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Abstract

Background: Accuracy in quantitative real-time RT-PCR is dependent on high quality RNA,
consistent cDNA synthesis, and validated stable reference genes for data normalization. Reference
genes used for normalization impact the results generated from expression studies and, hence,
should be evaluated prior to use across samples and treatments. Few statistically validated
reference genes have been reported in grapevine. Moreover, success in isolating high quality RNA
from grapevine tissues is typically limiting due to low pH, and high polyphenolic and polysaccharide
contents.

Results: We describe optimization of an RNA isolation procedure that compensates for the low
pH found in grape berries and improves the ability of the RNA to precipitate. This procedure was
tested on pericarp and seed developmental series, as well as steady-state leaf, root, and flower
tissues. Additionally, the expression stability of actin, AP47 (clathrin-associated protein),
cyclophilin, EFl-o. (elongation factor |-o1), GAPDH (glyceraldehyde 3-phosphate dehydrogenase),
MDH (malate dehydrogenase), PP2A (protein phosphatase), SAND, TIP41, o-tubulin, B-tubulin,
UBC (ubiquitin conjugating enzyme), UBQ-L40 (ubiquitin L40) and UBQI0 (polyubiquitin) were
evaluated on Vitis vinifera cv. Cabernet Sauvignon pericarp using three different statistical
approaches. Although several of the genes proved to be relatively stable, no single gene
outperformed all other genes in each of the three evaluation methods tested. Furthermore, the
effect of using one reference gene versus normalizing to the geometric mean of several genes is
presented for the expression of an aquaporin and a sucrose transporter over a developmental
series.

Conclusion: In order to quantify relative transcript abundances accurately using real-time RT-
PCR, we recommend that combinations of several genes be used for normalization in grape berry
development studies. Our data support GAPDH, actin, EFI-o. and SAND as the most relevant
reference genes for this purpose.
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Background

Transcriptomics is an important growing field of molecu-
lar biology. Gene expression analyses are increasing our
understanding of signalling and metabolic pathways
underlying developmental and cellular processes. Real-
time RT-PCR is currently one of the more powerful and
sensitive techniques for analyzing gene expression. It pro-
vides outstanding accuracy of RNA quantification and has
a broad dynamic range over wide experimental conditions
[1-7]. As in other expression studies, data normalization is
essential to control for experimental error introduced
throughout sample preparation. It has been shown that
real-time RT-PCR results are highly dependent on the ref-
erence genes chosen [8], which supports putting consider-
able effort into validating gene(s) chosen for
normalization prior to extensive experimentation. Useful
reference genes must not only be present in all samples
but the expression levels need to remain constant relative
to experimental pressures introduced. Data normalization
can be problematic and several strategies have been
reviewed [9].

Housekeeping genes are constitutively expressed and
required for cellular survival, including functions such as
cell wall structure and primary metabolism. Previously,
these have been found to be reasonable internal reference
genes for normalizing real-time data. These genes are
expected to exhibit minor differences in their expression
profiles under diverse experimental conditions. Examples
such as GAPDH, 18S rRNA and EF1-a have been widely
used in RNA blot analyses and are commonly used for
real-time RT-PCR in various plant species [2,3,6,7,10,11].
While these genes have been found to be appropriate for
some experiments, other candidates were recently
reported to outperform these classical ones [12].

Grape berries undergo significant metabolic changes
throughout their development, orchestrated in part by the
up and down regulation of transcripts. This development
follows a double sigmoidal pattern characterized by two
periods of cellular expansion separated by a period of
slowed growth [13]. The ability to identify transcripts that
are resistant to growth fluctuations or stresses is challeng-
ing; therefore, it is important to identify candidate refer-
ence genes that are subject to only minimal regulation
during an individual experiment, permitting accurate
transcriptional analyses. To date, a limited number of
real-time RT-PCR experiments focusing on grape berries
has been published. Based on microarray and real-time
RT-PCR data, UBQ-L40 [14] and one paralog of EF1-a. [2]
were previously reported as being stably expressed in
grape berries.

