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Abstract

Background: Plant natriuretic peptides (PNPs) are a class of systemically mobile molecules
distantly related to expansins. While several physiological responses to PNPs have been reported,
their biological role has remained elusive. Here we use a combination of expression correlation
analysis, meta-analysis of gene expression profiles in response to specific stimuli and in selected
mutants, and promoter content analysis to infer the biological role of the Arabidopsis thaliana PNP,
AtPNP-A.

Results: A gene ontology analysis of AtPNP-A and the 25 most expression correlated genes
revealed a significant over representation of genes annotated as part of the systemic acquired
resistance (SAR) pathway. Transcription of these genes is strongly induced in response to salicylic
acid (SA) and its functional synthetic analogue benzothiadiazole S-methylester (BTH), a number of
biotic and abiotic stresses including many SA-mediated SAR-inducing conditions, as well as in the
constitutive SAR expressing mutants cpr5 and mpk4 which have elevated SA levels. Furthermore,
the expression of AtPNP-A was determined to be significantly correlated with the SAR annotated
transcription factor, WRKY 70, and the promoters of AtPNP-A and the correlated genes contain an
enrichment in the core WRKY binding W-box cis-elements. In constitutively expressing WRKY 70
lines the expression of AtPNP-A and the correlated genes, including the SAR marker genes, PR-2 and
PR-5, were determined to be strongly induced.

Conclusion: The co-expression analyses, both in wild type and mutants, provides compelling
evidence that suggests AtPNP-A may function as a component of plant defence responses and SAR
in particular. The presented evidence also suggests that the expression of AtPNP-A is controlled by
WRKY transcription factors and WRKY 70 in particular. AtPNP-A shares many characteristics with
PR proteins in that its transcription is strongly induced in response to pathogen challenges, it
contains an N-terminal signalling peptide and is secreted into the extracellular space and along with
PR-I, PR-2 and PR-5 proteins it has been isolated from the Arabidopsis apoplast. Based on these
findings we suggest that AtPNP-A could be classified as a newly identified PR protein.
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Background

Natriuretic Peptide (NP) systems have been identified in
mammals, fish, amphibians, birds and reptiles. NPs and
their receptors are commonly associated with organs
involved in cardiac and osmoregulatory homeostasis. In
amphibians, birds and fish, NPs have been shown to play
a critical role in the regulation of blood fluid volume and
composition [1].

The first indication that NPs function in plants came from
radio-immuno assays on plant tissue extracts from Florida
beauty [2] and it was shown that the rate of transpiration,
solute flow and solute uptake in carnation and chrysan-
themum was rapidly and significantly increased after
exogenous application of synthetic human atrial NP
(ANP) [3]. Subsequently it was demonstrated that rat ANP
can induce stomatal opening in a concentration depend-
ent manner [4] and this effect appears to be dependent on
the intracellular second messenger cGMP (guanosine
3',5'-cyclic monophosphate) since it is inhibited by the
guanylate cyclase inhibitor LY 83583, but can be induced
by the synthetic cell permeant cGMP analogue 8-Br-cGMP
[5-7]. Binding experiments of ANP to isolated leaf mem-
branes provide evidence for specific receptor ligand inter-
actions [8].

A plant NP (PNP) from A. thaliana (AtPNP-A) and several
closely related sequences in different species have since
been identified [9,10]. AtPNP-A, its most closely related
sequence AtPNP-B, and orthologues in other higher plant
species, share a family-45 glucosidase domain with the
cell wall loosening expansins [11] and are related to
expansins on the basis of this structural homology [9,12].
AtPNP-A (At2g18660) is a small protein of 126 amino
acids in length (MW: 14016 kD; pI: 9.22) that is encoded
by a gene with a single intron of 100 bp. The region most
conserved between PNPs from different plant species has
also been shown to be the key to its physiological activity
[13]. Evidence for systemic mobility of PNPs comes from
the structure and processing of the molecules [9]. The pro-
tein contains an N-terminal 24 amino acid signal peptide
(MW: 2249) that directs the molecule into the extracellu-
lar space and PNPs that are recognized by anti-human
atrial natriuretic polypeptide rabbit serum have been
localised in situ in conductive tissue [ 14] and were isolated
from xylem sap [15], and proteomics studies have identi-
fied the AtPNP-A protein in the apoplastic space in A. thal-
iana [16].

