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Abstract
Background: The monolignol biosynthetic pathway interconnects with the biosynthesis of other
secondary phenolic metabolites, such as cinnamic acid derivatives, flavonoids and condensed
tannins. The objective of this study is to evaluate whether genetic modification of the monolignol
pathway in silver birch (Betula pendula Roth.) would alter the metabolism of these phenolic
compounds and how such alterations, if exist, would affect the ectomycorrhizal symbiosis.

Results: Silver birch lines expressing quaking aspen (Populus tremuloides L.) caffeate/5-
hydroxyferulate O-methyltransferase (PtCOMT) under the 35S cauliflower mosaic virus (CaMV)
promoter showed a reduction in the relative expression of a putative silver birch COMT (BpCOMT)
gene and, consequently, a decrease in the lignin syringyl/guaiacyl composition ratio. Alterations
were also detected in concentrations of certain phenolic compounds. All PtCOMT silver birch lines
produced normal ectomycorrhizas with the ectomycorrhizal fungus Paxillus involutus (Batsch: Fr.),
and the formation of symbiosis enhanced the growth of the transgenic plants.

Conclusion: The down-regulation of BpCOMT in the 35S-PtCOMT lines caused a reduction in the
syringyl/guaiacyl ratio of lignin, but no significant effect was seen in the composition or quantity of
phenolic compounds that would have been caused by the expression of PtCOMT under the 35S or
UbB1 promoter. Moreover, the detected alterations in the composition of lignin and secondary
phenolic compounds had no effect on the interaction between silver birch and P. involutus.
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Background
The phenylpropanoid pathway gives rise to a variety of
compounds that are used in the biosynthesis of cinnamic
acid derivatives, lignin, flavonoids and condensed tan-
nins. These phenolic compounds form a diverse group of
secondary metabolites, exhibiting numerous biological
functions in plants. In the Betula species, the phenolic
compound concentrations vary according to the develop-
ment phase of the plant [1,2], clone [2-4] or plant part [5]
and to different environmental factors [2,4,5]. Moreover,
tannins and specific flavonoids have been shown to play
a role in defence against herbivory [6] and protection
against UVB radiation [1,7-9]. In addition to the phenolic
compound profiles of different Betula species, the general
outline of the phenylpropanoid pathway of the species is
also well known [4].

The secondary cell wall is essential for the conduction of
water and the structural integrity of vascular plants as well
as for defence against insect herbivores and pathogens.
The secondary cell wall is composed of multiple layers of
cellulose microfibrils embedded in a matrix of hemicellu-
lose, lignin and pectin. Lignin, probably the most studied
phenolic compound, is composed of monomers derived
from the monolignol biosynthetic pathway [10]. In hard-
woods, coniferyl, sinapyl and p-coumaryl alcohol are the
main lignin monomers, giving rise to guaiacyl (G),
syringyl (S) and p-hydroxyphenyl (H) phenylpropanoid
units, respectively, when polymerized to the lignin mole-
cule. These hydroxycinnamyl alcohols differ in their
degree of methylation and, consequently, form varying
linkage types in the lignin, determining the solubility of
the polymer. In sinapyl alcohol, the C-5 position of the
aromatic ring is methylated, which prevents the formation
of strong linkage types that are typical for G units.
Angiosperm lignin consists mainly of G and S monomers
and is more easily delignified than the G unit rich gymno-
sperm lignin. The monolignol biosynthetic pathway is
still under debate, partly because the enzymes involved in
the pathway are multifunctional and exhibit broad sub-
strate specificity, at least in vitro, making several alternative
reaction orders possible. The most updated view of the
angiosperm monolignol biosynthetic pathway is pre-
sented by Li et al. [11], Do et al. [12] and Vanholme et al.
[13].

The caffeate/5-hydroxyferulate O-methyltransferase
(COMT) (EC 2.1.1.68), also known as 5-hydroxyconiferyl
aldehyde O-methyltransferase (AldOMT) [14] catalyses
the methylation of the C-5 position of angiosperms' S pre-
cursors. COMT belongs to the plant Class II O-methyl-
transferases (OMTs) together with enzymes that
methylate numerous phenolic compounds, such as phe-
nylpropenes and flavonols [15,16]. Initially COMT was
shown to use caffeic acid and 5-hydroxyferulate as sub-

strates [17,18], but further studies demonstrated that
COMT is especially involved in the biosynthesis of S
lignin [19-22] and, furthermore, that the methylation
occurs at 5-hydroxyconiferaldehyde and (or) 5-hydroxy-
coniferyl alcohol as shown with various angiosperm spe-
cies [14,23-26]. However, the substrate preferences of
COMT may vary between species being, for instance, rela-
tively board in alfalfa (Medicago sativa L.) [24] and wheat
(Triticum aestivum L.) [26]. Some of the enzymes having
COMT activity are probably bifunctional as in the case of
Arabidopsis thaliana OMT (At5g54160) which is involved
in both lignin and flavonoid biosynthesis [12,27,28].

Silver birch (Betula pendula Roth) is one of the key species
in boreal forest ecosystems and, in addition, economically
the most important deciduous tree species in Nordic
countries. In Finland, based on the national forest inven-
tory performed during years 2004 through 2007 approxi-
mately 16% of growing stock was birch (363 mill. m3)
[29]. The birch roundwood is used as a raw material in the
chemical pulp industry but also in plywood production.
Moreover, birch is an important source of energywood: in
2007 wood-based fuels covered one fifth (295PJ) of the
total energy consumption in Finland [30].

Boreal forest trees live in a mutualistic association with
ectomycorrhizal (ECM) fungi, which enables growth in
the nutrient-poor, acidic soils. The formation of ECM
symbiosis causes changes in the transcription levels of
both partners [31-34], resulting in morphological and
physiological alterations. The proliferation of root hairs is
inhibited and the epidermal cells of feeder roots in
angiosperms elongate radially as the fungus penetrates
into the intercellular space of the epidermis. The fungal
hyphae that cover feeder roots are also a source of an
external hyphal net. These distinctive alterations in the
symbiotic partners ensure the effective exchange of water
and nutrients from the fungal partner to the carbohy-
drates of the plant [35]. ECM formation has also been
observed to alter the expression levels of genes involved in
the phenylpropanoid pathway [32,33,36] and the con-
centrations of phenolic compounds [37-43]. However,
the results have been rather inconsistent.

