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Abstract

Background: The Viridiplantae (land plants and green algae) consist of two monophyletic lineages,
the Chlorophyta and the Streptophyta. The Streptophyta include all embryophytes and a small but
diverse group of freshwater algae traditionally known as the Charophyceae (e.g. Charales,
Coleochaete and the Zygnematales). The only flagellate currently included in the Streptophyta is
Mesostigma viride Lauterborn. To gain insight into the genome evolution in streptophytes, we have
sequenced 10,395 ESTs from Mesostigma representing 3,300 independent contigs and compared
the ESTs of Mesostigma with available plant genomes (Arabidopsis, Oryza, Chlamydomonas), with ESTs
from the bryophyte Physcomitrella, the genome of the rhodophyte Cyanidioschyzon, the ESTs from
the rhodophyte Porphyra, and the genome of the diatom Thalassiosira.

Results: The number of expressed genes shared by Mesostigma with the embryophytes (90.3 % of
the expressed genes showing similarity to known proteins) is higher than with Chlamydomonas (76.1
%). In general, cytosolic metabolic pathways, and proteins involved in vesicular transport,
transcription, regulation, DNA-structure and replication, cell cycle control, and RNA-metabolism
are more conserved between Mesostigma and the embryophytes than between Mesostigma and
Chlamydomonas. However, plastidic and mitochondrial metabolic pathways, cytoskeletal proteins
and proteins involved in protein folding are more conserved between Mesostigma and
Chlamydomonas than between Mesostigma and the embryophytes.

Conclusion: Our EST-analysis of Mesostigma supports the notion that this organism should be a
suitable unicellular model for the last flagellate common ancestor of the streptophytes. Mesostigma
shares more genes with the embryophytes than with the chlorophyte Chlamydomonas reinhardtii,
although both organisms are flagellate unicells. Thus, it seems likely that several major physiological
changes (e.g. in the regulation of photosynthesis and photorespiration) took place early during the
evolution of streptophytes, i.e. before the transition to land.
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Background

The Viridiplantae (literally meaning green plants) include
all green algae and embryophyte plants. They represent a
monophyletic group of organisms, which display a sur-
prising diversity with respect to their morphology, cell
architecture, life histories and reproduction, and their bio-
chemistry. The colonization of the terrestrial habitat by
streptophyte algae 450 — 470 million years ago [reviewed
in [1]] was undoubtedly one of the most important steps
in the evolution of life on earth [2-4], which paved the
way for the evolution of the various groups of land plants
(embryophytes = bryophytes, pteridophytes and spermat-
ophytes) resulting in our current terrestrial ecosystems [5].

A thorough understanding of the evolution of land plants
requires knowledge about the phylogeny of green algae
and embryophytes as well as insight into the evolution of
plant genomes with special reference to developmental
processes. Whereas our knowledge about the phylogeny
of the Viridiplantae has greatly increased over the last
years, the latter has hardly been addressed to date.

The Viridiplantae are grouped into two divisions: the
Chlorophyta and the Streptophyta [6]. The Chlorophyta
comprise the vast majority of green algae including most
scaly green flagellates (e.g. Pyramimonas, Tetraselmis), the
Ulvophyceae (e.g. Ulva, Acetabularia), Chlorophyceae (e.g.
Chlamydomonas, Volvox) and Trebouxiophyceae (e.g. Chlo-
rella) [7,8]. The Streptophyta include all embryophyte
plants and a diverse paraphyletic assemblage of freshwater
green algae, the Charales (stoneworts), Coleochaete, the
Zygnematophyceae and a few other taxa [9]. Currently,
the Charales are thought to be the sister group of the
embryophytes suggesting that the evolution of true land
plants already started with a complex organism [10].
Remarkably, only a single scaly green flagellate Mesostigma
viride Lauterborn, has been found to belong to the Strep-
tophyta [10-13]. The exact phylogenetic position of Mes-
ostigma viride, however, is still controversial [10-12,14-
16]. Mesostigma has recently attracted much attention as a
putative key organism for the understanding of the early
evolution of the Streptophyta [17-20].