A number of physiological and biochemical studies have
implicated AtPNP-A with a role in the regulation of ion
and solute homeostasis. Immuno-reactive PNP (irPNP)
extracts and recombinant AtPNP-A have been shown to
induce swelling in leaf mesophyll protoplasts [17] and in
protoplasts isolated from Arabidopsis cell suspension cul-
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tures respectively [15]. Further, irPNP rapidly and specifi-
cally induced a transient elevation of cGMP levels in the
conductive stele tissue of maize roots [6] and in stomatal
guard cell protoplasts [7] and recently recombinant
AtPNP-A was shown to stimulate protoplast swelling in a
cGMP dependent manner [18]. IrPNPs also modulate ion
fluxes across plant membranes [19] and recombinant
AtPNP-A induced spatially dependent H*, K+ and Na+*
fluxes in A. thaliana roots [20]. Endogenous levels of
irPNP are increased in response to NaCl stress in whole-
plants and in Arabidopsis suspension culture cells exposed
to high salt or osmoticum [15]. Collectively, these studies
indicate that PNP-like molecules may function as extracel-
lular signalling molecules that directly affect water and
solute transport in response to stress. Based on biochemi-
cal and physiological data we propose mechanisms of
action for AtPNP-A at the cellular level as summarised in
Figure 1 (adapted from [21]).

Despite an increasing body of physiological and biochem-
ical data [21], the biological role of this systemically
mobile peptide has remained elusive. In order to infer a
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Model of AtPNP-A action at the cellular level. The
model proposes that AtPNP-A can dock to receptor-like
molecules that directly act as particulate guanylyl cyclases
(pGCs) or indirectly activate soluble GCs (sGCs). GCs cata-
lyse the reaction from GTP to cGMP. The latter acts as sec-
ond messenger affecting cytosolic Ca2* levels, modulating ion
channels, activating phosphorylation through kinases and
influences the transcriptome. Phosphodiesterases (PDEs) in
turn metabolise cGMP to GMP (adapted from [21]).
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biological role for AtPNP-A, we made use of the large
repositories of A. thaliana microarray data to study the
expression profiles of AtPNP-A and the 25 most expres-
sion correlated genes in response to various treatments as
well as in mutants. We further analysed the promoters of
these genes for known regulatory motifs. The results of
our study predict a function for AtPNP-A in plant abiotic
and biotic stress responses, and in particular in systemic
acquired resistance (SAR). Furthermore, we demonstrate
how computational analyses that link regulatory potential
as encoded by promoter elements and expression data can
provide novel insights into the function of a specific gene
as well as groups of genes.

Results and Discussion

Expression Correlation and GO Analyses

In the first step of the analyses we extracted and ranked the
25 genes whose expressions are most tightly correlated
with AtPNP-A (Table 1). The moderate correlation (r) val-
ues of the listed genes (maximum r = 0.73) may reflect
that the expression of AtPNP-A is subject to complex com-
binatorial control via multiple promoter motifs with com-
plex inputs from multiple, potentially antagonistic,
signalling pathways.

In order to identify a functional role of AtPNP-A, the cor-
related genes were analysed in FatiGO+ [22-24] to identify
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any bias in GO functional annotation terms in the corre-
lated list (list 1) compared to the remainder of the A. thal-
iana genome [see Additional file 1]. In the GO search
category of biological process there is a significant (Family
Wise Error Rate - FWER) adjusted p-value) enrichment in
genes involved in biotic defence responses at a number of
levels. The most notable bias being at level 8 with a signif-
icant (adjusted p-value 0.0000038) enrichment in genes
involved in SAR (Table 1). SAR is an inducible plant
defense response against local pathogen infection that
gives rise to a systemic long lasting resistance to a broad
range of virulent pathogens [25]. The SAR response is
characterised by the accumulation of endogenous salicylic
acid (SA) in infected tissues and later in distal uninfected
tissues with a subsequent induction of a select group of
pathogenesis-related genes (PR genes) [26].

The enrichment in SAR annotated genes in our list is par-
ticularly striking considering that in FatiGO the entire A.
thaliana genome contains only 21 annotated SAR genes
and four of these are present in our list of correlated genes.
The four correlated SAR genes include NIMINI
(At1g02450; r = 0.61) that is involved in the transcrip-
tional regulation of PR genes [26], PR-1 (At2g14610; r =
0.63); PR-2 (At3g57260; r = 0.73) and PR-5 (At1g75040;
0.61) whose expression is commonly used as diagnostic
markers of the SA dependent SAR response [27]. An

Table I: List of genes that are expression correlated with AtPNP-A (At2g18660)

Locus r-value Annotation

At3g57260 RBS. SAR 0.731 Pathogenesis-related protein 2 (PR-2)
At5gl0760 0.681 Aspartyl protease family protein
At2g04450 RES 0.676 Triphosphatase activity, stress response
At5g52760 0.661 Heavy-metal-assoc. domain-containing
At2g17040 0.659 No apical meristem (NAM) family protein
At5g55450 RES 0.647 Protease inhibitor/lipid transfer protein
Atlg21250 0.645 Wall-associated kinase | (WAKI)
At4g23610 0.641 Hinl — role in hypersensitive response
Atlgl3470 0.634 Mitochondrial protein of unknown function
At4g14365 0.634 Zinc finger (C3HC4-type RING) family
Atlg73800 0.630 Calmodulin binding protein

At3g56710 0.629 SigA-binding protein, plastid sigma factor
At4g04490 0.627 PK family, liposaccharide biosynthesis
At2g14560 0.626 Protein of unknown function (DUF 567)
At2g14610 RBS. SAR 0.626 Pathogenesis-related protein | (PR-1)
Atlg21520 0.626 Expressed protein

