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Abstract

Background: Proper development of plastids in embryo and seedling tissues is critical for plant
development. During germination, plastids develop to perform many critical functions that are
necessary to establish the seedling for further growth. A growing body of work has demonstrated
that components of the plastid transcription and translation machinery must be present and
functional to establish the organelle upon germination.

Results: We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted
elongation factor G (SCO/) that is essential for plastid development during embryogenesis since
two T-DNA insertion mutations in the coding sequence (sco/-2 and sco/-3) result in an embryo-
lethal phenotype. In addition, a point mutation allele (sco/-/) and an allele with a T-DNA insertion
in the promoter (scol/-4) of SCOI display conditional seedling-lethal phenotypes. Seedlings of these
alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and
normally die shortly after germination. However, when germinated on media supplemented with
sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical
meristem.

Conclusion: The developmental stage-specific phenotype of the conditional-lethal scol alleles
reveals differences in chloroplast formation during seedling germination compared to chloroplast
differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal
mutant alleles in the Arabidopsis elongation factor G indicates that SCO/ is essential for plant
growth, consistent with its predicted role in chloroplast protein translation.

Background

In oilseed plants such as Arabidopsis (Arabidopsis thaliana)
and rapeseed (Brassica napus), developing embryos are
green and cells in these embryos develop functional chlo-
roplasts [1]. The green embryos are capable of photosyn-
thesis and have been shown to fix carbon crucial to the
biosynthesis of seed storage oils [2-4]. In experiments
with cultured rapeseed embryos and siliques, light was
found to increase embryo growth-rates, which correlated

both with improved carbon sequestration and with its uti-
lization in seed oil synthesis [5]. These effects were largely
negated by inhibition of photosynthesis, and their studies
indicated that it is the reductant and/or ATP produced by
photosynthesis in green embryos that is important for
normal embryo growth and seed development.

Arabidopsis embryos begin to develop chloroplasts and
appear green around 5 days after pollination and the chlo-
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roplasts remain present for up to approximately 12 days
after pollination [6]. When seeds are maturing during late
embryogenesis (>12 days), the chloroplasts dedifferenti-
ate and lose their chlorophyll, starch, and internal mem-
branes to seed storage reserves, which results in the
formation of white embryos in mature Arabidopsis seed
[6]. In soybean (Glycine max), a small simple plastid called
an eoplast has been found in fully mature embryo cells
[7]. Eoplasts resemble proplastids but are derived from
chloroplasts. Thus far, eoplasts have not been observed in
mature Arabidopsis embryos, largely because the embryo
cells are so densely packed with lipid and protein bodies
[8]- Nevertheless, a basal-state plastid must be maintained
in the cells of fully mature Arabidopsis embryos since
chloroplasts, amyloplasts, and the various other plastid
types re-develop upon seedling germination. The develop-
ment of these plastids early after germination can be criti-
cal for seedling survival since, in addition to
photosynthesis and the production of starch, plastids are
also involved in the biosynthesis of fatty acids [9], nucleic
acids, and amino acids [10].

Although a good deal is known about the physiological
and biochemical functions of chloroplasts during embryo
growth and seed production, investigations of chloroplast
development during embryogenesis have been largely
descriptive [1,11]. To identify molecular components
involved in plastid development during the youngest
phase of the Arabidopsis life cycle, a screen was conducted
to identify mutants that specifically influence plastid
development in embryos and seedling tissues derived
from the embryo, but not in tissues derived from the api-
cal meristem. Mutants were identified that exhibited coty-
ledon and hypocotyl albinism upon germination due to
improper chloroplast development, while photosynthetic
tissues derived from the shoot apical meristem were green
and appeared to develop normal chloroplasts. This paper
describes mutants in a gene that encodes for a plastid-
localized elongation factor G (EF-G). One mutant allele
from an EMS-(ethyl methanesulfonate) mutagenized
population was found to be the result of the same nucle-
otide substitution responsible for the recently described
snowy cotyledon 1 (scol) [GenBank:NM_104952] mutant
[12]. Two alleles with T-DNA insertions directly in this
gene resulted in embryo lethality, demonstrating that this
EF-G is essential during embryogenesis. Our analysis of
the different mutant alleles of SCO1 indicate that differen-
tiation of eoplasts to chloroplasts during germination
may have different requirements for protein translation
than for proplastid to chloroplast differentiation in cells
derived from the apical meristem.