Transgenic plants have great potential for future agricul-
ture, silviculture and biofuel production. Increasing the
pest and disease resistance of plants as well as improving
wood quality and enhancing wood production have been
the targets of both conventional breeding and genetic
engineering. From an industrial point of view, lignin qual-
ity and content are of particular interest. The removal of
lignin in chemical pulping is a costly process which could
be facilitated with more soluble lignin and lower lignin
content [44]. A reduction in lignin content would also be
beneficial for the production of bioethanol [45]. Other
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processes related to the production of bioethanol could
also be enhanced by modifications in the cell wall chem-
istry, as reviewed by Sticklen [46]. Lignin modifications
using various gene constructs that are associated with the
monolignol biosynthetic route have been conducted suc-
cessfully on angiosperm tree species (reviewed in
[10,11,13]).

Changes in the primary as well as in the secondary metab-
olism of organisms are triggered by a variety of stimuli,
such as changes in the developmental phase or environ-
mental factors. Therefore, the pleiotropic or non-target
effects of transgenes should also be studied in diverse
environmental conditions. So far, only minor changes
have been found in interactions between lignin modified
trees and herbivores or soil microfauna [47-53]. Recent
studies investigating possible changes in the secondary
metabolism that are caused by genetic transformations
have mostly been conducted on herbaceous species [54-
59] and without the involvement of ecological interac-
tions. In the present study, we analyzed the phenolic com-
pounds and lignin characteristics of PtCOMT silver birch

lines (Betula pendula Roth.) in interaction with the ECM
fungus Paxillus involutus (Batsch: Fr.) in order to determine
the impact of the symbiosis on the phenylpropanoid
route derived compounds and to detect possible unin-
tended effects of transgene expression.

Results
Expression of PtCOMT and BpCOMT in roots
The open reading frame of putative COMT (BpCOMT)
and partial sequence (1536 bp) of PP2A (BpPP2A) of sil-
ver birch were sequenced. The putative BpCOMT was 72%
identical to PtCOMT [EMBL: X62096] at the nucleotide
level and 87% identical at the amino acid level (Addi-
tional file 1) and showed highest similarity to the castor
bean (Ricinus communis) COMT [GenBank: EEF36570]
(90%) and almond (Prunus dulcis) COMT [EMBL:
CAA58218] (88%). The putative BpPP2A showed 91%
similarity with Medicago sativa subsp. x varia [GenBank:
AAG29593] and 90% similarity with A. thaliana [Gen-
Bank: NP_172790] PP2A at the amino acid level (Addi-
tional file 2). The expression of PtCOMT and the putative
BpCOMT was studied from the non-inoculated and myc-

RT-PCR results of BpCOMT and PtCOMT in silver birch rootsFigure 1
RT-PCR results of BpCOMT and PtCOMT in silver birch roots. Relative expression of the endogenous putative 
caffeate/5-hydroxyferulate O-methyltransferase of silver birch (BpCOMT) (A) and the heterologous PtCOMT gene (B) normal-
ized using atub and putative BpPP2A as reference genes in the non-inoculated and mycorrhizal roots of clone A and PtCOMT-
modified lines 23, 44 and 65. Values are means ± standard error. Different letters above the columns denote significant (P < 
0.05) difference between the PtCOMT lines and clone A within the treatments according to the two-sample t-test or the Wil-
coxon rank sum test with the Bonferroni correction. Number of replicates 3-5.
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orrhizal roots of silver birch (Figure 1A, B). The relative
expression of the putative BpCOMT was similar in both
non-inoculated and mycorrhizal roots: 35S-PtCOMT lines
23 and 44 had lower average levels of BpCOMT transcripts
than UbB1-PtCOMT line 65 and clone A (Figure 1A).
However, significant differences (P < 0.05) in the relative
expression of BpCOMT were only observed in the non-
inoculated roots between UbB1-PtCOMT line 65 and 35S-
PtCOMT line 23. The relative expression of PtCOMT was
significantly (P < 0.05) higher in the non-inoculated roots
of 35S-PtCOMT line 23 than in line 65, where the trans-
gene was driven by the UbB1 promoter (Figure 1B). In
mycorrhizal roots, the relative expression levels of
PtCOMT between lines were comparable to those of non-
inoculated roots.

Lignin distribution and composition
Lignin content as a percentage of dry weight (DW) evalu-
ated with the acetyl bromide method was 27.6% in the
non-inoculated and 27.1% in the mycorrhizal roots of
clone A. In PtCOMT lines the root lignin content varied
between the highest value of 27.8% of mycorrhizal roots
of line 65 and the lowest of 24.5% of mycorrhizal roots of

line 23. The corresponding lignin contents of stem wood
were more than 5 percentage units lower than the root
lignin contents and varied between 19.5 and 23.5%. Nei-
ther the transgene nor the fungal treatment affected the
lignin content. The GC-MS analyses of lignin units
showed that the non-inoculated clone A had higher (P <
0.05) S/G ratios in both stem and root wood than the
non-inoculated plants of PtCOMT line 44 (Figure 2A and
2B). In non-inoculated roots of PtCOMT line 23 the S/G
ratio was lower (P < 0.05) than in the roots of clone A. The
S/G ratio of stem and root wood of mycorrhizal PtCOMT
line 44 was significantly reduced (P < 0.05) in comparison
with the mycorrhizal clone A. In the stem and root wood
of both non-inoculated and mycorrhizal PtCOMT line 65,
the S/G ratios were at the same level as in clone A. More-
over, in the stem and root wood of non-inoculated
PtCOMT line 65, the S/G ratios were significantly (P <
0.05) higher than in the corresponding non-inoculated
PtCOMT lines 23 and 44. According to the Mäule assay
the S lignin (i.e. the pink-red colouration) was only
slightly reduced when the root and stem xylem sections of
PtCOMT lines 23 (Figure 3F, N) and 44 (Figure 3G, O)

The lignin syringyl/quiaicyl ratios of non-inoculated and mycorrhizal silver birchesFigure 2
The lignin syringyl/quiaicyl ratios of non-inoculated and mycorrhizal silver birches. The lignin syringyl/quiaicyl (S/G) 
ratios of stems (A) and roots (B) of non-transgenic clone A and PtCOMT-modified lines 23, 44 and 65. Values are means ± 
standard deviation. Different letters above the columns denote significant (P < 0.05) differences between the non-inoculated 
and mycorrhizal plants within the line/clone and between lines/clone within the fungal treatment according to the Wilcoxon 
rank sum test with the Benjamini & Hochberg correction or the two-sample t-test with the Benjamini & Hochberg correction. 
Number of replicates 3.
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were compared to the xylem sections of clone A (3E, M)
and PtCOMT line 65 (3H, P).