At2g24850 0.626 Aminotransferase, resp. to wounding & JA
At4g23150 0.625 Protein kinase family protein

At3g60420 0.622 Phosphobhistidine phosphatase activity
At2g32680 0.620 Disease resistance, leucine rich-repeats
Atlg74440 0.614 Similar to YGLO|0w-like protein
Atlg02450 RBS, SAR 0.613 NPRI/NIMI-interacting prot. | (NIMINT)
At4g1 1890 0.606 Protein kinase family protein

Atlg75040 RES, SAR 0.604 Pathogenesis-related protein 5 (PR-5)
Atlg08450 0.602 Calreticulin 3 precursor, Ca2* binding

SAR: Systemic acquired resistance; RBS: Responsive to biotic stress
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extended correlation analysis revealed that an additional
11 SAR annotated genes, including NPR1 (or NIMI;
At1g64280; r = 0.52), which is an essential key positive
regulator of signal transduction leading to the SAR
response and expression of PR proteins, are significantly
correlated (9 positive, 2 negative; p < 0.01; bivariate nor-
mal distribution) with the expression of AtPNP-A [see
Additional file 2]. Other correlated genes in list 1 anno-
tated to be involved in plant defence responses and
response to biotic stimuli include a disease resistance fam-
ily protein containing leucine rich-repeats (At2g32680), a
stress responsive gene with triphosphatase activity
(At2g04450) and a protease inhibitor (At5g55450). The
GO analysis for the cellular component and molecular
function category revealed no significant difference in bio-
logically relevant labels between the two lists.

The results of the Swiss-Prot keyword search also identi-
fied a significant enrichment in genes annotated as PR
proteins (adjusted p value = 0.002), involved in signalling
(adjusted p value = 0.026) and associated with the apo-
plast (adjusted p value = 0.040) in list 1. It was noted that
along with PR-1, PR-2 and PR-5, AtPNP-A is one of six
genes in list 1 annotated as having signalling function.

Microarray Expression Profiles

The over representation of genes involved in defence
responses, and specifically SAR is consistent with the
observation that AtPNP-A and the correlated genes are
most highly expressed in microarray experiments where
defence responses are elicited. The treatments that induce
up-regulation of AtPNP-A and the correlated genes more
than two-fold include SA and other SAR inducing condi-
tions as well as a number of abiotic stresses (Figure 2).

The strong up-regulation of AtPNP-A and correlated genes
by SA and benzothiadiazole S-methylester (BTH), a syn-
thetic functional SA analogue [28], is a key indicator that
these genes are involved in plant defence and specifically
SAR since SA has been shown to be essential and sufficient
to induce the SAR response in plants [29] (Figure 2B). In
addition to AtPNP-A, all of the 25 correlated genes were
significantly (ANOVA p-value < 0.05) up-regulated by
more than two fold after 8 h and 24 h treatments with 60
uM BTH (Supplementary Table 3 in [28]) further linking
these genes to the SAR defense pathway. Expression of
AtPNP-A is also significantly correlated with the isochoris-
mate synthase-1 (ICS-1) gene (At1g74710; r = 0.50) that
is critical for SA biosynthesis [29].

The biotic stresses that induced the largest increase in
expression of AtPNP-A include infection with the bio-
trophic pathogens Phytophthora infestans, Erysiphe cichora-
cearum and Erysiphe orontii that depend on living host
tissue for survival (Figure 2B). Activation of AtPNP-A
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Expression profile of AtPNP-A and correlated genes in
response to selected treatments. The results presented
illustrate the fold change (log2) in expression of AtPNP-A,
WRKY 70 and WRKY 46 and the average fold change for the
25 correlated genes in response to abiotic stresses (A) and
biotic and chemical treatments (B). (A) The treatments were:
UV-B shoot 3 h (n = 2); O; 6 h (n = 3); Osmotic stress in the
shoot after 3 h (n = 2); K* starvation in the shoot after 7 days
(n = 3); NaCl in the roots after 6 h (n = 2) and cold acclima-
tion after 14 days (n = 3). (B) The treatments were: Erysiphe
cichoracearum 3 days after inoculation (n = 4); Erysiphe orontii
3 days after inoculation (n = 2); Phytophthora infestans | day
after inoculation (n = 3); BTH after 8 h (n = 3); SA after 3 h
(n = 2) and cyclohexamide after 3 h (n = 2). Error bars repre-
sent standard errors of the mean.

expression and the correlated genes in response to these
pathogens is in accord with the literature informing that
SA-dependent defenses generally act against biotrophs in
contrast to jamonic acid- and ethylene-dependent
responses that counteract necrotrophs [30].