http://www.biomedcentral.com/1471-2229/7/37

Results

Embryo-lethal scol alleles

Two alleles of scol (scol-2 and scol-3) isolated from the
Salk T-DNA insert collection have T-DNA inserts at the C-
terminal end of the gene (Figure 1). In sco1-2, all of the T4
seed tested developed green cotyledons. Genotypic analy-
sis of the viable progeny showed that these plants con-
sisted of a segregating population with a ratio of 1:2 for
wild-type to heterozygote for the T-DNA insert in the
SCO1 gene. No viable progeny were found that were
homozygous for the T-DNA insert. Moreover, examina-
tion of developing siliques on plants that were hetero-
zygous for the scol-2 T-DNA insert revealed that
approximately 25% of the developing ovules were white
(88 white ovules out of 360 examined; see Figure 2B). The
9 d-old white ovules were similar in size to the green
ovules, but upon dissection they did not appear to contain
a developing embryo. This was presumably due to abor-
tion of the embryo at a very early stage of embryogenesis.
Similar results were observed for the sco1-3 T-DNA inser-
tion line (Figure 2C). These findings indicate that null
mutants in SCO1 are lethal early during embryo develop-
ment and that the EF-G encoded by SCO1 is essential for
plant development.

Conditional seedling-lethal scol alleles

We identified one EMS-derived sco mutant that, upon
mapping and sequencing, was found to be identical to the
scol allele recently identified by Albrecht et al. [12], where
a G to A base change converted a conserved glycine resi-
due to an arginine. We have designated this allele as sco1-
1 (Figure 3B). Seedlings of scol-1 rarely survived past the
cotyledon stage unless they were provided with supple-
mentary carbon (Table 1). In addition, an allele (sco1-4)
with a Salk T-DNA insert located 14 base-pairs upstream
of the SCO1 ATG start site was found to have a similar
seedling-lethal phenotype. However, scol-4 plants could
also be rescued when germinated on medium supple-

scol-4 scol-1 scol-2 scol-3

250 bp

Figure |

The SCOI mutational map. SCO/ encodes for a pre-
dicted protein with a high degree of similarity to an EF-G
containing a chloroplast localization signal (Atlg62750). The
locations of the 4 mutant alleles are indicated. The EMS-
mutagenized scol-/ allele represents a G to A base change
within the GTP-binding domain of the gene, which converts a
glycine at amino acid 132 to an arginine. The other alleles
[scol-2 (Salk_046154), scol-3 (Salk_039084), and scol-4
(Salk_025112)] were isolated from the Salk T-DNA insert
collection.
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scol-4

Figure 2

Phenotypes of T-DNA insertion alleles. In 9-d-old sil-
iques, wild-type Arabidopsis ovules were green (A), but in sil-
iques from scol-2 (B) and scol-3 (C) heterozygotes, white
ovules were found intermixed with normal green ovules,
indicating that chloroplast development is disrupted during
embryogenesis in these alleles. White ovules accounted for
approximately 25% of the total observed (sco/-2, 88 white
ovules out of 360; scol-3, 36 white ovules in 166). The
upstream T-DNA insertion in 5-d-old sco /-4 seedlings (D,
right) resulted in significantly stunted growth and pale cotyle-
dons when compared to wild-type seedlings of similar age
(D, left).

mented with sugar (Table 1). Unlike the white cotyledons
of scol-1 (Figure 3B), scol-4 seedlings had very pale green
cotyledons (Figure 2D). When germinated on media with
sucrose, the first true leaves that emerged from scol-4
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Figure 3