Soluble phenolic compounds and condensed tannins
No clone- or line-specific peaks were detected in the
HPLC-DAD or HPLC-MS chromatograms and, moreover,
all phenolic compounds were present in the non-inocu-
lated and mycorrhizal samples of clone A and PtCOMT
lines (Table 1 and Additional file 3). Acetylated kaemph-
erol, myricetin and quercetin with rhamnoside moiety
were found in all leaves of clone A and PtCOMT lines.
Condensed tannin concentrations were high in the sam-
ples (Table 1). The tannin levels partly prevented the iden-
tification of soluble phenolic components, especially
from the root samples (Additional file 3).

In the leaves of mycorrhizal plants, significant differences
(P < 0.05) were found in the concentrations of quercetin
3-arabinose and kaempherol 3-acetyl-glucoside between
PtCOMT lines 44 and 65 (Additional file 3). Significant
differences between clone A and the PtCOMT lines were
found in the concentration of p-OH-cinnamic acid deri-
vates, individual cinnamic acid derivatives 3 and 4 and
chlorogenic acid and chlorogenic acid derivative. A signif-
icant difference (P < 0.05) was detected in the amount of
(+)-catechin in the leaves of the mycorrhizal and non-
inoculated plants of clone A.

In stems, the cinnamic acid derivatives were at a higher (P
< 0.05) level in clone A than in PtCOMT lines 23 and 44
(Table 1). Of individual components, the concentration

Histochemical localization of lignin in non-inoculated silver birchesFigure 3
Histochemical localization of lignin in non-inoculated silver birches. Cross-sections of stem and root of non-inocu-
lated clone A (A, E, I, M) and PtCOMT-modified lines 23 (B, F, J, N), 44 (C, G, K, O) and 65 (D, H, L, P). Stems (A-H) and roots 
(I-P). Lignin stained pink-red in the phloroglucinol-HCL stained sections (A-D, I-L). In the Mäule stainings (E-H, M-P), syringyl 
lignin pink-red and guaiacyl lignin light brown to dark brown. xf, xylem fibre; xr, xylem ray; xv, xylem vessel.
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of p-OH-cinnamic acid glucoside was higher (P < 0.05) in
the stems of the clone A than in the stems of PtCOMT
lines 23 and 44 (Additional file 3). Significant differences
were also detected between the PtCOMT lines and clone A
in the concentrations of gallocatechin, 3,4'-dihydroxypro-
piophenone 3-glucoside (DHPPG) and (+)-catechin,

which was at a higher level in the stems of clone A than in
the stems of PtCOMT lines.

The concentration of condensed tannin precursors was
significantly (P < 0.05) higher in the mycorrhizal roots of
line 23 than in the roots of lines 44 and 65 (Table 1). A

Table 1: Concentrations of phenolic compounds and condensed tannins in non-inoculated and mycorrhizal silver birches

Leaves Clone Lines
T A 23 44 65

Cinnamic acid derivatives c 2.48 ± 0.44 a 2.12 ± 0.57 a 2.21 ± 0.37 a 2.30 ± 0.43 a
ECM 2.84 ± 0.71 a 2.35 ± 0.72 a 2.35 ± 0.41 a 2.50 ± 0.54 a

Flavonoids c 26.14 ± 4.00 a 30.67 ± 8.64 a 28.85 ± 2.14 a 30.87 ± 8.68 a
ECM 27.07 ± 7.36 a 25.38 ± 9.78 a 25.80 ± 5.25 a 29.71 ± 5.80 a

Apigenin derivatives c 0.20 ± 0.12 a 0.31 ± 0.10 a 0.31 ± 0.09 a 0.43 ± 0.25 a
ECM 0.40 ± 0.21 a 0.19 ± 0.11 a 0.24 ± 0.07 a 0.39 ± 0.12 a

Kaempherol derivatives c 0.85 ± 0.13 a 0.71 ± 0.23 a 0.90 ± 0.19 a 0.68 ± 0.20 a
ECM 0.83 ± 0.14 a 0.73 ± 0.22 a 0.97 ± 0.13 a 0.69 ± 0.06 a

Myricetin derivatives c 18.31 ± 3.58 a 22.81 ± 6.34 a 21.77 ± 1.75 a 21.66 ± 6.11 a
ECM 18.83 ± 5.04 a 18.40 ± 8.20 a 17.90 ± 4.30 a 20.17 ± 4.54 a

Quercetin derivatives c 5.19 ± 1.34 a 6.34 ± 2.12 a 5.43 ± 1.45 a 7.05 ± 1.64 a
ECM 6.38 ± 1.52 a 5.52 ± 1.98 a 5.84 ± 1.18 a 7.20 ± 1.19 a

Condensed tannins c 160.41 ± 24.97 a 142.87 ± 47.63 a 127.54 ± 34.23 a 154.82 ± 28.44 a
ECM 142.40 ± 68.98 a 106.7 ± 22.57 a 149.21 ± 24.76 a 142.32 ± 62.23 a

p-OH-cinnamic acid derivatives c 3.21 ± 0.47 a 1.84 ± 0.49 b 2.46 ± 0,32 ab 2.71 ± 0.61 ab
ECM 3.10 ± 0.36 ac 2.22 ± 0.71 bc 2.42 ± 0.32 ac 2.42 ± 0.38 ab

Stems Clone Lines
T A 23 44 65

Cinnamic acid derivatives c 2.68 ± 0.68 a 1.37 ± 0.28 b 1.33 ± 0.25 b 1.65 ± 0.37 bc
ECM 2.33 ± 0.33 ac 1.46 ± 0.18 b 1.27 ± 0.30 b 1.18 ± 0.20 b

Flavonoids c 14.33 ± 1.74 ab 11.43 ± 1.49 ab 10.23 ± 1.43 b 13.79 ± 2.81 ab
ECM 14.60 ± 2.12 a 12.38 ± 1.89 ab 10.77 ± 2.37 ab 11.18 ± 1.47 ab

Phenolic glycosides c 16.86 ± 1.46 ab 19.48 ± 0.81 ab 18.18 ± 2.22 ab 22.67 ± 5.31 b
ECM 15.40 ± 2.74 a 20.61 ± 2.29 ab 20.61 ± 2.29 ab 17.37 ± 5.29 ab

Condensed tannins c 108.57 ± 50.76 a 138.57 ± 13.52 a 137.43 ± 13.72 a 141.47 ± 16.70 a
ECM 144.82 ± 19.68 a 132.86 ± 11.23 a 131.90 ± 9.26 a 130.32 ± 12.55 a

Roots Clone Lines
T A 23 44 65

Cinnamic acid derivatives c 0.71 ± 0.33 a 0.17 ± 00.05 a 0.17 ± 0.10 a 0.37 ± 0.23 a
ECM 0.53 ± 0.30 a 0.19 ± 0.02 a 0.20 ± 0.13 a 0.24 ± 0.14 a

