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Abstract

Background: Histone acetyltransferases (HATS) play critical roles in the regulation of chromatin
structure and gene expression. Arabidopsis genome contains 12 HAT genes, but the biological
functions of many of them are still unknown. In this work, we studied the evolutionary relationship
and cellular functions of the two Arabidopsis HAT genes homologous to the MYST family
members.

Results: An extensive phylogenetic analysis of 105 MYST proteins revealed that they can be
divided into 5 classes, each of which contains a specific combination of protein modules. The two
Avrabidopsis MYST proteins, HAMI| and HAM2, belong to a "green clade", clearly separated from
other families of HATs. Using a reverse genetic approach, we show that HAM| and HAM2 are a
functionally redundant pair of genes, as single Arabidopsis ham | and ham2 mutants displayed a wild-
type phenotype, while no double mutant seedling could be recovered. Genetic analysis and
cytological study revealed that ham | ham2 double mutation induced severe defects in the formation
of male and female gametophyte, resulting in an arrest of mitotic cell cycle at early stages of
gametogenesis. RT-PCR experiments and the analysis of transgenic plants expressing the GUS
reporter gene under the HAM| or the HAM2 promoter showed that both genes displayed an
overlapping expression pattern, mainly in growing organs such as shoots and flower buds.

Conclusion: The work presented here reveals novel properties for MYST HATs in Arabidopsis.
In addition to providing an evolutionary relationship of this large protein family, we show the
evidence of a link between MYST and gamete formation as previously suggested in mammalian cells.
A possible function of the Arabidopsis MYST protein-mediated histone acetylation during cell
division is suggested.
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Background

Eukaryotic genomic DNA is packaged around octamers of
histones to form the basic structural units of chromatin,
the nucleosomes. Chromatin is the functional template
for a variety of key biological processes, such as DNA rep-
lication, repair of DNA damage, recombination, and tran-
scription.

Covalent modifications of the amino-terminal tails of the
core histones affect nucleosome positioning and compac-
tion, and therefore play pivotal roles in chromatin remod-
elling and in gene regulation. Histone modifications
include acetylation, methylation, phosphorylation, ubiq-
uitination, sumoylation and poly-ADP-ribosylation [1,2].
Among these modifications, acetylation of histones
appears as a key switch for inter-conversion between per-
missive and repressive states of chromatin domains and as
in other eukaryotes, histone acetylation and deacetylation
play important roles in the regulation of plant gene
expression. In general, hyperacetylation of histones
relaxes chromatin structure and is associated with tran-
scriptional activation, whereas hypoacetylation of his-
tones induces chromatin compaction and gene
repression, although a more sophisticated and nuanced
chromatin language is likely to yield dynamic functional
outcomes [3]. Acetylation of histones provides also an
epigenetic marker for gene expression because it blocks
association of heterochromatin-stabilising complexes [4].

The homeostatic balance of nucleosomal histone acetyla-
tion is maintained by antagonistic action of histone
acetyltransferases (HAT) and histone deacetylases
(HDAC), which are the best-characterized enzymes
among histone modifier factors. In Arabidopsis, the HAT
group contains 12 members divided into four classes
based on sequence homology and mode of action: GNAT
(Gen5-related N-acetyltransferase), p300/CBP, TAF;;250
and MYST (MOZ, YbF2, Sas2, Tip60-like) families [5,6].

Numerous reports have linked specific histone acetyl-
transferases to transcriptional regulation in Arabidopsis.
For instance, we and other have shown that GCNS5, plays
a role in the regulation of numerous processes, including
cold tolerance, floral development, embryonic cell-fate
patterning, and light responsiveness [7-11]. HAF2, one of
the two TAF;;250 homologs in Arabidopsis is necessary for
upregulating the transcription of light-induced genes
[10,12]. HAC1, HAC5 and HAC12 of the CBP family have
been shown to be involved in regulating flowering time
[13]. Functions for other predicted Arabidopsis HATSs
have not yet been determined.

In mammals, the MYST family is the largest and most
divergent. It has been intensely studied because of its
broad conservation and biological significance. Experi-
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ments performed in the last few years show that MYST
family proteins are involved in a wide range of cell func-
tion ranging from transcription activation and silencing,
apoptosis, cell cycle progression, DNA replication or DNA
repair with often a link to pathological disorder such as
cancer (reviewed by [14-16]). For instance, Histone acetyl-
transferase bound to ORC (Hbo1) has been shown to
interact both with ORC7 and with MCM2, essential pro-
teins of the pre-replication complex (Pre-RC) [17,18] and
to positively regulate pre-RC assembly and initiation of
DNA-replication [19-21]. Another mammalian MYST
protein, HIV tat-interacting protein 60 (Tip60), seems to
be a functional homologue of the yeast protein Esal [22],
which is the only essential HAT for yeast viability, playing
a role in cell cycle progression [23]. It appears that this
function has been conserved during evolution and several
recent results provide evidence that Tip60 is a key protein
in regulating cell cycle progression in higher organisms.
Likewise, a broad range of functions has been ascribed to
Tip60 as its involvement in DNA repair or regulation of
apoptosis (reviewed by [15]). MORF (monocytic leukae-
mia zinc finger protein-related factor) may be involved in
early mammalian gametogenesis [24], whereas the mouse
orthologue, Querkopf, has been implicated in neural
development and maintenance of neural stem cells [25].
At last, it has been recently shown, that Mof (Males absent
on the first) is essential for progression of embryonic
development in mice [26,27].