Table I: Mesostigma viride cDNA libraries used.
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Two aspects in the evolution of land plants seem to be
important in this respect. First, many key evolutionary
inventions of plants took already place within the strepto-
phyte algae. According to Graham et al. [21] one can dis-
tinguish several major transitions in the evolution of land
plants starting with a Mesostigma-like flagellate ancestor:
development of a cellulosic cell wall, multicellularity,
cytokinesis by a phragmoplast, plasmodesmata, apical
meristematic cell and apical cell proliferation leading to
branching, asymmetric cell division, cell differentiation,
retention of zygotes, heteromorphic life history, and a
root meristem. Of these distinguishing features only the
latter two evolved not until the embryophytes emerged.
Second, the colonization of the terrestrial habitat with its
exposure to air, increased solar radiation and life in a des-
iccating environment led to adaptations of cell architec-
ture, metabolism and body plan to survive in the
terrestrial ecosystems [5]. The evolutionary history of
these adaptations is currently not known. Important ques-
tions are: How did the green algal progenitor adapt to the
terrestrial habitat? Which genomic changes were associ-
ated with this transition? And which of these genes are
derived from streptophyte green algae? To gain insight
into these questions we have started to analyze ESTs from
various streptophyte algal lineages.

Here, we present an analysis of 10,395 ESTs representing
3306 non-redundant expressed genes obtained from Mes-
ostigma viride. We show that the number of genes shared is
higher between Mesostigma and the embryophytes than
between Mesostigma and Chlamydomonas. Comparison of
expressed genes from Mesostigma with the genomes of Ara-
bidopsis, Chlamydomonas, the red alga Cyanidioschyzon, and
rice as well as ESTs from Physcomitrella and Porphyra
allowed us to identify conserved and derived cellular func-
tions within the different evolutionary lines and to obtain
a first insight into the metabolic capabilities of the flagel-
late ancestor of green plants.

Results

Preparation and characterization of libraries

Total RNA was isolated from an axenic culture of Mes-
ostigma viride during the light phase. The culture con-

Name cDNA Number of primary Percentage size of inserts' (bp) average size of number of ESTs
clones recombinant clones inserts' (bp) sequenced

Mesol small size fraction 310 000 90 250-2000 706 100

Meso2 large size fraction 295 000 88 600-3200 1142 4954

Meso3 total cDNA 106 000 63 100—1100 650 535
normalized

Meso4 large size fraction 304 000 56 400-6600 2025 2403 cDNAs = 4806
normalized ESTs?

I determined by agarose gel electrophoresis, 2sequenced from 3' and 5'end
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Table 2: Summary of Mesostigma viride expressed genes obtained
from four cDNA libraries (Meso | = Meso 4).

Category No of
contigs
Mitochondrial 36
Plastidic! 65
Bacterial2 193
Novel 1691
with recognizable protein motif 574
no protein motifs 1117
Similarity 1315
with known function3 574
unknown function* 395
low similarity® 346
Total Contigs 3300

I'sequences showing only similarity to organelle genomes. 2sequences
showing only similarity to bacterial sequences or the highest similarity
to bacterial sequences; the origin of these putative bacterial
contaminations is currently not clear, as bacteria-free cultures of
Mesostigma were used. 3similarity to proteins with a well-defined
function (BLAST score >100). 4similarity to conserved proteins with
no established function (BLAST score >100). low similarity to
proteins from a few organisms (BLAST score generally between 100
and 200); might reflect conserved protein domains.

tained about 5 % cell division stages. The isolated RNA
was used for the construction of 4 different cDNA libraries
(Meso 1 - Meso 4). Meso 1 and 2 differed in the size of the
cloned inserts. For Meso 3 and 4 full-length enriched
cDNA was prepared and normalized prior to cloning.
Meso 3 was obtained from the total normalized full-
length enriched cDNA, whereas for Meso 4 the normal-
ized full-length enriched cDNA was size-fractionated by
gel permeation chromatography to remove small frag-
ments. The basic characteristics of the four libraries are
given in Table 1.