Flavonoids c 11.39 ± 0.62 a 9.45 ± 1.83 a 8.41 ± 1.93 a 8.26 ± 2.26 a
ECM 11.24 ± 2.78 a 12.10 ± 2.55 a 7.88 ± 2.91 a 7.21 ± 1.25 a

Gallo/Ellagitannins c 0.06 ± 0.01 a 0.32 ± 0.24 a 0.28 ± 0.09 a 0.12 ± 0.06 a
ECM 0.11 ± 0.06 a 0.36 ± 0.08 a 0.23 ± 0.12 a 0.15 ± 0.13 a

Condensed tannins c 130.50 ± 22.43 a 113.87 ± 17.86 a 106.92 ± 27.75 a 112.24 ± 8.94 a
ECM 126.09 ± 6.80 a 116.24 ± 10.11 a 108.47 ± 5.62 a 100.46 ± 2.24 a

Condensed tannin precursors c 35.07 ± 5.81 ab 31.44 ± 7.15 ab 28.60 ± 5.50 ab 28.50 ± 3.81 ab
ECM 37.20 ± 9.43 ac 41.92 ± 10.62 a 20.38 ± 6.70 b 25.44 ± 2.21 bc

Concentrations (mg/DW g) of phenolic compounds and condensed tannins in the leaf, stem and root samples of silver birch clone A and PtCOMT-
modified lines 23, 44 and 65 after 8 weeks in co-culture with P. involutus. Values are means ± standard deviations in the presence (ECM) or absence 
(c) of the fungus. Different letters following the values denote significant differences (P < 0.05) between the non-inoculated and mycorrhizal plants 
within the line/clone and between lines/clone within the fungal treatment according to the Kruskal-Wallis test combined with the Wilcoxon rank 
sum test with the Benjamini & Hochberg correction or the one-way or two-way Anova combined with Tukey's honestly significant difference test 
or with the two-sample t-test with the Benjamini & Hochberg correction. For statistical testing the leaf apigenin derivatives were square root, stem 
cinnamic acid derivatives log 10 and root condensed tannins square transformed. Number of replicates 4-7.
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small amount of ellagic acid was found in PtCOMT lines
23 and 44, where the PtCOMT was driven by the 35S pro-
moter, but not in lines 65 and clone A (Additional file 3).
An ellagic acid derivative was also found in line 65 and in
the mycorrhizal roots of clone A.

Formation of ECMs and growth characteristics of silver 
birches
All PtCOMT lines were able to form ECM symbiosis with
P. involutus, and inoculation resulted in slightly higher
survival percentages in clone A and PtCOMT lines 23 and
44 (Table 2). The mycorrhizal percentages of inoculated
plants varied considerably between PtCOMT lines and
clone A. No differences were detected in the number of
ECMs per root systems (Table 2) or in the morphology of
the mycorrhizas between lines: well-developed hyphal
mantle covered the root tips and the epidermal cells were
radially elongated and surrounded by fungal Hartig net
(Figure 4A-D). Compared with the fresh weights (FWs) of
the PtCOMT-modified lines, plants of clone A had lower
FWs, but the growth rate (i.e. final FW/initial FW ratio) of
the clone A plants in both treatments corresponded to the
growth of the transgenic lines (Table 3). Inoculation of
PtCOMT-modified lines with P. involutus enhanced their
growth, resulting in significantly (P < 0.05) higher FWs
than that of the non-inoculated plants (Table 3). The
root/shoot ratios of plants increased significantly (P <
0.05) as a result of inoculation in clone A and PtCOMT
line 23. Inoculation had no effect on the number or
length of adventitious roots.

Discussion
In the present study, no changes were found in phenolic
compounds of PtCOMT-modified silver birch lines that
would have been caused by the formation of ECM symbi-
osis with P. involutus. The only difference between the
mycorrhizal and non-inoculated plants was observed in
the catechin concentration in the leaves of the non-trans-
genic clone A. Münzenberger et al. [39,40] observed a
reduction in various phenolic compounds (e.g. p-
hydroxybenzoic acid glucoside, picein and catechin) in
the mycorrhizal fine roots of European larch (Larix

decidua Mill.) and Norway spruce [Picea abies (L.) Karst.]
when compared with the non-mycorrhizal roots. Similar
results were obtained with European beech (Fagus sylvatica
L.) ECM roots which contained less catechin [41]. By con-
trast, an increase in catechin concentration was detected
in the ECM roots of European larch [42] and the needles
and stems of mycorrhizal Scots pine (Pinus sylvestris L.)
[43]. Furthermore, enhanced levels of phenolic com-
pounds have been observed in Douglas-fir [Pseudotsuga
menziesii (Mirb.) Franco] [60] and brown barrel (Eucalyp-
tus fastigata Deane and Maiden) [37]. The discrepancy of
results may reflect the fluctuation of transcriptome pat-
terns during ECM formation, as seen in various microar-
ray experiments [32-34], diverse biological material and
experimental designs. In the present work, all PtCOMT
lines were able to form symbiosis with morphologically
normal ECMs. Moreover, the mycorrhizal interaction
increased FWs in all PtCOMT lines. Similar results have
been obtained with silver birches expressing sugar beet
chitinase IV [61] and 4-coumarate: coenzyme A ligase
(4CL) [52] and PtCOMT [53]. In all of these studies, trans-
genic silver birches were capable of forming ECM symbi-
osis although 4CL expressing silver birches had changes in
their growth characteristics [52] and two PtCOMT silver
birch lines had altered ECM morphology in vitro [53].

In silver birch-P. involutus interaction, Feugey et al. [62]
observed a transient increase in phenylalanine ammonia-
lyase (PAL) activity, but in the micro-array studies
[31,33] PAL was not differentially expressed in ECM roots
compared with non-inoculated roots. Instead, Le Quéré et
al. [33] found an increase in genes coding monolignol
biosynthesis route associated products: Arabidopsis caffe-
oyl-coA 3-O-methyltransferase (CCoAOMT) homolog,
dirigent protein homolog and sinapyl alcohol dehydroge-
nase (SAD) homolog. CCoAOMT expression was consist-
ent after 4 days of inoculation to 14 days, whereas the
expression of dirigent protein homolog and SAD
homolog was at its highest after 2 days of inoculation and
then again 14 days after the start of the co-cultivation. Our
results indicate that ECM formation had no drastic effect

Table 2: Survival and ECM characteristics of silver birches

ECM categories
Clone/
Line

Survival % of non-inoculated plants Survival % of inoculated plants ECM % I II III IV V

A 74 76 31 3 2 1 2 1
23 92 95 83 11 8 3 4 3
44 95 100 74 14 2 6 3 3
65 92 87 58 8 5 3 1 2

Survival percentages of non-inoculated and inoculated silver birches of clone A and PtCOMT-modified lines 23, 44 and 65, percentages of the ECM 
plants of all inoculated plants (ECM %) and number of ECM root tips in root systems classified to five categories: I = 1-20 ECMs, II = 20-30 ECMs, 
III = 30-50 ECMs, IV = 50-100 ECMs, V ≥ 100 ECMs.
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on the lignin or the phenolic compound biosynthesis in
stems or roots.