Two MYST family members (HAMI1 and HAM?2) are
present in the A. thaliana genome [6]. They were demon-
strated to possess an in vitro HAT activity specific for lysine
5 of histone H4 (H4K5) [28]. However, the relevance of
such observations to the biological roles of HAM1 and
HAM?2 has not been addressed.

Here, we report on the phylogenetic analysis of MYST
family, which appears clearly separate from other families
of HAT. By analyzing loss-of-function lines in Arabidop-
sis, we show that the two members of this family are func-
tionally redundant, and provide evidence that they are
required post-meiotically for important cellular process
during the formation of both the male and female gam-
etes.

Results

Phylogenetic analysis of MYST proteins

Initially, members of the MYST group were classified as
putative acetyltransferases based on a region in the MYST
domain that is homologous to the canonical acetyl-CoA
binding domain (motif A) found in GNAT superfamily
acetyltransferases [29]. The Arabidopsis genome encodes
two closely related MYST family proteins HAM1 and
HAM?2 (87.9% identity, 92.5% similarity in amino-acid
sequences), also known as respectively HAG4 and HAG5
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[6]. Wolfe data http://wolfe.gen.tcd.ie/ postulated that
HAM1 (At5864610) and HAM?2 (At5809740) resulted
from a duplication event, the a event according to [30],
produced by a polyploidization in the Brassicaceae ances-
tor. The Arabidopsis thaliana HAM1 and HAM?2 genes show
a Ks value of 0.84. In their measure of divergence between
duplicated genes, De Bodt et al. (2005) [31] conclude that
the most recent polyploidization event corresponds to a
modal Ks value between 0,7 and 0,9. This reinforce the
previous observation that the HAMI and HAM?2 genes
from Arabidopsis belong to duplicated segments produced
by the most recent polyploidization event in the Brassi-
caceae ancestor.

In order to identify the closest sequences to HAM1 and
HAM?2, a phylogenetic analysis of the MYST proteins was
performed by an extensive search in available databases.
Amino acid alignements of the MYST domain were used
as the basis for classifying MYST proteins. Fig. 1A shows
an unrooted phylogenetic tree illustrating the relationship
between 105 MYST proteins (listed in Additional file 1)
selected on a total of 130.

The MYST family is divided into five unrelated classes, i.e.
not related by significant bootstrap values. The class I
comprises proteins from the green lineage including the
Arabidopsis HAM1 and HAM2 sequences, two clades of
sequences from Mammals, Teleostei, Insects and Cnidar-
ian, and clades of sequences from Alveolata, Fungi, Nem-
atods and Plathelminthes. The class II (bootstrap 79%)
groups sequences of Fungi plus one sequence of insect.
Classes III and IV (bootstrap 98% and 93%) are exclu-
sively composed of sequences from Fungi. The class V
(bootstrap 96%) enclosed sequences from Teleostei,
Archausauria, Mammals and Insects. Three sequences
(from Human, Insect and Ascidiaceae) form a small addi-
tionnal group (bootstrap 84%).

We also noticed that the MYST proteins from the green
lineage (Eudicots and Monocots Angiosperms, Gymno-
sperms, Bryophytes, Chlorophyceae and Prasinophyceae)
lie within a cluster supported by a significant bootstrap
value (86%). This cluster is associated both with two
sequences of Alveolata and 2 sequences of Dictyostelium
discoideum, as is frequently observed for sequences from
plants. A second cluster of MYST sequence from Prasino-
phyceae (Ostreococus) is observed. The green lineage phyl-
ogenetic tree appears robust with highly significant
bootstrap values (Additional file 2). Members of the
MYST family of acetyltransferases possess several protein
domains. Structural analysis by using Pfam and SMART
tools revealed that within each previously defined group,
domain organizations of the MYST proteins are highly
similar (Fig. 1B). Class I members possess a chromodo-
main (PF 00385) in the amino-terminus and a zinc finger
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(C2H2 type) contiguous to a MOZ-SAS acetyltransferase
domain (PF 01853). The structure is reduced to the zinc
finger and MOZ-SAS domains in classes II and III. Class IV
possesses a PHD finger (plant homeodomain zinc finger,
PF 00628) in the amino-terminus and a central MOZ-SAS
domain. Finally, sequences from class V were much
longer, with a linker histone H1 and H5 family domain
(PF 00538), one or two PHD finger domain, both at the
amino terminus, a C2H2 type zinc finger, contiguous to
the MOZ-SAS domain and an extensin-like region
(PF04554) at the carboxy terminus. The observed domain
organization and protein sizes reinforced the idea of exist-
ence of several distinct MYST subfamilies.

Loss-of-Function mutations at the HAMI and HAM2 loci
In order to study the developmental function of plant
MYST genes, a search in Arabidopsis T-DNA insertion
mutant collections was performed. Three insertion lines
in HAM1 gene were identified. HAM1 mutants, ham1-1,
ham1-2 and haml-3, disrupt the predicted coding region
at 155, 1973 and 1959 bp in the genomic DNA and down-
stream of the initiation codon, respectively (Fig. 2A). A
single insertion line, ham2, was identified in HAM2 gene.
The T-DNA insert is located 809 bp downstream of the
ATG (Fig. 2A). All these mutants are in Columbia-0 (Col-
0) background, except for ham1-3 in the Wassilewskija
(Ws) background.