Initially, about 100-500 ESTs were sequenced from all
libraries and analyzed by BLASTX against the Swissprot
and translated Genbank databases. Since the Meso 2 and
4 libraries containing the larger inserts gave more promis-
ing results, we subsequently sequenced about 4000 addi-
tional ESTs from the Meso 2 and Meso 4 libraries,
respectively yielding a total of 10,395 reads (5,527,413
bp). Based on comparison with published sequences from
Mesostigma viride the rate of sequencing error was deter-
mined to be generally between 1% and 7 % (average 4 %)
depending on the quality of the sequence.

ESTs were assembled using the PHRAP software yielding
3300 contigs with an average size of 769 bases (57 — 4452
bases) after manual curation. Further analysis based on
sequence similarity searches revealed that 294 of these
contigs were of plastidic, mitochondrial, or possibly bac-
terial origin (sequences showing the highest similarity to
organellar or bacterial genomes, Table 2). These contigs
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Table 3: Functional classification of 3006 Mesostigma viride
contigs using the KOG system [43] and an expectation threshold
ofe=107.

Functional Category No. of
Contigs

INFORMATION STORAGE AND PROCESSING 236
[J] Translation, ribosomal structure and biogenesis 168
[A] RNA processing and modification 28
[K] Transcription 26
[L] Replication, recombination and repair 9
[B] Chromatin structure and dynamics 5

CELLULAR PROCESSES AND SIGNALING 209
[D] Cell cycle control, cell division, chromosome 7
partitioning
[Y] Nuclear structure 0
[V] Defense mechanisms 2
[T] Signal transduction mechanisms 31
[M] Cell wall/membrane/envelope biogenesis 9
[N + Z] Cytoskeleton and cell motility 18
[W] Extracellular structures 0
[U] Intracellular trafficking, secretion, and vesicular 4]
transport
[O] Posttranslational modification, protein turnover, 101
chaperones

METABOLISM 212
[C] Energy production and conversion 87
[G] Carbohydrate transport and metabolism 35
[E] Amino acid transport and metabolism 24
[F] Nucleotide transport and metabolism 9
[H] Coenzyme transport and metabolism 13
[1] Lipid transport and metabolism 21
[P] Inorganic ion transport and metabolism 16
[Q] Secondary metabolites biosynthesis, transport and 7
catabolism

POORLY CHARACTERIZED 158
[R] General function prediction only 55
[S] Function unknown 37
[X] Unnamed protein 66
Unknown 2191

were excluded from the data set. 1315 of the 3006 contigs
analyzed (44%) showed significant similarity at the pro-
tein level to sequences from the public databases (Table
2). Hence, approximately 56% of the contigs represent
either novel sequences with unknown function or
untranslated regions of a gene. However, when the 1691
contigs with no significant similarity to known proteins
were searched against the Interpro protein motif database,
574 (33.9%) of these contigs contained a recognizable
protein motif (Table 2). The most common protein motifs
found in all 3006 expressed gene sequences were bipartite
nuclear localization signals (IPR001472, 197x), proline-
rich regions (IPR000694, 150x) and cytochrome ¢ heme-
binding sites (IPR000345, 99x).
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Chlorophyta
64

Mesostigma-
specific
1691

Rhodophytes
11
(5)

Figure |

Classification of expressed genes from Mesostigma
according to the presence of similar proteins in other
organisms in a Venn diagram. All non-redundant
expressed genes were used as a query in (t)blastx similarity
searches with the Swissprot, Genbank, Chlamydomonas, Cya-
nidioschyzon, Porphyra, Physcomitrella, Arabidopsis and Oryza
data sets. The outermost circle represents all Mesostigma
expressed genes. The inner circles, which are labeled chloro-
phyte, streptophyte and rhodophyte, represent genes, which
have similarity to chlorophyte, streptophyte or rhodophyte
sequences, respectively. The areas depicted are not propor-
tional to the gene numbers and the number of Mesostigma
expressed genes in each category is written in each segment.
Numbers in brackets indicate the number of expressed genes
in a category after removal of low similarity hits (see Table 2
for a definition of low similarity hits).

A functional catalogue was assembled using the 3006 Mes-
ostigma contigs and the KOG-database and is presented in
Table 3. As expected for an interphase cell, genes in the
categories (1) translation, ribosomal structure and bio-
genesis (168), (2) posttranslational modification, protein
turnover, chaperones (101), and (3) energy production
and conversion (87) are represented by the largest
number of contigs (Table 3). In the following, the assem-
bled contigs are referred to as (expressed) genes.