The expression of PtCOMT under control of the 35S pro-
moter resulted in lower S/G ratios in the stem and root
wood when compared with clone A, as observed in previ-
ous studies [48,53,63]. By contrast, when PtCOMT was
under the UbB1 promoter, no changes were detected in
the lignin characteristics. We have previously shown
[48,63] that there are multiple copies of the PtCOMT gene
in lines 23, 44 and 65 and that the UbB1-PtCOMT-tran-
script is bigger than the 35S-PtCOMT-transcript. In the
present study, the relative expression of the heterologous
PtCOMT seemed to be higher in the roots of 35S-PtCOMT
lines 23 and 44 than in those of UbB1-PtCOMT line 65.
Conversely, the BpCOMT mRNA transcript levels were
more decreased in 35S-PtCOMT lines 23 and 44 than in
UbB1-PtCOMT-line 65. The homology between BpCOMT
and PtCOMT at the nucleotide level was quite high and it
is therefore possible that the heterologous PtCOMT
expression resulted in RNAi-mediated partial silencing of
the endogenous BpCOMT. The relative expression levels
of BpCOMT and PtCOMT possibly indicate that the 35S
promoter generated a higher number of mRNA transcripts
of PtCOMT than UbB1 and, as a consequence, decreased
the number of BpCOMT transcripts more intensively in
35S-PtCOMT lines 23 and 44, thus causing a reduction in
the lignin S/G ratio.

The monolignol biosynthetic pathway crosstalks with
other cell wall associated pathways [64,65] and also with
the biosynthetic pathways of various phenolic com-
pounds [66-70] which share the same precursors. Conse-
quently, the altered expression of monolignol
biosynthetic pathway genes may result in changes in the

lignin content and phenolic compound profiles as shown
with suppressed COMT and CCoAOMT (EC 2.1.1.104)
[66], cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) [68],
hydroxycinnamoyl-CoA shikimate/quinate hydroxycin-
namoyl transferase (HCT; EC 2.3.1.133) [69] and cinna-
mate 4-hydroxylase (C4H; 1.14.13.11) [67,70]. In the
present study, chemical changes were detected between
the PtCOMT lines and the non-transgenic clone A in the
concentrations of phenolic compounds in the roots,
stems and leaves of both non-inoculated and mycorrhizal
plants. The detected changes were probably not direct
results of the transgene because 35S-PtCOMT lines 23 and
44 displayed differences in phenolic compound profiles.
Furthermore, the changes in the phenolic profiles of
leaves, stems and roots are within the natural variation of
phenolic compounds within silver birch [1-3,5,7].

Conclusion
In the present study, the down-regulation of BpCOMT in
the 35S-PtCOMT lines caused no shift of monolignol
pathway intermediates to the biosynthesis of the phenolic
secondary compounds. Moreover, no apparent effect in
the composition or quantity of phenolic compounds
caused by the expression of PtCOMT under the 35S or
UbB1 promoter could be found. To conclude, our results
indicate that the present lignin modification in the
PtCOMT lines does not affect phenolic profiles or the
symbiotic relationship between silver birch and P. involu-
tus.

Methods
Plant and fungal material
Silver birch (Betula pendula Roth.) lines 23, 44 and 65
expressing the caffeate/5-hydroxyferulate O-methyltrans-
ferase (PtCOMT) gene [EMBL: X62096] of quaking aspen

Table 3: Growth characteristics of non-inoculated and mycorrhizal silver birches

Clone/
Line

T Initial FW (g) Final FW (g) Ratio of final and 
initial FW

Root/shoot FW 
ratio

Number of 
adventitous roots

Length of 
adventitous roots 
(cm)

A c 0.08 ± 0.04 a 1.75 ± 0.76 a 25.79 ± 19.90 a 0.80 ± 0.25 a 4.00 ± 1.33 a 16.70 ± 2.83 a
ECM 0.07 ± 0.02 a 2.03 ± 0.76 a 34.49 ± 17.44 a 0.97 ± 0.24 b 4.00 ± 1.31 a 17.14 ± 1.04 a

23 c 0.15 ± 0.08 a 2.76 ± 0.88 a 23.75 ± 16.23 a 1.39 ± 0.40 a 4.97 ± 1.49 a 17.55 ± 3.78 a
ECM 0.16 ± 0.09 a 3.06 ± 0.86 b 23.06 ± 13.63 a 1.59 ± 0.48 b 5.50 ± 1.72 a 17.59 ± 3.35 a

44 c 0.14 ± 0.06 a 2.70 ± 0.37 a 22.93 ± 9.28 a 1.40 ± 0.26 a 5.15 ± 1.54 a 18.64 ± 2.00 a
ECM 0.15 ± 0.08 a 2.89 ± 0.51 b 23.28 ± 12.30 a 1.43 ± 0.29 a 7.68 ± 3.16 a 19.07 ± 2.10 a

65 c 0.17 ± 0.08 a 2.59 ± 0.43 a 17.70 ± 7.03 a 1.19 ± 0.20 a 4.03 ± 0.85 a 19.52 ± 2.05 a
ECM 0.18 ± 0.09 a 2.83 ± 0.47 b 20.73 ± 11.90 b 1.26 ± 0.31 a 4.53 ± 1.22 a 18.52 ± 1.85 a

Effects of the mycorrhiza formation on the growth of silver birch control clone A and PtCOMT-modified lines 23, 44 and 65 after 8 weeks in co-
culture with P. involutus in a greenhouse. Initial fresh weights (FWs) and final FWs of plants, root/shoot ratios, number and length of adventitious 
roots. Values are means ± standard deviations in the presence (ECM) or absence (c) of the fungus. Different letters following the values denote a 
significant difference (P < 0.05) between the non-inoculated and inoculated plants with mycorrhizas within each line/clone according to the 
Wilcoxon rank sum test or the two-sample t-test. Number of replicates 9-35.
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(Populus tremuloides L.) [17] were generated as described
by Aronen et al. [63] and Tiimonen et al. [48]. The
PtCOMT encodes Class II methyltransferase (EC
2.1.1.68), which uses 5-hydroxyconiferyl aldehyde as a
primary substrate [14]. All transgenic lines were produced
from clone A as described in Valjakka et al. [71], originat-

ing in Punkaharju, Eastern Finland (61°48' N, 29°17' E).
In PtCOMT lines 23 and 44, the transgene was driven by
the 35S cauliflower mosaic virus (CaMV) promoter and in
line 65 by the sunflower polyubiquitin (UbB1) promoter.
The gene constructs were pRT99/35S-PtCOMT and
pRT99/UbB1-PtCOMT, respectively. The plants of all lines