Characterization of the scol-I mutant. A-] are from 5-
d-old light-grown seedlings, while K and L are from 4-d-old
dark-grown seedlings. Upon seedling germination in white-
light, the cotyledons of scol-I (B) appear colorless compared
to wild type (A), but leaves that emerge from the apical mer-
istem are green like wild-type leaves. Chlorophyll autofluo-
rescence and cotyledon cross sections show that scol-/
cotyledon cells (D and F) are almost completely devoid of
chloroplasts except in cells associated with the vasculature,
while wild-type (C and E) show a normal complement of
chloroplasts in cotyledon cells. The albinism phenotype of
scol-1 is not always complete and green cells can be found in
some sco /-1 cotyledons, where they are typically located
along the margins of the tissue (G). A cross section of a coty-
ledon (H) from such a variegated mutant shows cells with a
normal complement of chloroplasts adjacent to cells devoid
of chloroplasts. Ultrastructural analysis of chloroplasts in
these 'sectored' scol-I cotyledon mesophyll cells (]) showed
that they are similar to chloroplasts in wild-type cotyledons
(1). Starch deposition in 4 d-old dark-grown wild-type (K) and
scol-1 hypocotyls (L) appears similar, indicating that amylo-
plast development is not severely affected in the scol-/
mutant. Scale bars in | and ] are | um.
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Table I: Effect of sucrose on survival of wild-type and sco
mutants. On 0.5-strength MS media supplemented with 2%
sucrose, wild-type, scol-1, and scol-4 seedlings have comparable
survival rates. In the absence of sucrose, less than 20% of the
scol-1 seedlings were able to produce true leaves and survive
into adulthood, and no scol-4 seedlings survived. Typically, the
scol-1 mutant seedlings that survived to adulthood in the
absence of a supplemental carbon source were ones that had
larger patches of green cells in their cotyledons and hypocotyls

Genotype + Sucrose - Sucrose
Col-0 95/98 = 97% 84/94 = 89%
scol-1 84/92 = 91% 17/89 = 19%
scol-4 25/26 = 96% 0/21 = 0%

seedlings were initially pale, but when transplanted to
soil, the seedlings were able to survive and the rosette
leaves of adult plants resembled wild type (data not
shown).

Plastid development in the scol mutant

Although most scol-1 cotyledons appear completely
white, fluorescence microscopy revealed some red
autofluorescence is present in all mutant cotyledons, espe-
cially along the vasculature (Figure 3D). The red autoflu-
orescence, which is indicative of the presence of
chlorophyll, suggested that chloroplast development was
not completely blocked in the mutant seedlings despite
the visually albino appearance. Also, upon closer exami-
nation of some scol-1 seedlings, we often observed
patches of green cells, which were typically located near
the margin of the cotyledons and in the upper hypocotyl
(Figure 3G). The extent of this sectoring phenotype varied
from seedling to seedling. In the absence of supplemental
sugar, over 80% of the scol-1 seedlings failed to produce
true leaves and died (Table 1). The mutant seedlings that
were able to survive without the supplemental carbon
source typically had larger patches of green cells in their
cotyledons and/or hypocotyls. These patches of green cells
were presumably capable of providing the seedling with
photosynthate and other essential plastid-derived compo-
nents necessary for survival until the first true green leaves
could develop from the apical meristem. Similarly, sco1-1
seedlings that were able to survive when germinated in
soil had large green patches (data not shown). Leaves and
other photosynthetic tissues derived from the apical mer-
istem in scol-1 were green and visually indistinguishable
from wild-type plants (Figure 3B).

To evaluate the structural development of chloroplasts in
the cotyledons, we examined cells by light and transmis-
sion electron microscopy in 5-d-old wild-type and scol-1
cotyledons. As expected, cotyledon mesophyll cells of
light-grown wild-type seedlings contained numerous
well-developed chloroplasts (Figure 3E). In contrast, chlo-
roplasts were essentially absent from cotyledon meso-
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phyll cells of typical sco1-1 seedlings except in the bundle
sheath cells that surround the cotyledon vasculature (Fig-
ure 3F), consistent with the appearance of red autofluores-
cence (Figure 3D). In thin-sections from 'green-sectored'
scol-1 cotyledons (Figure 3H), we observed chloroplast-
containing mesophyll cells directly adjacent to cells that
are devoid of chloroplasts. The chloroplasts that devel-
oped in green scol-1 cells appeared normal and showed
characteristics of typical wild-type chloroplasts (Figure
3]).

Since chloroplast development was altered in scol-1 seed-
lings, we stained seedlings for starch to determine if amy-
loplast development was also altered. Starch staining
revealed that scol-1 hypocotyls contained starch grains,
indicative of the presence of amyloplasts in the endoder-
mis (Figures 3K, L). Starch grains in scol-1 root columella
cells also appeared similar to those in wild type (data not
shown). Consistent with the role of amyloplasts in gravity
perception [13], gravitropism of hypocotyl, root, and
inflorescence in scol-1 was found to be similar to wild
type (data not shown). These data indicate that amylo-
plast development is normal in the scol-1 mutant seed-
lings.