The large increases in gene expression induced by ozone
and UV-B (+6.864,, and +8.09;,,, respectively for AtPNP-
A) is consistent with these genes being part of the SAR
response since both these treatments have previously
been shown to stimulate SA production and induce the
expression of PR genes [31-34].
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The expression of AtPNP-A and the correlated genes is also
strongly modulated by a number of abiotic stresses
including K+ starvation, osmotic, and NaCl stress as well
as cold acclimation (Figure 2A). A common element of
abiotic stresses is that they decrease water potential [35].
It is noteworthy that the induction of AtPNP-A in response
to ion and osmotic stresses is tissue specific with the
response to high Na+being specific to root tissue with lit-
tle change observed in shoots while both low K+ and high
osmolarity induced elevated transcription in shoots only
[36]. This is of interest since the AtPNP-A protein has been
shown to affect water movement in shoots [37] and pro-
toplasts [17] as well as ion fluxes in roots [20]. It is thus
tempting to speculate that AtPNP-A may have a role in
maintaining plant water and ion homeostasis under stress
conditions.

K+ is the key inorganic ion required in high quantities by
plants while Na+* on the other hand is toxic at high concen-
trations [38]. Na+ is able to compete with K+ ions for
uptake and binding sites thus maintaining the correct
Na*/K+ ratio in plants is of the utmost importance [39].
Decreases in K* might cause the plant to take up more Na+*
in order to maintain adequate osmotic pressure [40].
Therefore either the increase in cytosolic Na+ or a decrease
in osmotic pressure as a consequence of K* starvation or a
combination of both may cause AtPNP-A induction.

Elevated expression of AtPNP-A and correlated genes, par-
ticularly defence genes and SAR annotated genes, by abi-
otic osmotic stresses as well as defence eliciting treatments
may well reflect that both types of challenges lead to com-
mon homeostatic disturbances which in turn transcrip-
tionally activate a set of common response genes. This
concept is supported by several studies that recognise a
role of SA in abiotic stresses such as drought, salinity and
temperature [41,42] and the accumulation of PR proteins
is in fact a common plant response to both abiotic and
biotic stresses further highlighting the overlap in biotic
and abiotic defence mechanisms [43].

The generation of reactive oxygen species and changes in
ion fluxes have been identified as early responses to both
abiotic and biotic stresses, including an influx of H* and
Ca?* and an efflux of K+ and Cl- [35]. AtPNP-A has been
shown to modulate H+, Na+ and K+ fluxes [20] thus further
implicating AtPNP-A in plant stress responses as do stud-
ies which indicate that AtPNP-A signals via the intracellu-
lar second messenger cGMP [5,6,18] since cGMP has been
shown to be an important signaling molecule in pathogen
[44] and osmotic stress responses [45] in plants. It seems
particularly relevant that the expression of a gene encod-
ing a cyclic nucleotide-gated channel (CNGC20;
At3g17700), which has been shown to be involved in the
transport of Ca?+ and K+, and in some cases Na*, across
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cell membranes is also correlated with that of AtPNP-A (r
= 0.60) [see Additional file 2] since ion conductance in
these channels is regulated by cGMP as well as Ca2+ and
calmodulin. These channels have also been implicated in
regulating SA-dependent biotic defense responses [46].

AtPNP-A expression is also correlated with a number of
Ca?+ sensing/binding proteins including, the above men-
tioned CNGC20, calreticulin 3 (At1g08450; r = 0.60), two
calmodulin-binding proteins (At1g73800; r = 0.63 and
At1g73805; r = 0.588) with family members involved in
the induction of plant defense responses (NCBI sequence
viewer, pfam07887) and a Ca2+-binding EF hand domain
containing protein (At3g47480; r = 0.59). One of the ear-
liest responses to biotic and abiotic stresses is an increase
in cytosolic free Ca2+[47] that in turn plays a role in acti-
vating the oxidative burst after elicitor treatment [48,49]
and is also linked to signaling SA-induced PR gene expres-
sion [50]. The expression of Ca2* sensing molecules is rap-
idly induced in response to biotic and abiotic stresses [51]
and functions to decode Ca2+signatures and/or relay sig-
nals to downstream targets, including kinases, which fur-
ther amplify the Ca2+* signal by inducing downstream
phosphorylation cascades [38]. The presence of three
kinases (At4g04490; r = 0.63, At4g23150; r = 0.63 and
At4g11890; r = 0.61) in amongst the correlated genes
(Table 1) is entirely consistent with such a signaling cas-
cade. Moreover, the expression correlation of three stress
responsive mitogen-activated protein kinase (MAP
kinase) genes MAPKK (At4g26070; r = 0.59), MPK 11
(At1g01560; 7 = 0.58) and MAPKK (At4g29810; r = 0.57)
to AtPNP-A also ties in with the proposed cascades [see
Additional file 2]. Activation of MAPKs has indeed been
reported after exposure to pathogens [52] as well as a
number of abiotic stresses [53].