Prior to evaluating expression patterns in biological sam-
ples, it is important to ensure that the RNA being used for
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cDNA synthesis is pure and not degraded. Grapevine tis-
sues, like those in many higher plant species, contain
abundant polyphenolic and polysaccharide compounds
which cause challenges when isolating RNA. At full matu-
rity, for example, Cabernet Sauvignon berries contain
approximately 26 percent soluble solids, mainly glucose
and fructose, and these sugars can co-precipitate with
nucleic acids into a viscous gelatin-like pellet during RNA
isolation. Moreover, due to the low RNA content in the
maturing berries, success is limited in capturing low con-
centrations of nucleic acids using large-volume extraction
protocols.

In this study, we present an RNA isolation protocol
adapted from a previously described procedure developed
for the evergreen tree, Cinnamomum tenuipilum [15]. Our
protocol compensates for the acidic nature of grape ber-
ries and introduces modifications to both increase RNA
yield and minimize contaminating polysaccharides. We
demonstrate that high quality and quantity of RNA can be
obtained from grape berries from all developmental
stages as well as other grapevine tissues including flowers,
leaves, and roots. Additionally, we present the expression
patterns of 15 primer pairs targeting 14 commonly used
reference genes that represent different functional classes
in developing grape berries. Two different growing sea-
sons were used in this study. Included are primer pairs
that target either a single gene or two or more members of
a gene family [5,10]. Three different statistical approaches
were used to evaluate the reference genes; 1) cycle thresh-
old (C,) range and coefficient of variance; 2) analysis
using the geNorm software [16]; and 3) deviations from
the C, mean [17]. Lastly, we demonstrate the effects of
using one or more reference genes on the relative expres-
sion levels of an aquaporin and a sucrose transporter dur-
ing grape development.

Results and discussion

Microarray datasets can be a rich source of information for
selecting real-time RT-PCR reference genes, as was done
for Arabidopsis using the large public collection of data
from Affymetrix GeneChip experiments [12]. Unfortu-
nately, for emerging organisms like grapevine, public
datasets are limited [2,18]. In this study, we set out to eval-
uate the stability of 15 primer pairs via three independent
analytical methods to rank the effectiveness of internal
reference genes for grape berries. Among these, 18S rRNA,
GAPDH, actin and EF1-o are among the most commonly
reported reference genes, but to date, no single candidate
has been shown to be universally acceptable.

Reference gene analysis

When assessing a set of reference genes, the evaluation
method implemented can be a source of bias based on the
assumptions underlying each approach. In an effort to
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minimize bias, the datasets were analysed using three dif-
ferent statistical approaches to identify the most stably
expressed genes during grape berry development. The
first, most straightforward method was to assess the C,
range and calculate the coefficient of variance for each
gene over two growing seasons. This allowed for a visual
assessment of genes that had a narrow C, range over the
entire developmental period. Naturally, the least amount
of variance is most favourable. C, values for the 14 genes
(15 primer pairs) ranged from 19 to 34, while the major-
ity of these values were between 20 and 26 (Figure 1).
Actin was the most abundant transcript, reaching thresh-
old fluorescence after only 19 to 20 amplification cycles,
whereas the C average of all genes within the datasets was
approximately 24 cycles. As a result, the actin transcript
levels were around 32-fold more abundant than the data-
set's average. The least abundant transcripts were -tubu-
lin, PP2A, and SAND, with C, values of 26 or higher. The
calculated coefficient of variance of the C, values gives an
indication of the expression stability of a particular gene.
B-tubulin and cyclophilin each had large variances in their
expression levels and the only CV values over 4.0 for both
2003 and 2004 pericarp sample sets. On the other hand,
there was little consistency in genes with minimal CV.
This method, although reasonable, did not clearly define
any stably expressed reference genes across the develop-
mental series in the two seasons. A disadvantage of this
approach is that it overlooks RT-PCR variations between
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genes, samples, and to a lesser extent their repeats, mean-
ing that experimental errors are likely present but not
characterized.