Transcript abundance in conditional-lethal scol alleles
Given the location of the genetic lesions in scol-1 and
scol-4, we wanted to determine if the relative abundance
of SCO1 transcript in each mutant was related to the dif-
ferent albinism phenotypes of their cotyledons. Using
primers specific to SCO1, we determined that SCO1 tran-
script abundance was similar in wild-type and sco1-1 seed-
lings (Figure 4). Since the EMS mutation in scol-1
converts a glycine contained within the GTP-binding
domain to an arginine, transcription was expected to be
similar to wild-type. However, the level of transcript in
scol-4 is significantly reduced, which is consistent with
the location of the T-DNA insert in the promoter region of
SCO1. The level of transcript amplification of ubiquitin
(UBQ) was similar in the mutants and wild type. We also
found that SCO1 protein tagged with GFP was targeted to
chloroplasts and to several non-photosynthetic plastids
(data not shown), confirming data presented by Albrecht
etal. [12].

Embryo development in wild type and scol

Since Arabidopsis embryos are green during much of their
growth, we examined embryos of scol-1 plants to deter-
mine if chloroplast development was impaired in the
mutant during embryogenesis. Embryos dissected from
the middle of siliques between 5 and 15 days after fertili-
zation (DAF) showed that scol-1 and wild-type embryos
were similar in both morphology and developmental rate
(representative embryos from days 8 and 14 are shown in
Figure 5). Embryos from both scol-1 and wild type were
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wild-type scol-1 scol-4
EF-G |
UBQ | e
Figure 4

Expression of SCO|. RTPCR analysis of the EF-G tran-
script from wild-type, scol-/, and sco/-4 seedlings demon-
strates a lower abundance of transcript level in sco/-4. The
TDNA insert in scol-4 is located 14 base-pairs upstream of
the ATG start site, directly affecting its transcription rate.
The genetic lesion in scol-/ does not appear to affect the
level of SCOI mRNA, as its level appears similar to that of
wild-type. The level of the loading control UBQ transcript is
similar between all three samples.

observed to become visibly green around 6 DAF, and
remained so until approximately 12 DAF when the chlo-
roplasts began to dedifferentiate in preparation for dehy-
dration and maturation of the seed. scol-1 embryos
dissected from siliques that were 11,12, or 13 DAF and the
embryos were still green, were able to develop green
hypocotyls and cotyledons when precociously germinated
on agar growth medium, but embryos dissected after the
embryos had turned white (>13 DAF) developed the char-
acteristic white cotyledons seen in the scol-1 mutant (data
not shown). At 12 DAF, Arabidopsis embryos are in the
early stages of desiccation and the onset of dormancy, and
chloroplasts are beginning to dedifferentiate [11]. Since

8 DAF

14 DAF

wild-type

scol-1

Figure 5

Development of scol-I embryos. Representative
embryos were dissected from the middle of siliques on days
8 and |4 after anthesis. With respect to developmental rate
and morphology, scol-I embryos were similar to wild type.
The scol-1 embryos were green from days 6 to |12, but
appeared slightly paler compared to wild-type embryos of
similar age. DAF = days old after fertilization.
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the scol-1 phenotype could be rescued by bypassing the
maturation stage of embryogenesis, the function of the
mutant EF-G appears to be particularly critical during late
stages of embryo development when eoplasts form.

Expression levels of the Arabidopsis EF-Gs

The most current annotation of the Arabidopsis genome
predicts a total of three nuclear-encoded EF-Gs. Unlike the
plastid-targeted SCO1, the two other EF-Gs (At1g45332
[GenBank:NM_103595] and  At2g45030  [Gen-
Bank:NM_130067]) contain predicted mitochondrial-tar-
geting sequences [14]. According to the subcellular
prediction program TargetP, their targeting sequences
may allow for dual targeting of the proteins to the mito-
chondria and plastids. During the course of Arabidopsis
development, SCO1 is the most highly expressed of the
EF-Gs, with expression levels peaking at 9.2 times the lev-
els of At1g45332 and At2g45030 in cotyledon tissue (Fig-
ure 6; data compiled from Genevestigator [15]).
Transcript levels of SCO1 are reduced in adult rosette tis-
sue as compared to cotyledon tissue, whereas At1g45332
and At2g45030 mean expression levels remain relatively
constant throughout development, but are always much
lower than for SCO1.

