterilized water. Plants were grown in a chamber at 24°C
(16 h light/8 h dark). For MMS treatment, B5 medium
(Gamborg's B5 medium [28]; Gibco) containing 2%
sucrose and 1/2 MS medium (half-strength Murashige &
Skoog medium [29]; Sigma) containing 0.5% sucrose
were used. Seedlings (5-d) on sterile media (both types)
were transplanted into 5 ml of each liquid medium con-
taining zero to 100 ppm MMS (Sigma). Samples were
incubated for 15 d on an orbital shaker with constant
light. For measurement of root lengths, seedlings (5-d)
were transplanted into each solid medium containing
MMS and measurements made 15 d later. Seedlings (2
weeks old) were transplanted to media containing MMS
for measurements of plant size and leaf number made 4
weeks later. Seedlings (5-d) were exposed to UV-C light (1
and 10 J cm-1) in open Petri dishes using a Stratalinker
2400 (Stratagene). For γ-radiation treatment, seedlings (5-
d) were irradiated with zero to 200 Gy using a 60Co source
and then placed into a growth chamber at 24°C for 3
weeks.

RNA isolation and RT-PCR
Total RNA from Arabidopsis tissues was extracted using the
RNeasy Plant Mini kit (Qiagen) with 1 U RNase-free
DNase (Qiagen). Reverse transcription was performed
using 5 μg total RNA as described [30]. cDNAs were used
as templates for semi-quantitative RT-PCR and real-time
RT-PCR. Primer sequences for all experiments are given in
Additional File 1 (Tables one-five). RT-PCR products were
cloned and sequences confirmed.

Isolation of knockout mutants
Seeds from atsrp2 and atsrp3 T-DNA insertion mutants
were obtained from the Salk Institute Genomic Analysis
Laboratory. For selection of lines homozygous for the T-
DNA insertion, primers a-f and LB were used to amplify
left border-flanking and serpin DNA from genomic DNA.
For confirmation of knockouts of AtSRP2 and AtSRP3
expression in atsrp2 and atsrp3 mutants, semi-quantitative
RT-PCR was performed using total RNA from developing
siliques.

Subcellular localization
AtSRP2 and AtSRP3 full-length cDNAs were amplified by
PCR and cloned into a 326-GFP plasmid such that GFP
was joined to the N-terminus of the serpins. Fusion con-
structs expressed under control of the cauliflower mosaic

virus 35S promoter were introduced into Arabidopsis pro-
toplasts isolated from seedlings (10-d) by polyethylene
glycol-mediated transformation. The protoplasts were
incubated at 24°C for 24 h. Expression of fusion proteins
was observed using a Leica TCS SP2 confocal system.

Abbreviations used
MMS: methyl methanesulfonate; RCL: reactive centre
loop; DSB: double-stranded break; DAPI: 4',6-diamidino-
2-phenylindole.
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