ECM roots of silver birchFigure 4
ECM roots of silver birch. Cross-sections (5-10 μm) of silver birch clone A (A) and PtCOMT lines 23 (B), 44 (C) and 65 (D) 
roots after 8 weeks of co-cultivation with P. involutus. Arrow, Hartig net; triangle, mycelium of P. involutus; e, epidermal cell of 
silver birch root. Bars = 20 μm.
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were multiplied on Woody Plant Medium (WPM) [72]
containing 2.2 μM 6-benzyladenine (BA) and 2.8 μM
indole-3-acetic acid (IAA) and subsequently rooted for 6
weeks on the same media without any growth regulators.
The rooted plants were acclimated for 2 weeks in a sterile
peat-vermiculite (1:10; v:v) mixture moistened with mod-
ified Melin-Norkrans nutrient solution (MMN) [73] (3.7
mM KH2PO4, 1.9 mM (NH4)2HPO4, 0.45 mM CaCl2,
0.43 mM NaCl, 0.61 mM MgSO4 • 7H2O, 0.2 μM thia-
mine-HCl, 18.4 μM FeCl3 • 6H2O, pH 5.8) without glu-
cose.

The ECM fungus Paxillus involutus (Batsch: Fr.) strain
(ATCC 200175) was maintained by cultivating the myc-
elium on Hagem agar medium [74] in darkness at 21°C.
For the experiment, the mycelium was cultivated for 2
weeks on the same medium.

Co-cultivation of silver birches and P. involutus
Before starting the co-cultivation, individual silver birches
were weighed and photographed and the number of
adventitious roots was monitored. For the co-cultivation,
the root system of a plant was transferred to a Petri dish,
14 cm in diameter and filled with a sterile peat-vermicu-
lite (1:10; v/v) mixture moistened with modified MN
nutrient solution without glucose. The shoot was posi-
tioned outside the Petri dish through an opening in the
sidewall of the dish. Three mycelial agar plugs cut from a
2-week-old culture of P. involutus were placed close to the
roots of individual plants. Plain agar plugs were used as a
substitute for mycelial agar plugs in the non-inoculated
treatments. The number of replicates per fungal treatment
and line was 38. The Petri dishes were closed with para-
film and brown paper was attached to each dish lid. The
co-cultivation took place in a greenhouse at the Botanical
Garden of the University of Oulu under a 16-h photope-
riod (340-580 μE m-2 s-1, high pressure sodium lamps,
Master SON-T PIA Plus 400 W, Philips, Amsterdam, Neth-
erlands) at 20°C in a randomly assigned design. Relative
humidity in the greenhouse was 88. From the second co-
cultivation week on, plants were treated twice a week with
3% pine soap. Five weeks after inoculation, water and 10
ml of modified half-strength MN nutrients were added to
all cultivations. The plants were cultivated with the fungus
for 8 weeks. At harvest, the shoots and roots were weighed
and the number of adventitious and lateral roots was
measured. All root systems were evaluated with a dissect-
ing microscope and the ECM status of the mycorrhizal
plants was categorized into five classes (I-V) according to
the number of ECM root tips per a root system (I; 1-20, II;
20-30, III; 30-50, IV; 50-100, V; more than 100 ECMs per
root system).

Sequencing of silver birch COMT and PP2A
Wood of clone A was ground in liquid nitrogen and RNA
extracted using the method described by Jaakola et al. [75]
and quantified with a ND-1000 UV-Vis spectrophotome-
ter (NanoDrop Technologies, Wilmington, USA). Super-
Script II reverse transcriptase (Invitrogen, Carlsbad, CA,
USA) was used to prepare cDNA from 2 μg of total RNA in
a standard reaction with anchored oligo-dT primers. The
PCR amplification of fragments was performed using
DyNAzyme™II polymerase (Finnzymes, Finland) and
degenerated primers 5'-
ATGGG(GATC)TC(GCA)AC(AC)(AG)(GC)(GATC)GA(A
G)AC-3' as a forward and 5'-
(AG)(GATC)GT(AG)TTG(AT)A(GATC)GCA(GC)A(AG)C
AC-3' as a reverse for putative silver birch COMT and
primers 5'-GATGATGATGAGGTACTTCTTGCG-3' as a for-
ward and 5'-ATTTGATGTTTGGAACTCTGTC-3' as a
reverse for protein phosphatase 2A regulatory subunit
(PP2A). The 3' ends of COMT and PP2A were amplified
with the SMART™ RACE cDNA amplification Kit (Clon-
tech Laboratories, Palo Alto, CA) following the instruc-
tions of the manufacturer. The gene-specific primers for
3'-RACE PCR reactions were 5'-CGCGGAAACTCAGAT-
GACTCCAACTCAA-3' and 5'-GCTTGCGGAGGATAG-
GCATTGGAGAGTA-3' for COMT and PP2A, respectively.
The PCR products were gel purified with NucleoSpin
Extract (Macherey-Nagel, Düren, Germany). Fragments of
putative putative PP2A were sequenced directly from the
PCR product and the COMT were subcloned using a Qia-
gen PCR Cloning Kit (Germantown, MD, USA). The
sequences were determined with an ABI PRISM 377 DNA
sequencer (Perkin-Elmer, Wellesley, MA, USA) and a
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems, Foster City, CA, USA). Three to five plasmids
were sequenced per putative COMT fragment.