Discussion

scol encodes for a translation elongation factor G

In general, the chloroplast genome encodes for genes that
can be classified into several functional categories, includ-
ing genes specific to transcription and translation within
the plastid, photosynthetic genes, and genes involved in
the synthesis of metabolic compounds [16]. Many of the
components of the chloroplast proteome, however, are
nuclear-encoded [17], including a number of factors that
have been shown to be important in regulating transla-
tion of plastid genes [18,19]. For example, studies in vari-
ous plant species indicated that protein initiation factors
and elongation factors, including elongation factors EF-G
and EF-Tu, are present in the nuclear genome and contain
chloroplast-targeting sequences [20-25]. Much of our
knowledge of plastid gene function in transcription and
translation has drawn from structural and functional sim-
ilarities to prokaryotic proteins that serve in a similar
capacity. The presence of plastid-specific ribosomal pro-
teins (PSRPs), however, indicates that at least some
aspects of the translation mechanism in chloroplasts is
unique to plants [26,27].

As shown here and by Albrecht et al. [12], the nuclear
SCO1 gene encodes for a protein translation elongation
factor G with a chloroplast-targeting signal sequence.
Although biochemical activity has not been directly dem-
onstrated for SCO1, similar functionality seems highly
likely since the predicted amino acid sequence of SCO1 is
over 50% identical to the E. coli EF-G fusA [Gen-
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Figure 6

Gene expression levels of the Arabidopsis nuclear-
coded elongation factor Gs. The Arabidopsis genome
encodes for a total of three elongation factor Gs, including,
SCOI and two predicted mitochondrial-targeted EF-Gs.
Transcript levels of SCO/ are highest in cotyledon tissue,
with reduced levels in adult leaves. Atlg45332 and
At2g45030 transcript levels are highly reduced compared to
SCOI and remain constant between cotyledon and adult tis-
sues. If these two EF-Gs are dual-targeted, they may be able
to aid or compensate for the impaired activity of SCO|1 in
scol-I and scol-4.

Bank:X00415], including conservation of glycine 132,
which was changed to an arginine in the scol-1 mutant.

During the elongation phase of plastid protein biosynthe-
sis, the elongation factor EF-Tu binds to an aminoacyl-
tRNA, which is then directed to the A site of the ribosome.
The EF-G protein is then required to translocate the newly
formed peptidyl-tRNA from the ribosomal A-site to the P-
site. Although the scol-1 mutant is viable when provided
with sucrose during germination (Table 1), the two alleles
we identified with T-DNA insertions in the SCO1 coding
sequence (scol-2 and scol-3) have an embryo-lethal phe-
notype (Figure 2), indicating that SCO1 is an essential
gene. The G to A base change in the scol-1 mutant con-
verted a conserved glycine residue to an arginine at posi-
tion 132, which is between the P-loop and Switch I
regions of the conserved GTP-binding domain found in
the 70S-ribosome-binding region of elongation factors.
Since the activity of EF-G is dependent upon hydrolysis of
GTP [28], the amino acid change in scol-1 may interfere
with GTP hydrolysis activity in the mutant protein, affect-
ing binding to or release from the ribosome. Since sco1-1
plants are viable once they produce leaves from the apical
meristem, the mutant EF-G produced is likely to retain
partial EF-G activity. However, we have not found reports
describing a similar mutation in E. coli.

http://www.biomedcentral.com/1471-2229/7/37

The scol-4 allele, which contains a T-DNA insertion
upstream of the SCO1 start site, most likely produces a
normal EF-G but at reduced levels compared to wild type
(Figure 4), which could cause the pale cotyledon pheno-
type (Figure 2D). The different cotyledon phenotypes of
scol-1 and sco1-4 is likely due to differences in the manner
in which translation is altered. Previous research has dem-
onstrated that in adult leaf tissues, proper plastid protein
translation is absolutely essential for cell survival [29],
and a similar reduction in protein translation in scol-1
[12] reveals that plastid protein translation is also critical
during seedling development.