Classification of Mesostigma ESTs according to
homologous genes in other organisms

EST data represent only a fraction of all genes of an organ-
ism. Thus, comparisons of EST data alone cannot be used
to describe unique or shared genes of an organism. For
embryophytes, chlorophytes and red algae complete
genome sequences of at least one organism exist. This
makes it possible to find potential orthologous genes if
present. Moreover, the surplus of genes of an organism in
respect to a complete genome can be detected in EST data.
In tBLASTX analyses of the 1315 expressed genes with
similarity to known proteins 90.3 % matched proteins
from streptophytes, 76.1 % from chlorophytes and 61 %

http://www.biomedcentral.com/1471-2229/6/2

from rhodophytes, respectively. In addition, 46 genes
showed similarity to known proteins, which have not
been reported from plants or red algae to date. The over-
lap of Mesostigma genes with different organisms can be
visualized in a Venn diagram (Figure 1). For 211 genes, we
detected similar proteins only within the streptophyte but
not in the chlorophyte or rhodophyte lineages. Con-
versely, for 62 genes we detected similar proteins only
within the chlorophyte but not in the streptophyte or rho-
dophyte lineages. Surprisingly, we also found 6 genes
which showed significant similarity to rhodophyte pro-
teins but for which we could not detect any similar pro-
tein sequences within the Viridiplantae. Removal of
BLAST hits with significant but low similarity (see Table 2)
reduced the overall numbers to 972 expressed genes, but
gave similar results (Figure 1). A complete list of genes
showing only similarity to proteins with known functions
present in specific subgroups of organisms can be found
in supplemental Table 1 [see Additional file 1]. We will
discuss important differences below.

Overall protein similarities between various
photoautotrophic organisms

To compare the overall similarity between Mesostigma and
various photoautotrophic organisms with completed
genomes or large data sets of ESTs, we decided to calculate
the average identity of a protein between Mesostigma and
the various organisms. To compare Mesostigma genes with
the genomes or ESTs from different organisms, we calcu-
lated the average identity (AI) between Mesostigma and
another organism as the mean value of all pair wise iden-
tities of the BLAST-matches for each organism (Table 4).

The AI between Mesostigma and Chlamydomonas or the
embryophytes are very similar. The highest Al value
obtained was for Physcomitrella/Mesostigma followed by
Arabidopsis/Mesostigma, Chlamydomonas/ Mesostigma and
Oryza/Mesostigma. The full data set includes many pro-
teins, which we detected only in some species using Mes-
ostigma expressed genes as a query. Therefore, we
constructed a constrained data set (314 expressed genes,
including at least 46 nuclear encoded plastidic, 9 nuclear
encoded mitochondrial, and 73 cytosolic ribosomal pro-
teins), containing only Mesostigma genes which gave
matches with all completed genomes from photoau-
totrophic eukaryotic organisms (including the diatom
Thalassiosira). This constrained data set represents a con-
served core set of nuclear encoded expressed proteins
from photoautotrophic eukaryote organisms. We calcu-
lated Al values for the constrained data set using complete
genomes and the available ESTs of Physcomitrella, Por-
phyra, and Chlamydomonas. The results are included in
Table 4. We obtained the highest Al-values in the con-
strained data set for the three embryophytes, followed by
Chlamydomonas. The similar Al values for the three differ-
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Table 4: Comparison of the Mesostigma expressed genes with the genomes and ESTs from various organisms. Average identity (Al) of
pair wise comparisons of Mesostigma expressed genes with the indicated organismal data set.

Data set Chlamydomonas Cyanidioschyzon Porphyra Thalassiosira Physcomitrella Arabidopsis  Oryza
(No. of contigs)

Genome EST Genome EST Genome EST Genome  Genome
All (969) 0.573 0.563 0.522 0.528 0.528 0.590 0.577 0.565
Constrained (314) 0.648  0.653 (n = 244)"H 0.557 0.585 (n = 188)"H 0.569 0.675 (n=301)H 0.679 0.671
Evolutionary 0.473 0.463 0.658 0.597 0.631 0.425 0418 0.432

distance D2

The total data set contains all Mesostigma expressed genes with significant similarity to proteins from other organisms with known or unknown
function (see Table 2). The constrained data set contains only Mesostigma expressed genes with significant similarity to proteins in all completely

sequenced eukaryotic autotroph organisms.