geNorm software was tested as a second means of assess-
ing candidate reference genes [16]. This program calcu-
lates a gene expression stability measure (M) for each gene
based on the average pairwise expression ratio between it
and each of the other genes being studied. geNorm then
performs a stepwise exclusion of the least stable gene and
recalculates M until only two genes are left, these being
the most stably expressed (Figure 2 and Table 2). Each
gene studied had a relatively low M value in accordance
with the limit of <1.5 suggested by geNorm. Only the B-
tubulin surpassed this limit with an M value of 1.54 in the
2004 pericarp dataset. GAPDH (m) ranked among the top
three genes in both the 2003 and 2004 sample sets. Cyclo-
philin, B-tubulin and EFl-a0 (m) consistently ranked
poorly, indicating that these genes are not stably
expressed and likely play a functional role in one or more
stages of berry development. These findings are supported
by reports describing differential expression of cyclophilin
[18] and B-tubulin [2] in microarray experiments. Next,
pairwise variation is calculated by geNorm to determine
the fewest number of reference genes necessary for accu-
rate normalization. As suggested [16], pairwise variation
values below 0.15 do not require greater than two control
genes. Likewise, in our experiment where the pairwise var-
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iation was less than 0.15 (data not shown), geometric
averaging of only the top two genes would be needed for
accurate normalization, when examining our datasets.
The geNorm algorithm is dependent on the assumption
that none of the genes being analyzed are co-regulated;
otherwise, these genes would be inaccurately selected as
favourable candidates. In this experiment, EF1-o. (m) and
EF1-a should benefit from a pairwise comparison pro-
gram like geNorm when included in the same dataset. We
found, however, that irrespective of whether EF1-0. (m)
was included in the dataset with EF1-o or not, geNorm
consistently ranked EF1-o. (m) poorly.

The third statistical approach tested is based on the idea
that the mean expression of candidate reference genes
(mean Ct) reflects the most optimal normalization,
assuming that all genes have independent cellular func-
tions [17]. The calculated mean difference in expression
reflects the constant difference in expression levels
between a gene and the mean of the dataset (Ct - mean
Ct). For example, a Ct of -5.7 for actin indicates that it
took fewer PCR cycles to reach the mean Ct, whereas a Ct
of 2.7 for SAND indicates that more cycles were needed
(Table 3). In our experiment, cyclophilin, B-tubulin, and
EF1-o. (m) were removed from the analysis based on the
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Figure 2

geNorm ranking of reference genes over a grape
berry development series. 2003 pericarp series (LJ) and
2004 pericarp series (@®). Ranked genes are shown in Table
2. Initially, expression stabilities (M) are calculated for each
gene and the average M for all genes is plotted. Then the
least stable gene is eliminated from the set and new M values
are calculated in an iterative process until only two genes
remain.

http://www.biomedcentral.com/1471-2229/6/27

conclusions drawn from the previous two methods that
these were not stably expressed and would otherwise arti-
ficially skew the mean Ct. Previously, Brunner et al. [10]
showed that two of their most stable reference genes rep-
resented both high and low expression levels compared to
the genes being analysed, demonstrating that the level of
expression of the reference genes does not affect accuracy.
In our study, reference genes were ranked based on their
deviation from the mean (2x standard deviation) (Table
3). Highest ranked were SAND and actin in 2003 and
2004 pericarp, respectively, with minimal deviation
around the mean of all other reference genes in the data-
set.

In addition to primer pairs that target single transcripts,
we set out to evaluate a subset of our primer pairs that
should amplify paralogous transcripts, based on compar-
ative sequence analyses [5]. Primer pairs MDH (m),
GAPDH (m), UBQ (m) and EF1-o (m) each targeted con-
served sequences in a minimum of two known transcripts
within their gene families (Table 1). Our results demon-
strated no consistent trend in effectiveness of targeting
multiple transcripts; while GAPDH (m) consistently
ranked relatively high in all analyses, EF1-o. (m) fared
poorly in all three approaches.

The most prominent observation after completing the
three analysis methods was that each produced a different
set of top ranked candidates. Furthermore, these results
were not consistent between sampling years. Generally,
we found that the top ranking reference genes remained
high on the lists in each analysis method, but given that
each method resulted in different units, we recognized the
need to devise a scheme to standardize the units while
maintaining the distribution of results. CV, M, and 2x SD
results were each given a scaled value based on the distri-
bution within each dataset (2003 and 2004, independ-
ently). Cyclophilin, B-tubulin, and EFl-a (m) were
excluded since they were not included in all of the evalu-
ation methods. When 2003 and 2004 dataset scores were
combined, GAPDH (m) ranked highest across all refer-
ence genes, followed by actin, EF1-o, and SAND.