While transcriptional responses to some stresses, includ-
ing the osmotic, salt, UV-B and some of the biotic treat-
ments, were measured over multiple time points, the data
presented here are generally the earliest time point that
induced the largest increase in AtPNP-A expression. The
expression of AtPNP-A in some cases showed induction at
earlier time points than considered in this study, however,
in all cases the expression of AtPNP-A generally increased
over time and thus high transcript levels were sustained
for the duration of the stress, e.g. five days for E. orontii
and 24 h for osmotic, salt and UV-B treatments (data not
shown). The UV-B experiment can be distinguished from
the other experiments in that the stress was not main-
tained for the duration of the experiment. Rather, plants
were irradiated for 15 minutes before being transferred
back to the standard phytochamber conditions until har-
vest. The expression of AtPNP-A in shoots was elevated at
30 minutes (1.84,.,,; data not shown), peaked at 3 h
(8.09)44p, > 250 fold) (Figure 2A) and remained elevated

Page 5 of 12

(page number not for citation purposes)



BMC Plant Biology 2008, 8:24

(6.46),4), data not shown) at 24 h after irradiation. This
documents that AtPNP-A expression remains very high
and sustained after the stress has been removed and thus
may indicate that the initial damage inflicted, and not the
actual presence of the stress itself, is the driving force for
the maintained transcriptional activation.

The increase in expression of APNP-A (4.49),,) in
response to the protein synthesis inhibitor cycloheximide
(CHX) implies that transcription of AtPNP-A can occur
independently of de novo protein synthesis and that con-
curs with the definition of immediate early response genes
[54] that have been proposed to play important roles in
the early regulation of defence responses [55]. It has been
postulated that CHX induces gene expression via dual
mechanisms; by preventing synthesis or activation of a
short-lived transcriptional repressor or by removing spe-
cific labile transcript degrading enzymes [56]. There is evi-
dence that the induced expression of genes encoding
secreted proteins, such as AtPNP-A does not require de
novo protein synthesis [57]. The ability to rapidly induce
expression of AtPNP-A independently of de novo protein
synthesis thus implies both an important and early role
for this gene in response to specific elicitors.

Common Maotifs in cis and Transcription Factors

The common expression profiles of APNP-A and the 25
correlated genes in response to both biotic and abiotic
stresses suggests that these genes are under common regu-
latory control and are thus likely to share common cis-ele-
ments in their promoter regions. To reveal aspects of
common transcriptional activation we analyzed promoter
regions of these genes 1 kb upstream of the predicted tran-
scription start site (TSS) for the presence of known plant
cis-elements.

The analysis in POBO [58] indicated that the invariant
core TTGAC W-box motif was present in 25/26 of our cor-
related genes a total number of 78 times at an average of
2.99 copies/promoter compared to the average of 2.24
across all A. thaliana promoters (t-test p-value >0.0001)
(Figure 3 and [see Additional file 3]). The analysis in Ath-
ena [59] identified that the extended and more stringent
TTGAC(A/T) W-box motif was present in 22/26 genes a
total of 54 times at an average of 2.08 copies/promoter (p-
value = 0.0037; data not shown). Although in Athena this
p-value does not qualify the W-box motifs to be enriched
in our correlated genes according to the stringent enrich-
ment threshold of <104 (Bonferroni correction), it does
show that a very high percentage of our genes contain
multiple copies of the stringent W-box. Both these pro-
moter analysis methods indicate that multiple copies of
the W-box elements are present in a high percentage of
our correlated genes with the core TTGAC motifs being
significantly enriched compared to expected frequencies
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Frequency of occurrence of the W-box (TTGAC)
core motif in artificial clusters generated in POBO
for A. thaliana background promoters compared to
the promoters of AtPNP-A and the 25 most posi-
tively expression correlated genes. The | kb upstream
promoter sequences of the 26 expression correlated genes
were analysed in POBO (see methods and [see Additional
file 3]) to determine the frequency of occurrence of the
TTGAC W-box core motif. The analysis determined that
compared to the A. thaliana background (2.24 copies/pro-
moter), there was a significant (t-test: p-value > 0.0001)
enrichment in the frequency of the TTGAC motif in our
dataset (2.99 copies/promoter).

in the A. thaliana genome suggesting that they are impor-
tant regulatory elements in these expression correlated
genes.

In plants, W-box cis-elements are known to bind WRKY
TFs [60] indicating that these TFs may be important in reg-
ulating the expression of the correlated genes. This is com-
pletely consistent with our expression analysis results
since the WRKY family of TFs [60] have well established
roles in regulating disease responses in plants [61]. In
addition, they have also been documented to mediate abi-
otic plant responses to freezing [62], wounding [63], oxi-
dative stress [64], drought, salinity, cold, and heat [65-
67]. In our study, expression of AtPNP-A is moderately
correlated with the expression of WRKY 70 (At3g56400; r
= 0.60) and WRKY 46 (At2g46400; r = 0.56) [see Addi-
tional file 2]. When viewing the expression profiles of
WRKY 70 and WRKY 46 genes it is apparent that the vari-
ous treatments which induced large increases in the
expression of the correlated genes in Table 1 also induced
marked changes in the expression of the WRKY genes (Fig-
ure 2). This links the expression of AtPNP-A and the
WRKY genes to common biological responses and raises
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the possibility that WRKY 70 and WRKY 46 may positively
regulate AtPNP-A transcription.