) Number of ESTs showing similarity to Mesostigma expressed genes from the constrained data set in a tBLASTX analysis. 2 Evolutionary distances
were calculated using the constrained data set and the approximation given by Kimura [28]: D = -In (I - p - 0.2 p2), where p is the fraction of amino

acid that differs between the two species.

ent embryophytes suggest that the overall evolutionary
rate was very similar for the embryophytes investigated,
when compared with Mesostigma (see below).

To test whether the observed differences are significant a
paired students t-test was performed, and the results are
shown in Table 5. Applying a significance level of 0.0072
[0.05/7 Bonferroni adjustment [22]] the differences in Al
between Mesostigma/Chlamydomonas and Mesostigma/
embryophytes are highly significant (Table 5), whereas
the differences in Al among the embryophytes are not sig-
nificant (Table 5). Furthermore, when we varied the num-
bers of expressed genes used for the calculation of the Al,
we observed that when more than 100 ESTs were included
the significance of the differences became very stable (Fig.
2A). In addition, to evaluate the consistency of the data set
we calculated 8 times the Al for 150 randomly selected

expressed genes from the constrained data set. A clear dif-
ference between the Al from the various organisms was
always observed (Fig. 2B 1 - 8). The expression level of the
expressed genes (as revealed by the number ESTs in a con-
tig) had no effect on the differences between the investi-
gated organisms (Fig. 2B, compare 9 and 10), although
highly expressed genes are better conserved (Fig. 2B, 9 and
10).

Two other results are remarkable. First, for the calculation
of the Al it is possible to use large EST-data sets instead of
genomes. We obtained the same result for Mesostigma/
Chlamydomonas  genome and for  Mesostigma/
Chlamydomonas ESTs (Al = 0.653 for both data sets; p =
0,975, Table 5, using 244 expressed genes from Mes-
ostigma). Similarly, when Mesostigma/Physcomitrella ESTs
were compared with the Mesostigma/Arabidopsis genome

Table 5: Statistical significance of the obtained Al values. A paired students t-test was performed for the constrained data set to test
whether the observed differences between the average identity of pair wise comparisons of Mesostigma expressed genes with the
indicated organismal data set are significant. Differences are considered significant when p is < 0.0071 (0.05/8 Bonferroni adjustment

[22).

Variable! No. of genes mean3 standard t-value Degrees of p
shared? deviation* freedom

I Mesostigma/Chlamydomonas G 244 0.652992 0.149868 -0,03107 243 0.975239
Mesostigmal/Chlamydomonas E 0.652992 0.151255

2 Mesostigmal/Chlamydomonas G 301 0.649934 0.149292 -3.24578 300 0.001304
MesostigmalPhyscomitrella E 0.674618 0.153641

3 Mesostigma/Chlamydomonas G 314 0.648057 0.148512 -4.44025 313 0.000012
Mesostigma/Arabidopsis G 0.677994 0.140940

4 Mesostigma/Chlamydomonas G 314 0.648057 0.148512 -3.15371 313 0.001768
Mesostigma./Oryza G 0.670382 0.148384

5  Mesostigma/Physcomitrella E 302 0.675364 0.153933 -135783 301 0.175535
MesostigmalArabidopsis G 0.681159 0.140567

6  Mesostigma/Physcomitrella E 302 0.675364 0.153933 0,43158 301 0.666355
Mesostigma./Oryza G 0.673311 0.147624

7  MesostigmalArabidopsis G Mesostigma./ 314 0.678730 0.141321 2.480053 313 0.013660
Oryza G 0.671175 0.148813

I'Compared data sets E = ESTs, G = Genome. 2No. of genes shared between the compared data sets. 3 Al recalculated on the basis of the genes
shared between the compared datasets. 4 Standard deviation of 3.
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Figure 2