Homozygous insertion plants were identified by PCR. RT-
PCR experiments, with primers that span the insertion
sites, were neither able to detect any HAM1 mRNA in the
ham1 mutants nor HAM2 mRNA in ham2 mutant (Fig.
2B). There were no changes in the level of HAM2 mRNA
in ham1 mutants lines compared with control. Similarly,
HAM1 mRNA was unchanged in ham2 homozygous
plants (Additional file 3). This indicates that the absence
of one HAM transcript does not affect expression of the
other.

We did not observed any abnormal phenotype in plants
homozygous for either haml or ham2 mutations when
grown under standard conditions. In addition, each of the
mutant alleles displayed a normal Mendelian segregation
ratio (data not shown). As HAM1 and HAM?2 are closely
related genes, functional redundancy might exist to pre-
vent the appearance of a mutant phenotype in the
homozygous mutant lines. Therefore, haml1-1, hami-2
and ham1-3 homozygous plants were respectively crossed
with ham2 homozygous plants to create double mutants.
The resulting double-heterozygous F1 were allowed to be
self-fertilized and individuals from the resulting progeny
were genotyped using PCR. For each crosses, from more
than 120 F2 individuals, no homozygous double mutants
were detected. However, plants homozygous for insertion
at one locus and heterozygous at the other were found.
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Phylogenetic tree and domain organization of the MYST family of HAT. (A) Numbers refer to the bootstrap values.
The figure shows an unrooted phylogenetic tree based on an extensive search in available databases. The tree contains 105
sequences selected on a total of 130 obtaining by an extensive BLAST search. The plant lineage is shown in green, mammals are
in red and fungi in purple. The MYST family is divided into five unrelated classes displaying similar domains organization. (B)
Domain organization of the MYST proteins in the five classes previously defined in (A).
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Characterization of T-DNA insertion mutations within HAMI and HAM2. (A) Schematic representation of the T-
DNA insertions in the HAM[ and HAM2 genes. Black boxes and solid lines denote exons and introns, respectively. The filled
triangles represent the six PCR primers used in RT-PCR (see "Methods"). (B) RT-PCR analysis of HAM genes expression in
homozygous insertion mutants and wild-type seedlings with primer pairs PI-P2, P1-P3, P4-P5 and P4-P6 as indicated in (A).
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Such plants with either the genotype HAM1/ham1; ham2/
ham2 or ham1/haml; HAM2/ham2 were allowed to self-
pollinate. For this F3 population, the expected frequency
of ham1lham2 plants is 25%. From 166 seedlings from a
HAM1/haml1-1; ham2/ham2 parent, no haml-1ham2
plants were found (Additional file 4, linel). From 162
seedlings from a ham1-1/hami1-1; HAM2/ham2 parent, no
ham1-1ham2 plants were found (Additional file 4, line 2).
These data strongly indicate that hamlham2 double
mutant plants are not viable. Because F2 and F3 seeds
appeared to be 100% viable, without seedling lethality
after germination (data not shown), the loss of a double
mutant plant must have occurred early during seed devel-
opment or before fertilization and suggested that HAM1
and HAM?2 have a redundant but important function for
Arabidopsis embryo development and/or male/female
gametophyte formation.

ham |l ham?2 double mutant is affected in gametogenesis
If only the ham1ham2 developing seeds were not viable,
then the progeny of self-fertilize ham1/ham1; HAM2/ham2
and HAM1/ham1; ham2/ham2 plants allowed to self-ferti-
lize would segregate 2/1 for heterozygous and
homozygous wild type at the heterozygous locus of the
parent. However, the observation was that the percentage
of heterozygous seedlings was much less than 67%, with
only 32.5% heterozygous at the HAM1 locus and 18.5%
heterozygous at the HAM2 locus (Additional file 4, lines 1
and 2). This deviation from a standard inheritance pattern
implies death of more than just the double null develop-
ing seed.

To confirm this hypothesis, the fertility of hami/haml;
HAM2/ham2 and HAM1/ham1; ham2/ham2 mutants was
determined after self-fertilization and compared to the
wild-type. For different genotypes, the length of the sil-
iques was reduced (Fig. 3A). For example, in the case of
the HAM1/ham1-1; ham2/ham?2 sesquimutant, the length
of the siliques was 1.02 + 0.10 cm compared to 1.44 +
0.15 cm for the wild-type (n = 40). The number of seeds
per silique was significantly reduced compared to wild-
type siblings and was greater than the 25% loss expected
by loss of the double mutant (Table 1). In addition, dis-
sected siliques illustrated that unfertilized ovules were
presents (Fig. 3B). This suggests that the loss of inherit-
ance of the mutant allele occurred early, as a result of
female gametophyte death.

To distinguish between arrested in embryo development
and abnormalities in gametophytes, reciprocal crosses
were performed to analyse inheritance via gametophytes.
The null alleles, were successfully inherited from male
gamete for both loci, although at a rate reduced from the
expected 50% frequency (Additional file 4, lines 3 to 6).
When pollen grains of the HAM1/ham1-1; ham2/ham2 or
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ham1-1/hami1-1; HAM2/ham2 mutants were used to polli-
nate the stigma of the wild-type female parent, the
number of seeds was not significantly different from those
observed in the wild-type (Table 1; lines 12 and 14). The
frequency of inheritance of the ham allele from the male
was 15.5% for ham1 and 9% for ham2 (Additional file 4,
lines 4 and 6).