Due to seasonal differences observed using the different
approaches (Figure 1; Tables 2 and 3), further validation
was initiated to test whether the top candidates continued
to perform well in additional berry samples. A second
2003 sample was generated using the mesocarp tissue
(berry flesh without skin). Expression studies were per-
formed in the same manner as was done earlier with the
pericarp tissue. The top four gene candidates in the 2003
mesocarp tissue, based on the same three statistical
approaches, were actin, GAPDH (m), TIP41 and UBC, but
once all datasets (2003 and 2004 pericarp, and 2003 mes-
ocarp) were tabulated, the top ranked genes were GAPDH
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Table I: Genes and primer sets used for real time RT-PCR

Gene abbreviation GenBank Accession  Arabidopsis ortholog locus ~ Arabidopsis locus description Primer pair (forwardl/reverse) Product size
bpl/efficiency*
Actin EC969944 AT5G09810.1 Actin 7 (ACT7)/actin 2 (other hits CTTGCATCCCTCAGCACCTT/ 82/2.00
include ACTI, ACT3, ACT4, ACTS, TCCTGTGGACAATGGATGGA
ACTII, ACTI2)
AP47 EC951857 AT5G46630.1 Clathrin adaptor complexes medium GGTTCCCATGTTTACAGCATCTG/ 86/1.93
subunit family protein GCACCCACTCAACGGTATTGTAC
Aquaporin EC969993 AT2G37170.1 Plasma membrane intrinsic protein 2B TCCGCCAAGGACTATCATGAC/ 90/1.93
(PIP2B)/aquaporin PIP2.2 (PIP2.2) CGCAATCAGAGCCCTGTAGAA
Cyclophilin EC969926 AT4G34870.1 Peptidyl-prolyl cis-trans isomerase/ GGAGCCTGAGCCTACCTTCTC/ 66/1.86
cyclophilin (CYPI) GTGTTCGGCCAGGTGGTAGA
EFl-o T EC959059 AT5G60390.1 Elongation factor |-alpha (other hits GAACTGGGTGCTTGATAGGC/ 150/1.87
include AT1G07940.2, AT1G07940.1,  AACCAAAATATCCGGAGTAAAAGA
ATI1G07920.1, AT1G07930.1)
PP2A CB980232 AT3G25800.1 Serine/threonine protein phosphatase =~ TCGTGATGCTGCTGCTAACAA/ 62/1.90
2A (PP2A) 65 KDa regulatory subunit ~ TTGCCCAGTCAGGACCAAAT
A
SAND F405409 AT2G28390.1 SAND family protein CAACATCCTTTACCCATTGACAGA/ 76/1.91
GCATTTGATCCACTTGCAGATAAG
Sucrose transporter EC920891 AT2G02860.1 Sucrose transporter/sucrose-proton GGATAACTTCCCTGCCTCAATGA/ 67/1.91
symporter TTCTTGTAGCAGCTGAGAGGATCA
TIP4I EC947050 AT4G34270.1 TIP41-like family protein CATGCGAGTGTCCCTCAATCT/ 61/1.92
TCTCTTGCGTTTCTGGCTTAGA
o-Tubulin EC9 9 AT5G19780.1 Tubulin alpha-3/alpha-5 chain (TUAS5) CAGCCAGATCTTCACGAGCTT/ 119/1.82
(other hits include TUAI-4, TUA6) GTTCTCGCGCATTGACCATA
B-Tubulin EC922104 ATI1G75780.1 Tubulin beta-1 chain (TUBI) TGAACCACTTGATCTCTGCGACTA/ 86/1.54
CAGCTTGCGGAGGTCTGAGT
UBC EC922622 ATI1G64230.1 Ubiquitin-conjugating enzyme GAGGGTCGTCAGGATTTGGA/ 75/1.92
GCCCTGCACTTACCATCTTTAAG
UBQ-L40 EC92941 1 AT3G52590.1 Ubiquitin extension protein | (UBQI)/ CATAACATTTGCGGCAGATCA/ 80/1.89
60S ribosomal protein L40 (RPL40B) TGGTGGTATTATTGAGCCATCCTT
EF -0 (m) CB977561 AT5G60390.1 Elongation factor I-alpha (other hits CGCCTGTCAATCTTGGTCAGTAT/ 83/1.70
include AT1G07940.2, ATIG07940.1,  AATGGCTATGCCCCTGTTCTG
ATI1G07920.1, AT1G07930.1,
AT5G60390.2)
CB975242
EC958777
EC931777
EC925368
GAPDH (m) CB973647 ATIGI13440.1 Glyceraldehyde 3-phosphate TTCTCGTTGAGGGCTATTCCA/ 70/1.84
dehydrogenase, cytosolic. CCACAGACTTCATCGGTGACA
CB970967
CF515110
EC930334
MDH (m) * EC921711 AT5G43330.1 Malate dehydrogenase, cytosolic (other ~CCATGCATCATCACCCACAA/ 72/1.85
hit include AT1G04410.1 MDH GTCAACCATGCTACTGTCAAAACC
cytosolic)
EC923897
EC921960
EC919995
UBQI0 (m) CB915250 AT4G02890.1 Polyubiquitin (UBQ14) (other hits CAAATGGCTGAGACCCACAA/ 73/1.88
include UBQ4, UBQI0, UBQI I) TATCCCAGTGGTCGGTTGGT
CB977307