No. of permutation

Consistency of the constrained data set used to calculate Al values. (A) The figure illustrates the effect of the number
of genes included in the Al-values. The significant differences in the Al values are stable when more than 150 genes are
included. (B) 150 genes were resampled randomly and the Als calculated for the indicated organisms (I — 8). Al values were
calculated for the 150 most strongly (9, as revealed by the number of ESTs in a contig) and weakly (10, only single ESTs)

expressed genes.

and with the Mesostigma/Oryza genome only small differ-
ences were observed (Al = 0,675/0,681; 0,675/0,673
respectively, using 302 expressed genes from Mesostigma,
Table 5). Statistical analysis (paired students t-test)
showed that the observed differences are not significant.
Furthermore, we note that the genome of the diatom Tha-
lassiosira pseudonana shows a similar Al in respect to Mes-
ostigma as the red algal genome and ESTs (Table 4). The
difference values of these distantly related genomes repre-
sent presumably an upper threshold for reasonable Al
value calculations.

Analysis of metabolic pathways

ESTs have been widely used for the identification of met-
abolic pathways [23]. A complete list of all metabolic
pathways identified is presented in supplemental Table 2
[see Additional file 2]. Indeed, many ESTs showed similar-
ity to proteins required for photosynthesis (66 expressed
genes), nucleotide synthesis (6), nucleotide sugar conver-
sion, the biosynthesis of precursors of scale polysaccha-
rides (6), heme and chlorophyll biosynthesis (6), fatty
acid and lipid biosynthesis (9), terpenoid biosynthesis
(6), glycolysis (11) and the TCA-cycle including pyruvate
dehydrogenase and respiration (12). The biosynthetic
pathways for several amino acids were also well repre-
sented in our ESTs (21 expressed genes for Ala, Arg, Gly,
Ile, Leu, Lys, Pro, Ser, Thr, Trp and Val). However, for sev-
eral other amino acids (Asn, Asp, Cys, Gln, Glu, His, Met,
Phe, Tyr) we did not find a single EST which could be
matched to the known biosynthetic pathways.

All enzymes except one (triose isomerase) of the Calvin
cycle are represented by at least one EST. Interestingly, we
found several genes coding for subunits of the plastidic
GAPDH. In angiosperms the plastidic GAPDH consists of
an A,B, heterotetramer [24]. Compared to GAPDH A,
which is present in the plastids of all eukaryotic algae,
GAPDH B has a C-terminal extension that contains the
two conserved cysteine residues, which are required for
regulation by the thioredoxin system. To our knowledge,
GAPDH B has only been reported from streptophytes.
Two genes of Mesostigma showed significant similarity to
GAPDH B from angiosperms. We present an alignment of
the C-terminus of Mesostigma GAPDH B with the C-termi-
nus of spinach GAPDH B in Figure 3. The two sequences
are very similar and the two cysteines required for regula-
tion by the thioredoxin system are conserved in Mes-
ostigma indicating that the activity of plastidic GAPDH
came under the control of the thioredoxin system early
during the evolution of streptophytes. We found no evi-
dence for a GAPDH B in Chlamydomonas or other chloro-
phytes. Therefore, the evolution of a GAPDH B might
represent a molecular characteristic (synapomorphy) of
the streptophytes.

A total of 25 expressed genes encode components of the
light-harvesting complex. There are some light-harvesting
complex proteins, which Mesostigma shares only with the
chlorophytes and red algae (e.g. so called fucoxanthin/
chlorophyll a-binding proteins). For others, we detected
similar proteins only within embryophytes. However, the
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VSDLPLVSIDFRCSDVSCTIDSSLTMVMGDDMVKVVAWYDNEWGYSQRVVDLADIVANNW 246

Kk hpkkkkhprkhhhhhk Kk hkkkkhhhhhd khhhhhhhhhkkhhhhhhkkkrkhprhr *
Spinacia 362 VCDIPLVSVDFRCSDFSSTIDSSLTMVMGGDMVKVVAWYDNEWGYSQRVVDLADLVANKW 421

Mesostigma 247 PGMVQETGS-DPLETFCNTNPDADECRVY 330

* k4 * kkk%k k% * %

+x kb

Spinacia 422 PGLEGSVASGDPLEDFCKDNPADEECKLY 450

Figure 3

Alignment of the deduced amino acid sequence of the putative GAPDHB (Meso2a42gl2) gene from Mes-
ostigma with spinach (P12860) GAPDHB. The conserved cysteine residues are indicated in red letters. Numbers refer to
the amino acid position (spinach) or nucleotide position (Mesostigma).

lhc proteins form a large superfamily and their phyloge-
netic analysis is beyond the scope of this study.