While transcription of WRKY 70 and WRKY 46 is gener-
ally strongly induced in response to SAR eliciting treat-
ments, only WRKY 46 is consistently co-expressed with
AtPNP-A in response to the abiotic (ion and osmotic)
stresses (Figure 2A and 2B). As previously described for
AtPNP-A and the correlated genes, the induced expression
of WRKY 46 is specific to shoots in response to K+ starva-
tion and osmotic stress and to roots in response to NaCl
stress.

The expression correlation between AtPNP-A and the dis-
cussed WRKY genes and the overrepresentation of W-
boxes in the correlated genes prompted a manual analysis
of the promoter of AtPNP-A which revealed the presence
of four copies of the core TTGAC W-box motif and two
occurrences of more stringent TTGAC(C/T) motif clus-
tered in close proximity (starting at -738 and -775) rela-
tive to the predicated TSS. The result of the manual
inspection coincided with the results returned form Ath-
ena and POBO. Similar frequencies of these motifs were
observed in a study of 26 SAR regulated genes (termed PR-
1 regulon genes) in which only W-boxes were present in
the promoters of all 26 genes at an average of 4.3 copies
of the core and 2.1 copies of the more stringent W-box ele-
ments within 1100 bp upstream of the predicated TSS
[60]. These values represent a significant enrichment in
W-boxes since these authors determined that the statisti-
cal expectation for a randomly distributed pentamer
(TTGAC) was 2.1 copies and for the hexamer (TTGAC(C/
T)) 1.1 copies per 1100 bp of promoter [60].

In summary, the presented evidence is entirely consistent
with transcription of AtPNP-A and the correlated genes
being positively regulated by WRKY TFs. The promoter of
AtPNP-A and the correlated genes contain an enrichment
of the core W-box motif and expression of AtPNP-A is cor-
related with two WRKY genes in response to various SAR
eliciting and biotic and abiotic stresses. The correlation of
WRKY 46 in response to ion and osmotic abiotc stresses
was both treatment and tissue specific. In the light of these
facts we suggest that the expression of AtPNP-A may be
closely regulated by WRKY TFs in response to SAR-induc-
ing and abiotic stresses.

Insights from AtPNP-A Expression in Mutants

The link between AtPNP-A, SA signalling and the WRKY
TFs is also supported by expression profiles of AtPNP-A
and the correlated genes in mutants including a WRKY 70
over-expresser and various SAR related mutants present in
the mutant surveyor in Genevestigator [68].

http://www.biomedcentral.com/1471-2229/8/24
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Figure 4

Expression profile of AtPNP-A and selected corre-
lated genes in selected A. thaliana mutants. The
expression profiles of AtPNP-A and the correlated genes were
examined in a number of SA/SAR related mutants. The
expression of AtPNP-A and selected genes is greatly elevated
in WRKY 70 over-expresser lines and in mutants with ele-
vated SA levels such as cpr5 and mpk4. Conversely, in the SA
deficient mutant nahG, expression of the selected genes is
markedly reduced. Error bars represent standard errors of
the mean.

WRKY 70 is a SAR annotated TF in FatiGO and has been
shown to be an essential factor in plant defense responses
necessary for the induction of PR gene expression in A.
thaliana [28,69]. In a microarray study, a constitutive over-
expressor of WRKY 70 was shown to induce constitutive
expression of SA induced PR genes and five of our corre-
lated genes, including PR-2 and PR-5, which are widely
considered SAR marker genes, correspond to genes in this
study that were up-regulated > 2.5 fold compared to con-
trols [69]. While the 8K Affymetrix chip used for this study
did not contain an AtPNP-A representative sequence, in
an unpublished experiment using the 24K chip, AtPNP-A
was up-regulated over 50 fold in over-expressing WRKY
70 lines and was amongst the top 20 genes that are up-reg-
ulated in this study (Figure 4; Personal communication:
Gunter Brader, Faculty of Biosciences, University of Hel-
sinki). Additionally, a strong induction in expression of
the 25 correlated genes is also observed in this experiment
providing further evidence that indicates that WRKY 70
may positively regulate the expression of AtPNP-A and the
expression correlated genes.

In the cpr5 (constitutive expresser of pathogenesis related
genes) and mpk4 mutants that have elevated levels of SA
and display constitutive expression of PR genes [70,71],
the expression of AtPNP-A and the correlated genes was
markedly elevated (Figure 4). It is of particular interest
that the four listed mutants that displayed the largest
increase in the expression of AtPNP-A in Genevestigator

Page 7 of 12

(page number not for citation purposes)



BMC Plant Biology 2008, 8:24

are all cpr5 mutants, being cpr5/scv1, cpr5/nprl, cpr5, cpr5/
nprl/svil (range +7.55 to +6.21,4,,) (data not shown).