When HAMI1/haml-1; ham2/ham2 or haml-1/haml-1;
HAM2/ham2 mutants were used as female parent, cleared
siliques from these crosses showed that female gameto-
phyte development was arrested in approximately one
half of the ovules (Table 1; lines 13 and 15). This finding
suggests that aborted ovules may correspond to a female
gamete hamlham2. Genotyping of the progenies con-
firmed that the inheritance of the ham alleles from the
female was null for ham1 and ham2 (Additional file 4;
lines 3 and 5).

To track the expression stage of the ham1ham2 mutations,
we therefore examined the viability of pollens of the
mutants. Pollens collected from wild-type and mutants
bearing one copy of either HAM1 or HAM?2 were stained
with Alexander solution, which stained mature viable pol-
len grains as purple and dead or dying ones as dark green.
The majority of examined pollens from wild-type were
viable (Fig. 3C and 3E) with very few dead ones. In
anthers of hami-1/hami-1; HAM2/ham2 mutants, how-
ever, only approximately 60% of pollens grains showed a
staining pattern similar to that of the wild-type, the
remaining were stained as dark green (n = 1400; Fig. 3D
and 3F). These data are consistant with the reduce trans-
mission of ham?2 allele describe previously (Additional file
4). Morphologically, the dead pollens were misshapen
and smaller (Fig. 3H), which could easily be distinguished
from wild-type pollens (Fig. 3G).

We further analyzed male gametophyte development in
the double mutant by fluorescence and microscopy. The
pollen grain is the male gametophyte in Angiosperms.
During microsporogenesis, meiosis of the microspore
mother cell produces a tetrad of microspores. After release
from the tetrad, during microgametogenesis, each micro-
spore goes through an asymmetric cell division, pollen
mitosis I (PMI), to produce a bicellular pollen grain con-
taining a generative cell and a much larger vegetative cell.
Only the smaller generative cell undergoes a second
round of cell division, pollen mitosis II, to produce two
sperm cells [32,33]. Pollen grains collected from open
flowers of both wild-type and mutants bearing one copy
of either HAM1 or HAM2, were examined by staining with
DNA-specific dye 4',6-diamidino-2-phenylindole (DAPI).
When wild-type flowers were open, pollen grains were
already mature, and they had two brightly stained sperm
nuclei and a faintly stained vegetative nucleus (Fig. 4C). In
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Table I: Genetic analysis and transmission of ham| and ham2 mutations

Genotype of the Total numbers of Total numbers of N  Percentages of P-value?
parents developing seeds unfertilized ovules unfertilized ovules
Female x Male

I HAMI/HAMI;HAM2/HAM2 280 I 291 3.8 0
selfed

2 HAMI/HAM[;ham2/ham2 294 10 304 33 0
selfed

3 haml-l/haml-1;HAM2/ 318 7 325 22 0
HAM2 selfed

4 haml-Ilhaml-1;HAM2/ 139 141 280 50.4 0.905
ham2 selfed

5 HAMIl/haml-l;ham2/ham2 161 157 318 494 0.822
selfed

6  haml-2/ham|-2;HAM2/ 362 12 374 32 0
HAM2 selfed

7 haml-2/ham|-2; HAM2/ 163 157 320 49.1 0.737
ham2 selfed

8 HAMI/haml-2;ham2/ham2 196 201 397 50.6 0.801
selfed

9  haml-3/ham|-3; HAM2/ 302 12 314 338 0
HAM2 selfed

10 ham|-3/ham[-3;HAM2/ 229 235 464 50.6 0.781
ham2 selfed

Il HAMI/hamI-3;ham2/ham2 112 115 227 50.7 0.841
selfed

12 WT x ham|-I/lhamI- 125 4 129 3.1 0
I;HAM2/ham2

13 haml-1/HAMI;ham2/ham2 62 59 121 488 0.785
x WT

14 WT x ham|-1/HAM[;ham2/ 74 2 76 1.3 0
ham2

I5  hamli-1/ham|-1;HAM2/ 52 55 107 514 0.771
ham2 x WT

Between 10 and 15 siliques from the main inflorescence stem of 5-week-old plants were manually dissected and scored for aborted ovules.
2 Two-tailed P-values represent the fit of the data to an expected segregation of |:| wild type: aborted.

single mutant plants, microsporogenesis proceeds nor-
mally (Additional file 5). By contrast, a part of pollens
derived from HAM1/haml-1; ham2/ham2 and hami-1/
ham1-1; HAM2/ham2 sesquimutant flowers displayed one
large DNA mass (~36%, n = 280; Fig. 4E and 4F). These
observations suggest that the degeneration of ham1ham2

double mutant pollens occurred mainly at the uninucle-
ated stage before the first pollen mitosis (PM I).