Several genes encode proteins of the photorespiratory C2-
cycle (glycolate phosphatase, peroxisomal glycolate oxi-
dase, a component of the glycine decarboxylase enzyme
complex, and a peroxisomal serine-glyoxylate transami-
nase). As in embryophytes, the NADH required for reduc-
tion of hydroxy pyruvate is produced by a peroxisomal
NADH malate dehydrogenase.

A glycolate oxidase activity was never detected in chloro-
phytes by biochemical enzyme assays, but one
Chlamydomonas protein is currently annotated as a glyco-
late  oxidase (gene model C_340068, JGI
Chlamydomonas reinhardtii v2.0) We therefore per-
formed a phylogenetic analysis for glycolate oxidases and
lactate dehydrogenases, which are both members of the
same protein superfamily, from embryophytes, Mes-
ostigma, Chlamydomonas, Cyanidioschyzon, Dictyostelium, a
few metazoans and some bacteria (Fig. 4). The glycolate
oxidases from embryophytes, Mesostigma and Cyanidio-
schyzon are monophyletic. In contrast, the glycolate oxi-
dase-like sequence from Chlamydomonas clusters with
bacterial sequences, which are annotated as lactate dehy-
drogenase and glycolate oxidases. Therefore, we conclude
that, in agreements with the biochemical findings,
Chlamydomonas does not contain a plant-type peroxiso-
mal glycolate oxidase.

We did not find evidence for a hexokinase and sucrose
biosynthesis in interphase cells of Mesostigma. Several
ESTs represent plastidic pyruvate kinase, however, only a
single EST coded for the cytosolic isoform. Expressed
genes for PEP carboxylase and a cytosolic malate dehydro-
genase are present, suggesting that malate may be the
major substrate for respiration in the mitochondrion of

Mesostigma as in many embryophytes. The plastidic pyru-
vate kinase probably functions in the generation of acetyl-
CoA required to sustain fatty acid synthesis in plastids.

Scales consist mainly of the 2-keto sugar acids 3-deoxy-
manno-octulosonic acid (2-keto-3-deoxy-oktonate, kdo),
50Mekdo, 3-deoxy-lyxo-heptulosaric acid, dha) and gal,
galA, gul and some minor monosaccharides [25].
Expressed genes coding for kdo synthesis, and activation
of kdo as CMP-kdo are present. The obtained sequence
similar to a CMP-sialA transporter might actually be the
CMP-kdo transporter necessary for uptake of CMP-kdo
into the Golgi apparatus, as kdo and sialA are structural
analogs. Interestingly, kdo-synthase and CMP-kdo-trans-
ferase are among the most conserved proteins between
Mesostigma and the embryophytes. As in embryophytes
[26], galA is synthesized via the UDP-glc dehydrogenase
pathway and the myo-inositol oxygenase pathway. We
could not detect the latter enzyme in Chlamydomonas or
red algae.

Our EST-data support the presence of vitamin B12-bio-
synthesis and the production of a phosphagen phos-
phoarginine by arginine kinase in Mesostigma.

Evolution of metabolism and cell structure

259 expressed genes from Mesostigma showed similarity to
proteins belonging to various metabolic pathways. A pair-
wise comparison of these genes with the genome of
Chlamydomonas and the genomes and ESTs of the three
embryophytes showed that Mesostigma shares more meta-
bolic genes with the embryophytes than with
Chlamydomonas, however, the overall Al is slightly higher
with Chlamydomonas than with any embryophyte (A,
Table 6). Statistical analyses showed that the differences
in Als for the total metabolic enzyme data set are not sig-
nificant (not shown). However, if we calculate Als for dif-
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Phylogenetic tree of glycolate oxidase and glycolate
oxidase-like genes. The tree shown was derived by Baye-
sian inference analysis from 402 amino acid positions using a
mixed model for amino acid substitutions and a gamma cor-
rection for rate variation among sites. The Bayesian inference
utilized MRBAYES, Ver. 3.0 * with posterior probabilities
derived from 100000 generations and discarding a burnin of
1000. The tree obtained with a parsimony analysis using
PHYLIP gave essentially the same topology.