Relative quantification of PtCOMT and silver birch 
COMT mRNAs
The root samples from the non-inoculated and mycor-
rhizal plants representing all transgenic lines and control
clone A were ground in liquid nitrogen. RNA from the
samples was extracted with an E.Z.N.A.® Plant RNA Kit
(Omega Bio-Tek Inc., Doraville, GA, USA) following the
manufacturer's instructions, and its quality and quantity
were checked with an agarose gel electroforesis and a ND-
1000 UV-Vis spectrophotometer (NanoDrop Technolo-
gies). cDNA was prepared with SuperScript II reverse tran-
scriptase (Invitrogen) using 300 ng of total RNA. All
cDNAs were gel-purified using a DNA Gel Extraction Kit
(Millipore Corporation, Billerica, MA, USA), and cDNA
acquisitions were determinated with a ND-1000 UV-Vis
spectrophotometer. The real-time PCR reactions consisted
of LightCycler 480 SYBR green 1 Master mix (Roche, Mey-
lan, France) and 0.50 μM each primer and were run with
a LightCycler ® 480 system (Roche, Penzberg, Germany).
Page 10 of 15
(page number not for citation purposes)



BMC Plant Biology 2009, 9:124 http://www.biomedcentral.com/1471-2229/9/124
The primers used were: atub 5'-AATGCGTGCTGGGAACT-
3' (forward) and 5'-GATGACAGTGGGTTCCAGAT-3'
(reverse); BpCOMT 5'-CCAGATGCACCAGTTATGCT-3'
(forward) and 5'-GAGCAGCAATAGACACACCA-3'
(reverse); BpPP2A 5'-GGAGGATAGGCATTGGAGAG-3'
(forward) and 5'-CTGCATCACGGATCGAGTAA-3'
(reverse); PtCOMT 5'-GCCATTGAACTCGACCTT-3' (for-
ward) and 5'-AGATCTTTCAGAGAGCAGGTAA-3'
(reverse). The real-time PCR amplification cycles were as
follows: incubation at 95°C for 10 min followed by 35
cycles: 10 s at 95°C, 10 s at 60°C and 5 s at 72°C. Each
sample was run as a duplicate, and the number of biolog-
ical replicates was 4 or 5 per line and fungal treatment.
The PCR products were analysed using the melting curve
analysis of LightCycler 480 software release 1.5 (Roche)
and the specificity of all the primers were confirmed by
sequencing the product of RT-PCR. Products were first
purified according the instructions of NucleoSpin Extract
(Macherey-Nagel) and then directly sequenced using
BigDye Terminator v3.1 chemistry (Applied Biosystems)
with the ABI PRISM 377 DNA sequencer (Perkin-Elmer).
The quantification of the target genes was conducted
using a calibrator-normalized procedure with the alpha-
tubulin (atub) gene [GenBank: AJ279695] of silver birch
and the putative PP2A [76,77] of silver birch as reference
genes. A primer pair specific (BpCOMT, PtCOMT, BpPP2A
and atub) standard curve of amplification efficiency was
used in the calculation of the relative amount of target
(BpCOMT and PtCOMT) and reference genes (atub and
the putative BpPP2A of silver birch), generated with dilu-
tions of pooled silver birch cDNA samples. The calibrator
normalized relative expression was determined as a ratio
between the relative amount of target (BpCOMT and
PtCOMT) and reference (BpPP2A and atub) genes normal-
ized e.g. divided by the target/reference ratio of the cali-
brator (Roche Applied Science Technical Note No. LC 13/
2001).

Quantification of lignin content
The root and stem samples from the non-inoculated and
inoculated plants representing all transgenic lines and
control clone A were first dried at 60°C for 72 h and then
the bark was removed and wood was ground to fine pow-
der. Powdered samples of 5 mg were extracted with ace-
tone, and lignin contents were determined with an acetyl
bromide method as described by Koutaniemi et al. [78]
from three biological replicates. Klason lignin of the
pooled root and stem samples was used as a standard in
the equation that was employed in the calculation of
lignin contents. Klason lignin was determined gravimetri-
cally from the barked and homogenized samples as
described by Tiimonen et al. [48]. Two parallel determina-
tions were carried out per pooled sample. The Klason
lignin contents in the root and stem samples were 26.06
and 21.44% of DW, respectively.

Determination of syringyl and guaiacyl moieties
Syringyl (S) and guaiacyl (G) monomers of the root and
stem lignin were analyzed from dried (60°C for 72 h),
barked and ground samples, using the modified method
of thioacidolysis [79]. A sample of 1-3 mg was extracted
with ethanol before thioacidolysis, which was conducted
from three biological replicates. The thioacidolysis proce-
dure and the chromatographic conditions were conducted
as described by Tiimonen et al. [48]. Based on the individ-
ual mass spectra, peak areas of two ions were used in the
selective ion monitoring (SIM) analyses. Selected ions
were m/z 269 for G-units and m/z 299 for S-units.

Analyses of phenolic compounds and condensed tannins
The leaf, root and stem samples from the non-inoculated
and inoculated plants representing all transgenic lines and
control clone A were dried at 60°C for 72 h and stored at
-20°C until analyses. Four to six replicates of the leaf, root
and stem samples (8 mg, 15 mg and 20 mg, respectively)
were homogenized with an Ultra-Turrax T8 homogenizer
in 700 μl of methanol for 30 s. The samples were incu-
bated in an ice bath for 15 min and centrifuged at 16 000
g for 3 min. Supernatants were collected and methanol
extractions were repeated three more times with 5 min
incubations on ice bath. The supernatants were combined
and methanol evaporated under nitrogen. The extraction
residues were dried at room temperature for 2 days for fur-
ther analysis of tannins.

The samples were dissolved in 600 μl of water:methanol
(1:1, v/v) and analyzed by HPLC (Agilent 1100 Series
HPLC, Palo Alto, CA, USA) with a diode array detector
(DAD). A hypersil ODS HPLC-column (4.6 mm × 60 mm,
3 μm particles, Hewlett-Packard, Germany) was used in
the separation. The injection volumes of the leaf, root and
stem samples were 20 μl, 15 μl and 10 μl, respectively. The
compounds were identified and quantified based on their
retention times, spectral characteristics and HPLC-MS
(API-ES, positive ions) [80]. HPLC-MS (API-ES, pos. ions)
produced the following molecular ions: kaempherol-
acetylrhamnoside, (M+1) 474; myricetin-acetylrhamno-
side, (M+1) 506; quercetin-acetylrhamnoside, (M+1) 490.

Quantification was conducted using following standards:
apigenin (Roth, Karlsruhe, Germany) for the apigenin
derivatives, (+)-catechin (Aldrich, Steinheim, Germany)
for the catechin derivatives, chlorogenic acid (Aldrich) for
the chlorogenic acid and cinnamic acid derivatives, gallic
acid (Aldrich) for the gallotannins, kaempferol 3-O-gluco-
side (Extrasynthese, Genay, France) for the kaempferol
derivatives, luteolin (Roth) for the luteolin derivatives,
myricetin 3-rhamnoside (Apin Chemicals Ltd, Abingdon,
UK) for the myricetin derivatives, picein (Extrasynthese)
for 3,4'-dihydroxypropiophenone 3-glucoside (DHPPG),
quercetin 3-galactoside (Roth) for the quercetin deriva-
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tives and salicin (Roth) for the condensed tannin precur-
sors. The quantification of isorhamnetin 3-glucoside,
platyfylloside, rhododendrin and salidroside was based
on their own reference coefficients.