On the female side, during megagametogenesis, meiosis
of the megaspore mother cell gives rise to four
megaspores, but three degenerates and one survives. This
cell undergoes three round of mitosis to form a seven-
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Figure 3

Phenotypes induced by mutations in HAM genes. (A) Comparison of a wild-type (Col-0, top) and HAM[/hamI-1; ham2/
ham2 sesquimutant silique (bottom). (B) Detail of a sesquimutant silique showing the presence of aborted ovules (arrow). Via-
bility of mature pollen grains in thesesquimutant (D) compared to wild-type (C). Pollen grains were isolated from the anthers
of opened flowers and examined by Alexander staining. Viable pollen grains were stained as purple and dead pollen grains are
dark green. Bars: 100 um. High magnification detail of pollens from wild-type (E) and the HAMI/ham[-1; ham2/ham2 mutant (F)
showing the presence of 50% wild type and 50% shrunken, aborted pollen (arrows) in the mutant anthers. Bars = 50 um. Scan-
ning electron microscopy of pollen grains collected from wild-type (G) and HAMI/ham[-1; ham2/ham2 anthers (H). Approxi-
mately one-half of pollen grains were abnormally developed in the sesquimutant anthers (arrows). Bars: 25 um.
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Figure 4 (see previous page)

Analysis of gametophyte development in ham sesquimutants. (A-F) Analysis of pollen development by DAPI staining.
Pollen grains were released from anthers, stained with DAPI, and visualized under a light microscope equipped with a UV fluo-
rescent filter. At uni-nucleate stage, microspores of wild-type (A) and HAMI/hamI-1; ham2/ham2 plants (D) were indistinguish-
able. In contrast to wild-type microspores (B and C), HAM[/ham-1; ham2/ham2 plants contain approximately one-half of
arrested microspores (arrows) at the bicellular (E) and tricellular pollen stages (F). Bars: 10 um. (G-J) Cleared whole mounts of
wild-type and ham sesquimutant ovules. Mature ovules at stage G7 of wild-type (G) and HAM[/hamI-1; ham2/ham2 mutant
(H). Bars: 40 um. Images | and ] are enlargements of boxed sections in G and H respectively. Bars: 20 um. (I) Magnified section
shows the presence of central cell nucleus, two synergid nuclei and the egg cell nucleus in wild-type ovule. (J) An ovule from
ham sesquimutant at the same stage showing the presence of only one nucleus (white arrow). No other nuclei were visualized

at other focal planes.

celled mature embryo sac (female gametophyte) at female
gametophyte stage 6 (FG6; [34]). The analysis of ovule
development of ham1 and ham2 single mutants, using a
chloral hydrate clearing protocol and Normarski optics,
indicated that megasporogenesis occurred normally in
single ham mutants (data not shown). In the ovules of ses-
quimutants bearing one copy of either HAM1 or HAM?2,
meiosis always resulted in a single surviving megaspore
and as occurred in wild-type, only one of them survived.
Initial abnormalities in megagametogenesis were
observed only after the completion of meiosis. While half
the ovules in both HAM1/ham1-1; ham2/ham2 and ham1-
1/ham1-1; HAM2/ham2 siliques were mature showing a
wild-type size and shape (Fig. 4G and 4I), the remaining
ovules contained only one nucleus localized to the micro-
pylar pole (corresponding to the stage FG1; Fig. 4H and
4]). They produced the 50% aborted ovules (Fig. 3B).
These observations suggest that, as observed for the male
gametophytic development, the degeneration of the ovule

YL ML

HAM1

L

HAMZ2 .

Actin -

Figure 5

YB

P

in hamlham2 double mutants occurs after the uninucle-
ated stage before the first mitosis.

Expression pattern of HAM genes

The HAM1 and HAM2 mRNA levels in different organs
and tissues were too low to be detected by Northern blots.
RT-PCR experiments were used to analyse the expression
pattern of HAM genes. Fig. 5 shows that HAM1 and HAM?2
genes displayed a similar expression pattern in the differ-
ent tested organs, with higher expression in flowers com-
pared to leaves, stems and roots and in younger growing
leaves compared to mature leaves.

Transgenic Arabidopsis lines were also generated to
express the B-glucuronidase (GUS) reporter gene under
the control of HAM1 or HAM?2 promoter. About 1 kb
DNA fragments encompassing the putative promoter
regions of HAM genes were fused to the GUS coding
sequence and these constructs were introduced into Col-

OF S R

e <.§,..' TR

RT-PCR detection of HAM mRNA in different organs. HAM| and HAM2 mRNA in wild-type (Col-0) were detected by
RT-PCR with primer pairs P1-P3 (HAM!) and P4-P6é (HAM2). The different organs tested are young leaves (YL), mature leaves
(ML), young floral buds (YB), open flowers (OF), stems (S) and roots (R). Actin mRNA levels detected by RT-PCR are shown
as controls.
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0. A reproducible and overlapping expression pattern was
found in three independent reporter lines for each pro-
moter. Under standard growth conditions, promoter
activity was detected in the shoot apex of the seedlings as
well as in the cotyledons and leaves (Fig. 6A, B). In leaves,
a patchy expression pattern was observed which corre-
sponded to strong GUS staining at the basis of the tri-
chomes (Fig. 6B). GUS activity was never detected in the
hypocotyls and petiole. A faint GUS signal was occasion-
ally detected in root hairs (Fig. 6A) but never in the inter-
nal root tissues. By contrast, GUS activity was strong in
developing flowers, particularly in the anthers and gynoe-
cia but not in mature flowers (Fig. 6C) in which a slight
GUS activity was localized to the stigma. Transversal sec-
tions confirmed the GUS staining in developing gynoecia
(Fig. 6D) and young pollens (Fig. 6E) and the absence of
GUS expression in mature tricellular pollen grains (Fig.
6F).