All grape sequences were named based on similarity to Arabidopsis proteins determined via BLASTX. In most cases, the name indicates only a gene
family or subfamily rather than a specific member since partial grape sequences and BLAST searches do not necessarily identify the putative
Arabidopsis ortholog. Closest Arabidopsis homologs were identified using TAIR BLAST 2.2.8.
* The PCR efficiency was determined with LinReg software [23].

T Terrier et. al. [2].

¥ (m) indicates that the primer pair was designed to target more than one gene family member.

(m), actin, EF1-o.and SAND (data not shown). These data
demonstrate that if subtle changes in expression are of
critical importance, choosing a single reference gene may
not be universally suitable.

Reference gene validation

The use of one or multiple reference gene(s) in the calcu-
lation of relative expression data can have a significant
influence on the final normalized results. To test the effect

of reference gene selection on the outcome of a practical
experiment, we evaluated the relative expression patterns
for two functionally unrelated genes, an aquaporin [19]
and a sucrose transporter [20], using different reference
genes (Figure 3). An ideal result would have been for both
genes to have had consistent expression patterns, irrespec-
tive of the reference gene used for normalization. This was
the case for the aquaporin (Figure 3A); this expression pat-
tern was consistent with that reported by Picaud et al. [19],
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Table 2: Reference genes ranked in descending order with respect to expression stability (M)

geNorm ranking

2003 Pericarp

2004 Pericarp

1+2 TIP41 + AP47 Actin + EFl-o
3 GAPDH (m) GAPDH (m)
4 MDH (m) UBQ-L40
5 SAND MDH (m)
6 a-Tubulin PP2A
7 EFl-o UBC
8 Actin o-Tubulin
9 UBQ-L40 SAND
10 PP2A AP47
¥ UBC UBQ (m)
12 UBQ (m) TIP41
13 EFI-ct (m) EFI-ct (m)
14 B-Tubulin Cyclophilin
I5 Cyclophilin B-Tubulin

who found lower expression levels in earlier stages of
berry development. Conversely, relative transcript abun-
dance patterns for the sucrose transporter were dependent
on the gene(s) used for normalization (Figure 3B). The
inconsistent sucrose transporter profiles demonstrated
that using only one gene for normalization can lead to
over or under estimation of relative transcript abundance.
Davies et al. [20] used RNA blot analyses to evaluate the
expression pattern of the sucrose transporter, VvSUC12
[GenBank: AF021809] in Shiraz berries and showed a
down regulation from fruit set through to veraison (ripen-
ing initiation, when the berries change from green to red),
then a continued up regulation through to maturity. In
this study, our sucrose transporter data were consistent
with those of Davies et al. [20] when actin, UBC, and the
combination of actin, EF1-o. and GAPDH (m) were used
for normalization. Other reference genes, when used

independently for normalization, led to different conclu-
sions regarding relative expression levels throughout berry
development (Figure 3B). Once again, these results rein-
force the importance of validating reference gene(s) prior
to experimental applications, and more importantly, tak-
ing the geometric mean of a greater number of genes for
normalization.