Conversely, the nahG mutant that is defective in SA pro-
duction and signalling, is the only experiment presented
in this study that documents a large reduction in the
expression of AtPNP-A (-4.6,,,) and the correlated genes
(Figure 4). This experiment was performed in senescing
leaves [72] to identify SA-dependent global gene expres-
sion patterns during developmental senescence since SA
has previously been shown to be required for expression
of some senescence-induced genes [73]. In this study, and
in the ATGE developmental series of A. thaliana microar-
ray experiments [74] transcript levels of AtPNP-A were ele-
vated approximately 2.8 fold in senescing leaves
compared to adult green leaves (data not shown) indicat-
ing that AtPNP-A is a senescence enhanced gene. Further-
more, since transcript levels of AtPNP-A were reduced
beyond detection limits in senescing leaves in the nahG
mutant this induction appears to be SA-dependent. This
pattern is completely consistent with other results since
premature senescence, including leaf yellowing and
necrosis can be induced by biotic and aboitic stresses that
stimulate SA production, including ozone [75] and UV-B
[76] which also induce large increases in expression of
AtPNP-A. Thus, there is evidence documenting induction
of AtPNP-A expression in SA-mediated natural develop-
mental and stress activated processes which both culmi-
nate in cell death indicating that AtPNP-A may be
involved in these processes. The mutant analyses further
enforce that the transcriptional regulation of AtPNP-A and
the correlated genes is largely controlled by SA.

The role of a TGA TF in PR gene expression

Additional evidence for co-regulation of AtPNP-A with
SAR annotated genes is provided by the observation that
expression of another SAR annotated TF, the TGA3 bZIP
TF (At1g22070), is correlated with that of AtPNP-A (r =
0.49). Upon induction of SAR, NIMIN1 and NPR1 form a
ternary complex with TGA factors in the nucleus which
enhances their binding to the positive regulatory as-1
(activator sequence 1) or as-1-like (TGACG) cis-elements
that are present in the promoter of several plant genes acti-
vated during defense, including A. thaliana PR-1 [77-79].
A manual inspection of the AtPNP-A promoter identified
two occurrences of the TGACG motif in close proximity to
the TSS (start at -94 and +24). The correlation in expres-
sion between AtPNP-A, NPR1, NIMIN1 and TGA3 (Table
1, and [see Additional file 2]) along with the identifica-
tion of TGA3 cis-elements in the promoter of AtPNP-A is
strong evidence that these two factors contribute to the
regulation of AtPNP-A expression.

http://www.biomedcentral.com/1471-2229/8/24

AtPNP-A as PR Protein

Based on the above results we suggest that AtPNP-A could
be classified as a PR protein since it possesses many of the
criteria that define this class of proteins. The name "patho-
genesis related protein" is a collective term that encom-
passes all proteins that are present at almost undetectable
levels in healthy tissue but are induced at the protein level
following pathogen infection. The classification of these
proteins is based on their pathogen inducible expression
rather than defined functional roles in defence [43]. This
point is brought into focus when considering PR-1, which
is the quintessential marker of the SAR response yet its
biological role is largely unknown [80]. Although AtPNP-
A is yet to be proven to be induced at the protein level in
response to pathogens, elevated protein levels have been
shown as a result of abiotic stresses [15]. In addition, tran-
scription of AtPNP-A is low under control conditions but
strongly induced in response to biotic and abiotic stresses
and the protein has been identified and isolated from the
A. thaliana apoplast together PR-1, PR-2 and PR-5 proteins
[16]. AtPNP-A has other features characteristic of PR pro-
teins including an N-terminal signal peptide [43] that
directs the molecule into the extracellular space. Further,
induction of AtPNP-A at the transcript level appears to
occur independent of de novo protein synthesis character-
istic of genes encoding secreted proteins [28]. The evolu-
tionary history of AtPNP-A suggests that PNPs, like the
related expansins, derived from ancestral family-45
endoglucanases that have lost their hydrolytic activity and
have sub-functionalized into extracellular, systemically
mobile signalling molecules [9].

Future directions

In order to determine the physiological role of AtPNP-A in
A. thaliana a T-DNA insertion mutant, that is available
from SALK, could be used. Phenotyping this mutant in
response to SA-inducing abiotic and biotic stresses as well
as during developmental senescence, will help character-
ise specific physiological processes in which AtPNP-A is
involved. If such a mutant demonstrated a compromised
SAR response, it would greatly strengthen the claim that
AtPNP-A is indeed involved in the SAR response pathway.
Additionally, it will be interesting to look at the expres-
sion of the correlated genes in an AtPNP-A mutant in
response to SAR inducing conditions since this may ena-
ble us to determine a role for AtPNP-A in the context of a
SAR response pathway.