Discussion

The MYST family of HATs has been intensively studied
because of its broad conservation and its involvement in
multiple aspects of animal development (Reviewed in
[15]). Although the HAT activity of the Arabidopsis MYST
proteins HAM1 and HAM2 have been demonstrated in
vitro 28], the in vivo roles of the proteins have not yet been
addressed. Here, we initiated a functional characterization
of the MYST gene family in Arabidopsis.

Growing genomic sequence data indicates that most
eukaryotes had multiple MYST representatives. In order to
gain insight into the origin and evolution of the MYST
proteins, we combined phylogenetic sequence analysis
and structural comparisons to determine the relationships
among different members. Such phylogenetic analysis has
been already performed by Sanjuan et al. [35], but it was
realized with a limited number of data and do not provide
precise links between clades. Our phylogenetic analysis
suggests that Eukaryotes acquired 3 ancestral MYST
sequences (Fig. 1A). It appears that one of these ancient
sequences has been duplicated more recently, after the
separation of Teleostei from Archausauria and Mammals.
It seems to, that one of these sequences has been lost dur-
ing early plant evolution, before the emergence of Prasi-
nophyceae, followed by the lost of a second one before
the emergence of Bryophytes. An alternative hypothesis
would be a unique sequence at the beginning of the green
lineage, with the acquisition of second sequence by green
algae, followed by the lost of one of these sequences (type
0Ot2/0]12) later during the green lineage evolution. This
hypothesis suggests also the presence of three sequences
before the emergence of Fungi and Metazoans.

The plant genomes were found to encode one or two
MYST proteins whereas fungal genomes were found to
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have one to three, and animal genomes one to five. Thus,
the number of plant MYST family is within the range
found in other eukaryotic organisms but at the lower end
of this range. The degree of evolutionary change differs
significantly among MYST gene families. At one extreme,
the MYST family has been amplified in Mammals and
Drosophila as compared to two members in Arabidopsis.
Moreover domain and phylogenetic analyses of the
MYST-type proteins revealed only one class of these pro-
teins in plants, as compared to 3 classes in Insects and
Mammals. This suggests that plant may have conserved
the functions of their ancestral homologues and that Ara-
bidopsis MYST proteins may be involved in a wide range
of cell functions which are assumed by different proteins
in mammals. An important point is that we do not detect
sequences of other HATs from Angiosperms inserted in
the phylogenetic tree built with sequences of the MYST
family. This suggests a very old age of the MYST sequences,
which were clearly separated from other families of HAT.

In order to study the biological function of the two plant
MYST proteins, we performed a genetic analysis using Ara-
bidopsis mutants. The study has shown that HAM1 and
HAM? are functionally redundant and the presence of at
least one functional HAM gene is required for the plant, as
single ham1 or ham2 mutant plants are viable and have a
wild-type phenotype, while no double mutant seedling
was recovered. hamlham2 double mutation was not
inherited because it caused mitotic defects in the mega
and microgametophyte development as observed in indi-
viduals that contained a single wild-type copy of either
HAM1 or HAM2. During ovule development in HAM1/
ham1; ham2/ham2 or haml/haml; HAM2/ham2, abnor-
malities were detected after meiosis but before the first
mitotic division in megagametogenesis. They produced
50% of aborted ovules ham1ham2. On the male side, pol-
len meiosis also appeared normal, while microsporogen-
esis was arrested also after microspores release but before
the first pollen mitosis. In contrast to megagametogenesis,
part of the ham1ham2 male gametes were able to produce
normal pollen and were inherited.

Thus, in Arabidopsis, HAM proteins are redundantly
required post-meiotically for important cellular processes
during gametophytic development. However, the identifi-
cation of HAMI1/haml; ham2/ham2 and haml/hami;
HAM?2/ham? individuals, and the data collected from out-
crossing eliminated the possibility of a complete male
gametophytic lethal phenotype, although there was some
implication of high gametophytic lethality from the ses-
quimutant plants. Given that in both mutants, the two T-
DNA insertion sites are located at the beginning of the
genes, before the HAT domain, it is unlikely that the trun-
cated proteins HAM1 and HAM2 retain a partial HAT
activity in the mutants. One possible explanation for the
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Figure 6

Expression pattern of the HAM::GUS genes. (A) Seedling of one-week-old harbouring a HAMI::GUS fusion grown in vitro.
Boxed section represents a magnification of stained root hairs. Bar: 250 um. (B) Three week-old plant grown in vitro. Boxed
section represents a close-up view on a stained trichome. Bar: | mm. (C) Floral tissue of a 5-week-old plant. Bar: | mm. (D)
Section of HAM::GUS young floral bud at the stage of tetrad. Bar: 50 um. (E-F) cleared whole mount of young (E) and mature
pollen grains (F) showing the decreased of GUS expression during the pollen maturation. Bars: 25 um.
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genetic complexity is the diffusion of trace amounts of
functional protein from surrounding heterozygous tissues
into the gametes [36,37]. It is also possible that meiotic
cells contain a pool of proteins or mRNA that allows sev-
eral rounds of nuclear division to occur before the effect
of the mutation can be observed [38].

A possible involvement of the MYST protein in the game-
togenesis has been recently suggested in mammals. The
two human MYST proteins, Tip60 and Mof, related to
HAM (Fig. 1), are both very highly expressed during
sperm development compared to other organs [15].
Human MYST4, also named MOZ2 or MOREF is also local-
ized into specialized cells of the ovary and testis and may
contribute to important and specific acetylation events
during gametogenesis [24]. However, these reports are
based only on pattern of genes expression and protein
localization. The phenotypes of Arabidopsis knock-out
mutants, described here, are the first demonstration of an
essential role of MYST proteins in gametogenesis.