RNA isolation

Young grape berries have a pH between 2.0 and 3.0 (Fig-
ure 4), while ripe berries contain high levels of polysac-
charide compounds (percent soluble solids, shown in
Figure 4) and polyphenolics. These characteristics have
made it challenging to extract quality RNA from these and
other grapevine tissues [21,22]. Development of a single
robust RNA isolation protocol for all grapevine tissues can
minimize technical variation when comparing real-time

Table 3: Mean expression difference and 2% SD between each single gene compared to the mean expression of the other 11 listed

genes.
2003 Pericarp 2004 Pericarp
Ranked genes* Mean difference (C)* Accuracy (2x SD)t Ranked genes Mean difference (C) Accuracy (2% SD)
SAND 2.70 0.343 Actin -5.33 0.462
GAPDH (m) -2.10 0.504 PP2A 3.10 0.496
TIP41 3.38 0.600 EFl-a -1.86 0.604
MDH (m) 1.00 0.638 SAND 2.52 0.626
EFl-a -1.15 0.647 GAPDH (m) -1.02 0.630
AP47 1.37 0.719 UBC -0.43 0.689
Actin -5.70 0.733 AP47 0.33 0.728
PP2A 3.79 1.015 UBQ-L40 -0.49 0.889
o-Tubulin 0.39 1.039 o-Tubulin 1.23 0.892
UBC -1.19 1.202 MDH (m) 1.82 0.925
UBQ-L40 0.96 1.213 UBQ (m) -2.23 0.984
UBQ (m) -3.44 1.421 TIP4I 2.36 1.057
Cyclophilin, EFI-0. (m) and B-tubulin were excluded from analysis due to their low performances using geNorm.
* Mean difference (C,-mean C,).
T Precision around the mean C, is represented by 2x the standard deviation.
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Expression levels of an aquaporin (A) and a sucrose transporter (B) during berry development. Genes were nor-
malized to individual and/or combined reference genes. Developmental stages are defined by growing degree days (GDD),
which are calculated by taking the average of the daily high and low temperature each day compared to a baseline (10°C). Data
points are compared relative to the first sampling stage, 208 GDD. During the 2004 season, veraison, which is the period of

berry ripening initiation, occurred between 786 and 889 GDD.

RT-PCR experiments or other downstream applications
such as microarray analyses. We present in Methods,
adaptations made to a protocol originally published for
the woody plant, C. tenuipilum [15], modified to accom-
modate a variety of grapevine tissues. In this study, total
RNA was extracted from grape pericarp, seeds, leaves,
roots and flowers. Analyses of total RNA extracts demon-
strated that they were each of high quality (Figure 5). This
is the first report of a robust RNA isolation protocol appli-
cable to diverse grapevine tissues. Our modifications
account for the acidic nature of grape berries by increasing
the buffering capacity from 100 mM to 300 mM Tris HCI
in the extraction buffer, resulting in increased yields in
early-staged berries. As well, an alcohol precipitation step
was included to concentrate the RNA in solution prior to
selectively precipitating the RNA with LiCl. Increased
yields were achieved when the RNA was concentrated just
prior to the addition of LiCl. This was especially true for
mature pericarp and seeds when cellular activity has
diminished and the water content in the pericarp has
peaked. Yields were quite diverse depending on the source
of the tissue. Leaves yielded the highest amount of total
RNA (400-600 pg/gfw), followed by flowers, roots and
pre-veraison seeds (150-300 ug/gfw), pre-veraison peri-
carp (40-120 pg/gfw), post-veraison pericarp (15-30 pg/
gfw) and the lowest being from post-veraison seeds (3-10

ug/gfw). The differences observed were likely related to
the developmental and metabolic properties of each dis-
tinct tissue.

Conclusion

Our findings support that reference gene selection has a
significant effect on normalized gene expression data in
real-time RT-PCR experiments. We demonstrated that the
most stable reference genes ranked among the top genes
when data from three independent statistical approaches
were evaluated but no single gene was consistently best.
For more accurate normalization, use of at least two of the
top ranked reference genes followed by geometric averag-
ing is recommended for determining a normalization fac-
tor. Specifically for grape berries, GAPDH (m) used
together with actin, a previously reported primer set for a
specific EF1-o [2], or SAND are most stable for grape berry
development studies. Our conclusion is supported by
data representing two growing seasons.