Conclusion

AtPNP-A is an annotated "signal" molecule that is
secreted into the apoplastic space and has been implicated
with a role in the control of ion and solute movements in
plants (Figure 1). The expression of AtPNP-A is signifi-
cantly correlated with that of genes involved in the SAR
defence response pathway in response to various biotic
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and abiotic stimuli and in mutant studies. The expression
of AtPNP-A is correlated with the ICS-1 gene that is
involved in SA biosynthesis and NPR1 and NIMINI,
which are key positive regulators of the SAR response, and
two annotated SAR TFs TGA 3 and WRKY 70. Addition-
ally, like the PR genes, the promoter of AtPNP-A contains
as-1 and W-box cis-elements that correspond to binding
sites for the TGA 3 and WRKY TFs. Further, over expressing
WRKY 70 lines have been shown to cause a greater than
50-fold increase in the expression of AtPNP-A which is
consistent with this TF being a positive regulator of
AtPNP-A transcription. The induced expression of AtPNP-
A by SAR elicitors and its secretion into the apoplast is
similar to that of PR proteins and strongly implicates a
role for AtPNP-A in plant SAR defence responses which
may involve the modification of cellular ion and water
homeostasis during stress responses.

Methods

Identification of Correlated Genes

We downloaded (01/07/2005) A. thaliana gene expres-
sion levels for 1877 experiments from the NASCArrays
database [81], using the bulk data download option. Perl
scripts were used to calculate non-parametric correlation
coefficients (Spearman's rho) between the expression of
AtPNP-A (At2g18660) and each of the approximately
22,000 genes represented on the Affymetrix array that was
used to generate this data set. We ranked genes according
to the correlation coefficient and reported genes that were
most positively correlated with At2g18660. The p-values
were calculated using the bivariate normal distribution,
with p representing the probability of observing an equal
or larger positive or negative correlation by chance.

Functional Classification and expression analysis of
Correlated Genes

To characterise the correlated genes the web-based
'FatiGO+' program [22] was used to search for differential
distributions of gene ontology (GO) and biological terms
within this list. The search was conducted using AtPNP-A
(At2g18660) and the 25 most positively correlated genes
in Table 1 (list 1 = 26 genes). This list was compared to a
reference gene list that contained the remaining genes in
the entire A. thaliana genome (list 2 = 26147 genes). Sta-
tistical significance was determined using the Family Wise
Error Rate (FWER) to calculate the adjusted p-value.

The expression profiles of AtPNP-A and the positively cor-
related genes (Table 1) were initially examined using
Affymetrix public microarray data in the gene response
viewer tool (GRV) in Genevestigator [68]). The analysis
was performed using the ATH1: 22K array chip type and
included all of the available 2507 chip sources. For better
temporal and spatial response resolution we obtained
normalised microarray data from the following sites:

http://www.biomedcentral.com/1471-2229/8/24

NASCArrays, Ozone-26 (reference ID); P. infestans-123;
UV-B stress-144; Potassium starvation-105; BHT-392.
TAIR (ATGenExpress): Salicylic acid-ME00364; E.orontii-
MEO00354; Salt stress-ME00328; Osmotic stress-ME00327;
Cold acclimation-ME00369; Cyclohexamide-ME00361.
GEO (NCBI): E. cichoracearum-GSE431.

In order to further reveal the relationship of AtPNP-A
expression with that of key genes involved in the SAR
response, the mutant surveyor in Genevestigator was used
to compare gene expression in different types of defence
related A. thaliana mutants. The genes investigated in this
study included AtPNP-A, the 25 correlated genes, and
WRKY 70 and WRKY 46. Normalised array data from the
mutant experiments were obtained from: TAIR-ME00373
for cpr5/npr1 mutants; NASCarray-52 for the nahG mutant
and array express (EBI) for the mpk4 mutant (E-MEXP-
173). For the WRKY 70 over expresser, data was obtained
through personal communication with Gunter Brader,
Faculty of Biosciences, University of Helsinki.

Promoter analysis

The web-based Athena [59] and POBO [58]) applications
were used to analyse the promoters (-1 kb upstream of the
predicted TSS) of AtPNP- and the 25 top correlated genes.

In POBO [58], the 1 kb promoter sequences were
uploaded and the analysis was run against A. thaliana
background (clean) searching for the TTGAC W-box core
motif using the default settings (number of sequences to
pick-out = 50, number of samples to generate = 1000,
sequence length = 1000 bps). A two-tailed p-value was cal-
culated in the linked online GraphPad web-site using the
generated t-value and degrees of freedom to determine the
statistical differences between input sequences and back-
ground.

In Athena, the analysis was performed with the visualisa-
tion tool using the 26 correlated genes with settings of
1000 bp upstream and do not cut off at adjacent genes.
The statistical significance of over-represented TF binding
sites is automatically calculated using a hypergeometric
probability model to calculate the p-value. A Bonferroni
correction was automatically used in Athena to account
for multiple hypotheses testing (up to 105 different TF
binding sites) and determined that the p-value threshold
for significant enrichment was < 10-4.

Abbreviations

NP - natriuretic peptide; PNP - plant natriuretic peptide;
SAR - systemic acquired resistance; cGMP - guanosine
3',5'-cyclic monophosphate; TF - transcription factor; TSS
- translation start site.
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