Using transgenic plants expressing the GUS reporter gene,
a strong promoter activity of HAM genes was observed in
young flowers, particularly during gynoecium and anther
development, which is consistent with the requirement of
HAM1 and HAM2 for gametogenesis. However, GUS
expression and RT-PCR results have shown that HAM
genes expression was not restricted to cells involved in
gametogenesis. An expression pattern was also observed
during vegetative development. Interestingly, a GUS activ-
ity was detected in trichoblasts (root hairs and trichomes).
We can note that despite the differences in morphology
and distribution, this kind of cells is specified by a similar
set of genes [39]. GUS activity was also detected in shoot
apex, cotyledons and leaves but neither in the primary
root meristem nor the emerging lateral roots. These results
indicate that HAM1 and HAM?2 expression occurs mainly
in some, but not all, proliferative tissues. The broad
expression pattern of HAM genes suggests that they may
be involved in several aspects of development, rather than
gametophyte-specific genes.

Taking these GUS data together with the abnormal
nuclear division in hamlham2 gametes it is tempting to
speculate a role for the MYST family in the control of key
cellular process such as cell cycle control. This essentiality
of the MYST pathway in plants is consistent with data
related to the functions of MYST proteins in other organ-
isms [16]. The closest homologues of Arabidopsis MYST
proteins in Homo sapiens are Tip60 and HsMOF (Fig. 1).
Several recent papers provide evidence that Tip60 is a key
protein in regulating cell cycle progression in mammals
[15]. Tip60 is also intimately involved in the cellular
response to DNA damage. Additionally, in Drosophila the
histone acetyltransferase activity of Tip60 is specifically
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required for the exchange of histones during double-
strand break repair [40]. We do not know whether plant
HAM proteins are directly involved in these processes.
Although the ontogeny of gametophyte development has
been defined in Arabidopsis, the molecular mechanisms
regulating cell cycle progression are not well understood
especially concerning how micro- and macrospores pass
through each phase of the cell cycle, such as the G1/S tran-
sition during the unicellular stage. A phenotype with
defects in the formation of male and female gametophyte
due to interphase arrest of mitotic cell cycle at early stages
(FG1 stage of megagametogenesis and PMI stage of micro-
gametogenesis) will facilitate our understanding of the
determining factors of gametophyte development. A
highly similar phenotype has been recently described for
the rhflarhf2a double mutants which are defective in two
RING-finger E3 ligases that mediate the degradation of the
meiosis-accumulated ICK4/KRP6 that is essential to
ensure cell cycle progression during gametogenesis [41].
Likewise, it has been recently demonstrated that HAM1
and HAM?2 preferentially acetylate histone H4 lysine 5
(H4K5) in a similar fashion to the yeast homologue, Esal
[28,42]. During the S-phase, newly synthesized histones
H4 are deposited in a diacetylated isoform (at lysine 5 and
12) and it appears to be a highly conserved phenomenon
in a wide range of organisms including plants [43,44].
These results are in agreement with a potential role of
HAM1 and HAM?2 during the S-phase. With abnormal
nuclear divisions in ham1ham2 gametes, it is tempting to
speculate a role for the Arabidopsis MYST family in con-
trolling key cellular processes as DNA replication. This
hypothesis remains to be tested during further analysis.

Conclusion

The work presented here reveals novel properties for Ara-
bidopsis MYST HAT. In addition to providing an extensive
phylogenetic analysis of this large protein family, we pro-
vide evidence of a link between MYST and gamete forma-
tion in both male and female organs. The getting of
conditional mutants with an inducible mis-expression
system and the identification of the partners of these fac-
tors would also provide new tools to study the implica-
tion of MYST at the level of cellular process.

Methods

Identification of T-DNA insertion mutants

ham1-1 and ham2 mutants carrying T-DNA insertions
respectively within HAMI1 (At5964610; SALK_027726)
and HAM2 (At5809740; SALK_106046) were obtained
from The Nottingham Arabidopsis Stock Center (NASC).
ham1-2 was a GABI-KAT line (050B11) [45]. acquired
from the NASC. ham1-3 (EHQ293) was obtained from the
Versailles collection. The following PCR primers were
used to genotype plants carrying these T-DNA insertions.
ham1-1F: 5'-ATGGTGTGCGAATCTATGACC-3'; ham1-1 R:
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5''TCAAGGTCAAGCTGTTCAAGC-3'; ham1-2 F: 5'-TTACAG-
GTGGGCAAGAAG-3'; ham1-2 R: 5'-ACCATCCAGACAAAA-
GATTCC-3'; ham1-3 F: 5'-AAGGAAGGGCTATGGCAAAT-3';
ham1-3 R: 5'-CGTTTTACCATCCAGACAAAAG-3' ham2 F: 5'-
GTCGAAGAAGAGGAAAATGGG-3'; ham2 R: 5'-CATAT-
GCCTTTGAAGCTGCTC-3'; T-DNA left border: 5'-CGATT-
TCGGAACCACCATCAAACAGGA-3'. All of the T-DNA
mutants and wild-type plants in this study were from the
Columbia ecotype Col-0 excepted for ham1-3 mutant in the
Ws background.