Soluble condensed tannins were determinated from the
HPLC sample and insoluble condensed tannins from the
dried extract residue by acid butanol assay [81]. The quan-
tification of condensed tannins was based on purified tan-
nin from dwarf birch (Betula nana L.).

Toluidine blue staining of ECM roots
After analysis under a dissecting microscope, the mycor-
rhizal root tips were further examined by light micros-
copy. The root tips were fixed with 4% paraformaldehyde
in 0.1 M phosphate-buffered saline (PBS) buffer (137 mM
NaCl, 2.7 mM KCl, 8.0 mM Na2HPO4, 1.7 mM KH2PO4,
pH 7.4) after which they were dehydrated in graded etha-
nol series, treated with 2-methyl-2-propanol and embed-
ded into paraffin (Merck, Whitehouse Station, NJ, USA)
blocks. Both longitudinal and cross-sections of 5-10 μm
were used for staining with a 0.05% toluidine blue O solu-
tion. The root sections were examined with a light micro-
scope (Nikon Optiphot 2, Japan) and imaged with an
Infinity1-3C camera (Lumenera Corporatiom, Ottawa,
Ontario, Canada), using the IMT iSolution Lite image-
processing program (IMT i-Solution Inc., Vancouver, BC,
Canada).

Histochemical lignin staining
Hand-cut cross-sections were made of the upper parts of
the roots and the bases of the stem. Phloroglucinol-HCL
and Mäule staining assays were conducted as described in
Guo et al. [82] with an additional potassium iodide treat-
ment of sections at the end of the phloroglucinol-HCl
staining. The samples were examined under a light micro-
scope (Nikon Optiphot 2) and photographed with a dig-
ital camera (Nikon Coolpix 950, Japan).

Statistical analysis
Statistical analyses were performed with an R software
package 2.5.1 [83] and a graphical user interface, the R
Commander [84].

Comparisons of growth characteristics between the non-
inoculated and inoculated plants with mycorrhizas, i.e.
mycorrhizal plants, within each line/clone were analysed
with the Wilcoxon rank sum test or the two-sample t-test.
Differences in the number of individual ECM root tips in
the root systems between control clone A and PtCOMT
lines 23, 44 and 65 were studied using Fisher's exact test.

The lignin quantity and S/G ratios were statistically tested
using the Wilcoxon rank sum test or the two-sample t-test.
The tests were performed between the non-inoculated and

mycorrhizal plants within the line/clone and also
between lines/clone within the fungal treatment. Phenolic
compound and condensed tannin data was studied using
a parametric one-way or two-way Anova combined with
Tukey's honestly significant difference test or two-sample
t-test or non-parametric Kruskal-Wallis test [85] com-
bined with the Wilcoxon rank sum test when the assump-
tions of parametric tests were not met. Statistical testing
was conducted between the non-inoculated and mycor-
rhizal plants within the line/clone or between lines/clone
within the treatments. Square, square root, log 10 or
inverse transformations were conducted to some of the
variables of phenolic compounds. The Benjamini &
Hochberg false discovery rate (FDR) [86] controlling the
expected proportion of type I errors was used in the cor-
rection of multiple pairwise comparisons of lignin charac-
teristics and phenolic data with the cut-off value of 0.05
[87,88].

The relative quantification of genes was performed using
the ratio of reference gene amplification efficiency and
amplification efficiency of the target gene. Averages
obtained with both reference genes (atub and PP2A) were
used in the statistical testing of gene expression with the
Wilcoxon rank sum test with the Bonferroni correction or
the two-sample t-test with the Bonferroni correction. The
relative expression of BpCOMT was compared between
the PtCOMT lines and clone A within the treatments. The
relative expression of PtCOMT was statistically examined
between the PtCOMT lines within the treatment.

Accession Numbers
The open reading frame of silver birch (Betula pendula
Roth) COMT (BpCOMT) and partial PP2A (BpPP2A)
sequence can be found in the GenBank at the NCBI under
accession numbers [GenBank: FJ667539] and [GenBank:
FJ667540], respectively.
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Additional file 1
Alignment of predicted amino acid sequence of putative silver birch 
COMT. Alignment of the putative silver birch caffeate/5-hydroxyferulate 
O-methyltransferase (BpCOMT) amino acid sequence with the COMT 
sequences of Rosa chinensis [EMBL: CAD29457], quaking aspen (Pop-
ulus tremuloides L.) [EMBL: X62096], Medicago sativa [GenBank: 
M63853] and Arabidopsis thaliana [GenBank: NM_124796]. Con-
served amino acids present in all sequences are highlighted in indigo blue 
and similar with blue-grey.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-9-124-S1.PDF]

Additional file 2
Alignment of predicted amino acid sequence of putative silver birch 
PP2A. Alignment of the partial silver birch protein phosphatase 2A regu-
latory subunit (BpPP2A) amino acid sequence with the PP2Asequences 
of Medicago sativa subsp. x varia [GenBank: [AAG29593]], Arabidop-
sis thaliana [GenBank: [NP_172790]], Zea mays [GenBank: 
[NP_001105839]] and Oryza sativa [EMBL: [CAB51803]]. Con-
served amino acids present in all sequences are highlighted in indigo blue 
and similar with blue-grey.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-9-124-S2.PDF]

Additional file 3
Concentrations of individual phenolic compounds. Individual phenolic 
compounds (mg/DW g) identified from leaf, stem and root samples of 
non-inoculated and mycorrhizal silver birches of clone A and PtCOMT-
modified lines 23, 44 and 65 after 8 weeks in co-culture with P. involu-
tus. Values are concentration mg/DW g means ± standard deviations in 
the presence (ECM) or absence (c) of the fungus. Different letters follow-
ing the values denote significant differences (P < 0.05) between non-inoc-
ulated and mycorrhizal plants within the line/clone and between lines/
clone within the fungal treatment according to the Kruskal-Wallis test 
combined with the Wilcoxon rank sum test with the Benjamini & Hoch-
berg correction or the one-way or two-way Anova combined with Tukey's 
honestly significant difference test or with the two-sample t-test with the 
Benjamini & Hochberg correction. Square root transformation was con-
ducted to the chlorogenic acid, dicoumaroyl-astragalin and hyperin of 
leaves and isorhamnetin 3-glucoside of stems. Log 10 transformation was 
conducted to the chlorogenic acid derivatives of leaves and p-OH-cin-
namic acid glucoside of stems. The inverse transformation was conducted 
to the cinnamic acid derivative 4 of leaves and salidroside of stems. 
Number of replicates 4-7. RT, retention time (min); nm, wavelength used 
in monitoring of the component.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-9-124-S3.PDF]
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