Methods

Plant material

Pre- and post-anthesis flowers, berries, leaves and roots
(produced through air-layering) from Vitis vinifera cv.
Cabernet Sauvignon (clone 15 grafted on rootstock 101-
14) were collected from vines located in Osoyoos, British
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Figure 4

Cabernet Sauvignon berry development through the 2003 and 2004 seasons. Berry weight, soluble solids, and pH
values were generated from 4 replicates of 50 berries, taken from 3 clusters each. Soluble solids were determined using a dig-
ital refractometer (PR-101, Atago, Japan) and the pH was measured on a pH meter (PHM82, Bach Simpson Ltd., London, Can-

ada).

Columbia, Canada, during the 2003 and 2004 field sea-
sons. All tissues were immediately frozen in liquid nitro-
gen upon collection and then stored at -80°C. Seeds were
removed from the berries by gently breaking open the ber-
ries under liquid nitrogen, then pericarp (skin and flesh)
and seed portions were stored separately until further use.
During the 2003 season, eight samples were collected to
reflect the entire development series, whereas in 2004 an
attempt was made to capture more veraison stages (the
onset of ripening), so ten samples were used.

Total RNA isolation

The extraction buffer contained 300 mM Tris HCl (pH
8.0), 25 mM EDTA, 2 M NaCl, 2% CTAB, 2% PVPP,
0.05% spermidine trihydrochloride, and just prior to use,
2% B-mercaptoethanol. Tissue was ground to a fine pow-
der in liquid nitrogen using a mortar and pestle. The pow-

der was added to pre-warmed (65 °C) extraction buffer at
20 ml/g of tissue and shaken vigorously. Since berries
have higher water content than other grape tissues, a
lower extraction buffer ratio of 10-15 ml/g weight was
sufficient. Tubes were subsequently incubated in a 65°C
water bath for 10 min and shaken every couple of min.
Mixtures were extracted twice with equal volumes chloro-
form:isoamyl alcohol (24:1) then centrifuged at 3,500 x g
for 15 min at 4°C. The aqueous layer was transferred to a
new tube and centrifuged at 30,000 x g for 20 min at 4°C
to remove any remaining insoluble material. This step
proved more critical for root and flower tissues. To the
supernatant, 0.1 vol 3 M NaOAc (pH 5.2) and 0.6 vol iso-
propanol were added, mixed, and then stored at -80°C for
30 min. Nucleic acid pellets (including any remaining car-
bohydrates) were collected by centrifugation at 3,500 x g
for 30 min at 4°C. The pellet was dissolved in 1 ml TE (pH
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Total RNA samples run on an Agilent 2100 Bioanalyzer RNA 6000 Nano LabChip. L, Ladder/marker; 1-2, pre-
veraison pericarp; 3, veraison pericarp; 4, post-veraison pericarp; 5—6, pre-veraison seed; 7, veraison seed; 8, post-veraison
seed; 9, root; 10, pre-anthesis flower; | |, post-anthesis flower. The fluorescence plot shown in the upper right corner is an

example of the electropherogram with 18S and 28S peaks.

7.5) and transferred to a microcentrifuge tube. To selec-
tively precipitate the RNA, 0.3 vol of 8 M LiCl was added
and the sample was stored overnight at 4 °C. RNA was pel-
leted by centrifugation at 20,000 x g for 30 min at 4°C
then washed with ice cold 70% EtOH, air dried, and dis-
solved in 50-150 pl DEPC-treated water.

RNA purification and cDNA synthesis

RNA concentration and 260/280 nm ratios were deter-
mined before and after DNase I digestion with a Nano-
Drop ND-1000  spectrophotometer  (NanoDrop
Technologies, Wilmingon, DE, USA), and 1% agarose gels
were run to visualize the integrity of the RNA. To improve
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our ability to visually assess RNA quality, the same RNA
samples were run on an Agilent 2100 Bioanalyzer RNA
6000 Nano LabChip (Agilent, Mississauga, ON, Canada),
as shown in Figure 5. Total RNA was purified using an
RNeasy kit (Qiagen, Valencia, CA, USA) with the addition
of an on-column DNase I digestion. cDNAs were synthe-
sized from 2 ug of total RNA using the Superscript I1I first-
strand synthesis system followed by the RNase H step
(Invitrogen, Carlsbad, CA, USA), according to the manu-
facturer's instructions.