Growth Conditions

Arabidopsis plants were grown in a greenhouse under
long-day conditions (16 h of light) at 19.5°C (day) and
17.5°C (night). For in vitro cultures, seeds were sown on
0.5 Murashige and Skoog medium, incubated at 4°C for
48 h, and then transferred to growth chambers.

Genomic DNA and Total RNA extraction, PCR, RT-PCR
Arabidopsis leaves were used for genomic DNA extraction.
PCR were carried out using the Promega GoTaq polymerase.
Total RNA was isolated with TRIzol reagents (Invitrogen).
First strand cDNA was synthesized from 3 pg of total RNA
using ImProm-II reverse transcriptase (Promega). Polymer-
ase chain reaction primers specific to the predicted cDNA
sequences of each gene were used. For HAMI: P1, 5'-
ATGGGATCGTCTGCGGATACA-3"; P2, 5-GAATTCGTGA-
GAGCGAGTATCGCA-3'; P3, 5'-AGTCATCTAAGGATAT-
GCAGA-3'. For HAM2: P4, 5'-CCTTTAACTCCIGATC-
AAGCTAT-3"; P5, 5'-CTACAGCGCACTCTACTGAATC-3'; P6,
5'-GACAGCCCGCTTTACITACACA-3'. For Actin: ACT-FP, 5'-
ACCCAAAGGCCAACAGAGAGA-3'; ACT-RP, 5'-TGCITGGT-
GCAAGTGCTGTGA-3".

Microscopy

To examine pollen viability, pollen grains were stained
with Alexander solution [46]. The pollen nuclei were
stained with DAPI according to a method already describe
by [47]. For observations of ovules, siliques were fixed
overnight using 3:1 acetic acid: ethanol and then washed
with 70% ethanol before clearing in 8: 1: 2 chloral
hydrate: glycerol: water. For scanning electron microscope
(Hitachi S-3000) analysis, samples were slowly frozen at -
18°C under a partial vacuum on the Peltier stage before
observation under the environmental secondary electron
detector mode.

Promoters analysis

The HAM1 and HAM?2 promoters sequences used contain 1
kb upstream of the ATG and were amplified from Arabidop-
sis genomic DNA with the 5'-GCAGAATTCTCATTGTAGG-
TAAAAGAA-3' and 5'-GGATCCTITCTTTAGTCGGGTCGGA-3'
primers for HAMI and the 5'-GCGAATTCGTCTAACA-
GACTAAACGT-3' and 5'-CGGATCCITCTCGGTCGGGTCG-
GAG-3' primers for HAM2. The corresponding PCR
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fragments were cloned into PUC19 vector and then trans-
ferred upstream the uidA gene in the plant transformation
vector pPR97. The constructs were used to transform Col
plants by the floral dip method. Transgenic plants were
obtained on kanamycin containing medium and later trans-
ferred to soil for optimal seed production. For analysis of
GUS activity, samples were prefixed in 90% acetone at room
temperature for 20 min, rinsed in staining buffer without 5-
bromo-4-chloro-3-indolyl-_-D-glucoronic acid (X-Gluc),
infiltrated with staining solution (100 mM sodium phos-
phate buffer, pH 7, 5 mM potassium ferrocyanide, 5 mM
potassium-ferricyanide, 1 mM X-Gluc) under a vacuum for
15 min, and incubated at 37°C for 14 h. After a progressive
dehydration in a series ethanol concentrations up to 70%,
samples were cleared in 8: 1: 2 chloral hydrate: glycerol:
water. For sections, the stained samples were fixed in FAA at
4°C overnight, and then embedded in Leica historesin. Semi-
thin sections (3 um) were cut and analyzed under a micro-
scope.

Data collection

We searched for MYST sequences from protein databases
at NCBI. 130 protein sequences were downloaded from
numerous genomes. This allows to analyse sequences
from Plants, Algae, Mycetozoans, Insects, Teleostei, Mam-
mals (including Monotremata and Marsupial), Amphibia,
Cnidarian, Echinozoa, Fungi, Plathelminthes, Nematods,
Alveolata, Archausauria and Ascidiaceae. Bacteria do not
have counterpart to the MYST proteins.

Alignment and phylogenetic analysis

The amino-acid alignment was conducted using Clustal
[48,49] with default parameters. The generated alignment
was adjusted manually. Amino acid alignments of the
MYST domain were used as the basis for classifying MYST
proteins. The unrooted tree was created using the PhYML
algorithm and the maximum likelihood method [50]. To
assess support for each node, bootstrap analysis were per-
formed using 500 bootstrap replicates. A bootstrap value
of 70% is likely to be correct at the 95% level, and boot-
strap values higher than 70% were taken as sufficient evi-
dence for grouping.

Structural analyses

To search for domain organization in the MYST proteins,
we analyzed the sequences in Pfam http://
pfam.sanger.ac.uk|[51], Prosite http://www.expasy.ch/

prosite[52] and SMART http://smart.embl-heidelberg.de/
index2.cgi[52] databases.

Divergence time between sequences

To assess the age of the divergence between sequences, we
estimated the level of synonymous substitutions (Ks)
between the Arabidopsis thaliana HAM1 and HAM?2 genes.
After removing gaps in the nucleotide alignment, per-site
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synonymous (Ks) and nonsynonymous (Ka) substitution
rates were calculated using PAL2NAL http://coot.embl.de/

pal2nal/[54].
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