scol is critical during late embryogenesis and/or early
germination

The plastid defects seen in scol-1 and scol-4 are most pro-
nounced in seedling cells that were derived from the
embryo. A few other published Arabidopsis mutants
exhibit seedling-specific abnormal chloroplast develop-
ment, including white cotyledon 1 (wcol) [30] and sigma
factor 6 (sig6) [31,32]. Mutations in SIG6 cause similar
seedling stage-specific effects on chloroplast development
to scol-1, such as albino to pale-green cotyledons and nor-
mal leaf development. It was suggested that the sig6
mutant is able to produce normal chloroplasts in adult tis-
sues due to redundancy in the role of sigma factors
throughout development. In the wcol mutant, the white
cotyledon phenotype is highly dependent on light inten-
sity, and the plants show various other defects in addition
to the seedling albinism, including a marked reduction of
chlorophyll content in adult rosette leaves. The wcol phe-
notype is thought to result from a disruption of 16 S TRNA
maturation, making it one of several mutants that appear
to affect 16 S rRNA maturation and disrupt chloroplast
development [33,34].

Since the eoplast to chloroplast transition is defective in
scol-1 and scol-4 mutants, it appears that SCO1 activity is
particularly critical during either the transition from chlo-
roplast to eoplast, or when eoplasts redifferentiate into
chloroplasts after germination. When we precociously
germinated scol-1 embryos before their chloroplasts had
converted to eoplasts, green seedlings were obtained, indi-
cating that some aspect of eoplast formation is critical for
the scol-1 mutant phenotype to develop. Because all plas-
tid types would be expect to be impaired if eoplasts were
abnormal, the presence of starch-containing amyloplasts
in scol-1 seedlings suggests that eoplast formation may be
relatively normal in the mutant embryos and that the
eoplast to chloroplast transition may be more demanding
of EF-G activity than for the eoplast to amyloplast transi-
tion. Consistent with observations in Albrecht et al. [12],
we found that the SCO1 tagged with GFP was targeted to
chloroplasts. In addition to this previously determined
chloroplast targeting, we found that the SCO1::GFP was
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also localized to non-photosynthetic plastids such as
those in root and petal cells.

Even in the white scol-1 cotyledons, chloroplasts were
observed by chlorophyll fluorescence and microscopy in
cells surrounding the vasculature (Figure 3D). In addition,
while some sco1-1 seedlings appear almost entirely albino
(Figure 3B), others show a variegated phenotype with sec-
tors of 'wild-type' green cells (Figure 3G). When green sec-
tors are present, they are mostly located around the
cotyledon margin and the cells appear to contain a full
complement of chloroplasts. It has been shown that lipid
and starch deposition, which are associated with the pro-
gression of maturation in cotyledons of developing soy-
bean embryos, begins in the interior cells of the organ and
progresses to the periphery [35]. If maturation of Arabi-
dopsis cotyledons follows a similar gradient, cells along
the margin may not fully dedifferentiate their chloroplasts
into eoplasts prior to seed maturation. Since we could res-
cue the scol-1 phenotype by precocious germination, it is
possible that the stages of plastid development that
appear to be most dependent on SCO1 activity may be
bypassed in a subset of cells that happen to arrest prior to
full eoplast formation.

The lethality of the T-DNA insertion alleles (scol-2 and
sco1-3) is consistent with the hypothesis that SCO1 repre-
sents an essential gene in Arabidopsis involved in protein
synthesis in plastids. There are at least two other predicted
EF-Gs in the Arabidopsis genome, both of which are pre-
dicted to encode EF-Gs with mitochondrial-targeting and
possibly plastid-targeting sequences. Dual targeting has
been observed for other plant transcripts, including at
least 17 of the Arabidopsis aminoacyl-tRNA synthetases
[36]. At1g45332 and At2g45030 are over 98% identical to
each other and show 43% identity and 62% similarity to
SCO1, respectively, excluding the targeting sequences. If
At1g45332 and/or At2g45030 are dual-targeted, it is pos-
sible that they may provide EF-G activity in at least some
cell and/or plastid types that can aid, or compensate for,
the impaired activity of SCO1 in the scol-1 and scol-4
mutants. It is also possible that one or both of these other
EF-G genes can contribute to protein synthesis during
later stages of plant development, which could allow the
scol-1 and scol-4 mutants to develop green leaves. It is
also possible that in the absence of normal SCO1 levels,
expression of the other EF-Gs may be increased. However,
expression analyses of these three EF-Gs in wild-type
plants indicates that SCO1 expression greatly exceeds that
of the other two EF-Gs in both cotyledons and mature
leaves (Figure 6). More detailed analysis of expression lev-
els and protein localization for all three EF-Gs during
development will help distinguish between the various
potential explanations. Given the lethal phenotype of T-
DNA inserts in SCO1, however, neither of these other EF-
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Gs appears fully capable of providing sufficient EF-G func-
tion for plastid development in the absence of SCO1
activity during early stages of embryo development.