PCR primer design

Several common housekeeping genes were selected for
expression analysis (Table 1). Primers were designed
using Primer Express 2.0 software (Applied Biosystems,
Foster City, CA, USA) with melting temperatures (Tm) of
58-60°C, primer lengths of 20-24 bp, and amplicon
lengths of 61-150 bp. The majority of the primer pairs tar-
geted a single gene within a given gene family with the
exceptions of MDH (m), GAPDH (m), UBQ (m) and EF1-
o (m) primer pairs (m, representing multiple gene family
members targeted).

Real-time PCR conditions and analysis

PCR reactions were performed in 96-well plates with an
ABI PRISM® 7500 Sequence Detection System (Applied
Biosystems) using SYBR® Green to detect dsDNA synthe-
sis. Reactions were done in 25 pl volumes containing 200
nM of each primer, 5 pl cDNA (corresponding to ~3 ng),
and 12.5 pl 2x SYBR Green Master Mix Reagent (Applied
Biosystems). Aliquots from the same cDNA sample were
used with all primer sets in each experiment. Reactions
were run using the manufacturer's recommended cycling
parameters of 50° C for 2 min, 95°C for 10 min, 40 cycles
of 95°C for 15 s, and 60°C for 1 min. No-template con-
trols were included for each primer pair and each PCR
reaction was completed in triplicate. Dissociation curves
for each amplicon were then analyzed to verify the specif-
icity of each amplification reaction; the dissociation curve
was obtained by heating the amplicon from 60°Cto 95°C
(See additional file 1: Dissociation curve data).

Data were analyzed using the SDS 1.2.2 software (Applied
Biosystems). Expression levels were determined as the
number of amplification cycles needed to reach a fixed
threshold in the exponential phase of the PCR reaction
(C,). All amplification plots were analyzed with an Rn
threshold of 0.2 to obtain C, values. The PCR efficiency
was determined for each gene with LinReg software,
which uses absolute fluorescence data captured during the
exponential phase of amplification of each reaction [23].
Results from the SDS and LinReg software were imported
into Microsoft Excel for further analyses and to correct for
the different PCR efficiencies [24]. All primer pairs had
efficiencies higher than 1.80 with the exception of EF1-a

http://www.biomedcentral.com/1471-2229/6/27

(m) (1.70) and B-tubulin (1.54). Each was run on the full
pericarp developmental series for 2003 and 2004. In addi-
tion, all primer pairs except those targeting f3-tubulin and
cyclophilin were run on 2003 mesocarp samples.

In order to evaluate reference gene stability among sam-
ples, three statistical approaches were incorporated. In the
first approach, C, difference (C, ,;,.x-C; min) and CV were
calculated for each gene throughout each development
series tested. During the second approach, C, values were
converted into relative quantities and imported into
geNorm v.3.4 software [16]. Analyses were performed
both with and without EFl-o (m) data to evaluate
whether co-regulation with EF1-o biased the results, con-
sidering that the EF1-o. (m) targets EF1-o. as well as other
paralogs. Finally, in the third approach, the standard devi-
ation was calculated for each mean C, difference (C-mean
Ct) [17]. B-tubulin, cyclophilin, and EF1-o. (m) were
excluded from this third approach due to their poor per-
formances during earlier analysis.

To score reference genes based on gene stability, a scoring
scheme was implemented whereby results were combined
from each statistical approach for each sampling year.
Given that cyclophilin, B-tubulin and EF1-o. (m) were
excluded from the final analyses (Table 3), they could not
be included in the final scoring scheme. For all other
genes, the results from each statistical approach (CV, M or
2x SD) within a dataset (2003 or 2004 pericarp develop-
ment series) were distributed and assigned a score value
between 1 to 100, an arbitrary scoring range. For example,
the CV values for the 2003 samples ranged from 0.98 for
SAND to 2.24 for UBQ-L40. SAND was assigned an arbi-
trary value of 1 and UBQ-L40, an arbitrary value of 100.
Then all other genes were assigned values between 1 and
100, scaled based on their relative distribution. Once all
scores were derived for each statistical approach, a cumu-
lative score was used to deduce the final standing.

Abbreviations

CTAB, cetyltrimethylammonium bromide; DEPC, diethyl
pyrocarbonate; GDD, growing degree days; gfw, gram
fresh weight.
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