Conclusion

The results presented here show that the EF-G encoded by
the SCO1 gene in Arabidopsis is essential for plant growth
since T-DNA insertions in the gene cause embryo lethality.
The stage-specific phenotypes of the scol-1 and scol-4
mutants described here, and for the wcol and sig6
mutants, reveal fundamental differences between plastid
development in embryo-derived cells and cells derived
from the apical meristem. Analysis of other seedling plas-
tid-defective mutants should provide a better understand-
ing of plastid formation during this critical period in plant
development.

Methods

Plant material and growth conditions

The plants used for this study were of the Columbia eco-
type of Arabidopsis thaliana. The scol-1 mutant was iso-
lated in a screen of 80,000 seedlings from 0.3% ethyl
methanesulfonate (EMS, Sigma-Aldrich, Saint Louis, MO)
mutagenized Arabidopsis M2 seeds as a seedling display-
ing white cotyledons but green meristematically-derived
tissue. The scol-2 (SALK_046154), scol-3
(SALK_039084), and sco1-4 (Salk_025112) T-DNA inser-
tion lines were obtained from the Arabidopsis SALK col-
lection [37] at the Arabidopsis Biological Resource Center
(The Ohio State University, Columbus, OH). The position
of the T-DNA insert was confirmed through PCR amplifi-
cation with the primer LBa-1 (located on the TDNA insert:
5'TGGTTCACGTAGTGGGCCATCG3') and primers flank-
ing the predicted inserts
(5'AAAAACAAAAGCAGACATCGACS3' for scol-2,
5'GACCAAACAAAATCACAATAAG3' for scol-3, and
5'ATGAAACACGAGCTATATTGAGS3' for scol-4).

Wild-type and all scol seed were sown on 1% agar growth
medium containing 0.5-strength MS salts (Gibco/Life
Technologies, Grand Island, NY) and 2% sucrose. The
sown seeds were cold treated at 4°C for 48 h and then
allowed to germinate and grow at 23°C in a growth room
with a 12 h photoperiod under 60 to 70 pmol m-2 s of
light produced by a mixture of cool-white and warm-
white fluorescent bulbs (General Electric, Louisville, KY).
When the first true leaves had developed, seedlings were
transferred to pots containing Scotts Plug mix (Scotts-
Sierra, Marysville, OH). Plants were fertilized with K-
Grow all purpose plant food (Kmart, Troy, MI) on a two
week cycle.

Identification and sequence analysis of scol
An F2 mapping population was established between sco1-
1 (Columbia ecotype) and the Landsberg erecta (LER) eco-

Page 7 of 10

(page number not for citation purposes)



BMC Plant Biology 2007, 7:37

type of Arabidopsis. The analysis of sequence polymor-
phisms in 450 F2 recombinant lines homozygous for sco1-
1 placed the mutation in a 163 kilobase region on Chro-
mosome 1, which was covered by bacterial artificial chro-
mosomes (BACs) T3P18 and F23N19
[GenBank:AC007190]. We subcloned BAC F23N19
because it contained the bulk of the genetic interval. The
pBeloBAC plasmid containing BAC F23N19 (Arabidopsis
Biological Resource Center) was partially digested by
Sau3Al (New England Biolabs, Beverly, MA) for 30 min-
utes at 37°C to obtain fragments approximately 10-15
kilobase in size. These fragments were ligated (T4 DNA
ligase, New England Biolabs, Beverly, MA) at 15°C over-
night to the BamHI-digested (New England Biolabs, Bev-
erly, MA) binary vector pCLD04541 (Arabidopsis
Biological Resource Center). Plasmid DNA was intro-
duced into Escherichia coli (DH5a.) using a Gigapack III XL
cosmid packaging kit (Stratagene, Cedar Creek, TX). E. coli
colonies were screened using BAC F23N19 specific mark-
ers located every 10 kilobases to identify clones that pro-
vided coverage of the entire BAC. These were mated into
Agrobacterium tumefaciens (GV3101) using the E. coli
helper strain pRK2013. scol1-1 plants were transformed by
floral dipping [38] and selected by growing seeds on 0.5-
strength MS salts containing 1% agar and 50 pg/mL kan-
amycin (Sigma-Aldrich). Rescued plants were identified
by their kanamycin-resistance and green cotyledons.
Three candidate clones, defining an area no larger than 20
kb, were found to rescue the scol-1 phenotype and were
confirmed in the T2 generation. Sequencing of the seven
genes in the identified interval revealed a mutation in a Tu
family protein translation EF-G (At1g62750).

Embryo dissection experiments

Using wild-type and scol-1 plants that were similar in
appearance, staged embryos were obtained from siliques
formed from flowers that were dated upon reaching
anthesis. Ovules were collected from the central portion
of siliques that were from 5 to 15 d post anthesis (DPA)
and the embryos were dissected from the ovules. Ovules
of sco1-2 and sco1-3 were examined in 9-d-old siliques that
were cut open and photographed using a Nikon SMZ1500
dissecting scope with a Nikon Digital Camera DXM1200
(Melville, NY).

Microscopy

Plant materials were cut and placed into a 3% formalde-
hyde/gluteraldehyde solution in 0.1 M sodium cacodylate
buffer, pH 7.4 (Electron Microscopy Sciences, Hatfield,
PA) and fixed overnight at 4°C. The fixed samples were
washed and post-fixed in 2% OsO, at 4°C overnight. The
samples were then washed, dehydrated, and embedded in
spurs resin (Electron Microscopy Sciences, Hatfield, PA).
For the cotyledon cross-sections, the embedded pieces
were sectioned using an automated ultra-microtome and
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a glass knife. The sections were stained with bromophenol
blue (Sigma-Aldrich, Saint Louis, MO) to reveal chloro-
plasts and cell walls. Images were captured using the
brightfield function on a Nikon E800 microscope
(Melville, NY). For the transmission electron microscope
images, cotyledon pieces were sectioned using an auto-
mated ultra-microtome with a diamond knife (Pelco
International, Redding, CA). The sections were stained
with a 2% uranyl acetate solution and lead citrate as pre-
viously described [39]. Stained sections were observed
and imaged using a JEOL-1010 Transmission Electron
Microscope (JEOL USA, Inc., Peabody, MA).

scol transcript analysis

RT-PCR was performed using the SuperScript III One-Step
RT-PCR with Platinum Taq (Invitrogen Corp., Carlsbad,
CA). A total of 50 nanograms starting RNA concentration
were used in each reaction. SCO1 gene specific primers
used for amplification were (For -
5'AAAAACAAAAGCAGACATCGAC3') and (Rev -
5'GGATCCITAAGCAGCAACTTCTTGATCC3').

scol localization

SCO1 was fused to a 35 S driven, C-terminal GFP con-
struct utilizing the Gateway vector system (Invitrogen
Corp., Carlsbad, CA). Gene specific primers with flanking
attB  sites were used to amplify the gene
(5'GGGGACAAGTTITGTACAAAAAAGCAGGCTTCAACAA
TGGCGGCGGATGCTCTGAG3' and 5'GGGGACCACTTT-
GTACAAGAAAGCTGGGTCAGCAGCAACTTCITCITGAT
CCTTG3'). The expression clone was inserted into the
donor vector pPDONR201, and subsequently transformed
into One Shot TOP10 chemically competent cells (Invit-
rogen Corp., Carlsbad, CA). Transformed clones were
identified on Luria-Bertani (LB) medium containing 50
pg/ml kanamycin and tested with gene specific primers. A
miniprep purification (Qiagen, Valencia CA) was then
done on a positive clone and used in a recombination
reaction with the destination vector pVRGFP (provided by
Vincente Rubio and Xing Wang Deng). The ligated plas-
mid was subsequently transformed into One Shot TOP10
chemically competent cells. Transformed clones were
identified on LB medium containing 50 pg/ml spectino-
mycin and tested with gene specific primers. A positive
clone was mated into Agrobacterium tumefaciens (GV3101)
using the E. coli helper strain pRK2013 and used to trans-
form wild-type Arabidopsis plants (ecotype Columbia) by
floral dipping [38]. Rescued plants were identified by
their gentamycin-resistance (200 pg/ml) and green cotyle-
dons.

Sequence alignments
The publicly available program TCOFFEE was used to pro-
duce sequence alignments of scol, At1g45332,
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At2g45030, and the E. coli EF-G (fusA). Outputs were
designed by BOXSHADE [40].
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