ferent functional categories separately, we see that
metabolic enzymes of the chloroplasts and mitochondria
(photosynthesis except the Calvin cycle enzymes, fatty
acid synthesis, synthesis of some amino acids, citric acid
cycle, and respiration) were generally more conserved
between Mesostigma and Chlamydomonas than between
Mesostigma and the embryophytes (Table 6). In contrast,
proteins of cytosolic pathways (nucleotide metabolism,
NDP-sugar metabolism, and glycolysis) in Mesostigma
were more similar to embryophyte proteins (Table 6),

Genes coding for information storage and processing, and
cellular processes and signaling (Table 3) were overall
more conserved between Mesostigma and the embryo-
phytes than between Mesostigma and Chlamydomonas.
Exceptions to this rule are proteins of the cytoskeleton
(Table 7) and proteins involved in protein folding (chap-

http://www.biomedcentral.com/1471-2229/6/2

erones, Table 7) and plastidic proteases (not shown),
which show higher Al values with Chlamydomonas than
with the embryophytes. If the cytoskeletal proteins are
removed from the data set, the differences between Mes-
ostigma/ Chlamydomonas genome and Mesostigma/embryo-
phytes are statistical significant (p = 0.000109 for
Mesostigma/Chlamydomonas ~ versus  Mesostigma/Phys-
comitrella; p = 0.000703 for Mesostigma/Chlamydomonas
versus Mesostigma/Arabidopsis, p = 0.006937 for Mes-
ostigma/Chlamydomonas versus  Mesostigma/Oryza).
Remarkably, the three embryophytes behave differently in
our analysis. We obtained higher Al values with Phys-
comitrella regarding the categories protein folding (chaper-
ones), vesicular transport, transcription, and regulation
(Table 7). In contrast, proteins related to DNA structure,
replication, cell cycle and RNA-metabolism were more
conserved between Mesostigma and the angiosperms Ara-
bidopsis and Oryza than between Mesostigma and Phys-
comitrella (Table 7).

Discussion

In this study, we have analyzed about 3000 expressed
genes from the scaly green flagellate Mesostigma viride. We
compared the expressed genes with the complete
genomes from the angiosperms Arabidopsis thaliana and
Oryza sativa, the chlorophyte Chlamydomonas reinhardtii,
the red alga Cyanidioschyzon merolae and the diatom Tha-
lassiosira pseudonana, as well as the ESTs from the moss
Physcomitrella patens, and the red alga Porphyra yezoensis.
Altogether, the Mesostigma proteome is more similar to
the embryophytes than to Chlamydomonas, although Mes-
ostigma and Chlamydomonas are both flagellate unicells.
Mesostigma shares more genes with the embryophytes
than with Chlamydomonas, including several enzymes con-
fined to the streptophytes (e.g. GAPDH B, [Cu-Zn] super-
oxide dismutase), and the average identity of shared
proteins is higher between Mesostigma and the embryo-
phytes than between Mesostigma and Chlamydomonas.
Therefore, we consider Mesostigma to be a member of the
streptophytes, although Mesostigma clearly shares some
ancestral characters with chlorophytes. Plastidic (with the
exception of the Calvin cycle) and mitochondrial func-
tions e.g. seem to be more conserved between Mesostigma
and chlorophytes than between Mesostigma and embryo-
phytes, i.e. these functions are more derived in embryo-
phytes, probably due to adaptation of embryophytes to
the terrestrial habitat. In contrast, other cellular functions
except for the cytoskeleton are more conserved between
Mesostigma and embryophytes than between Mesostigma
and Chlamydomonas. Interestingly, in previous phyloge-
netic analyses plastidic and mitochondrial genes failed to
show a clear relationship between Mesostigma and the
streptophytes [14,15], whereas actin and nuclear-encoded
SSU rDNA phylogenies support the notion that Mes-
ostigma is a member of the streptophytes [10-12]. The dif-
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Table 6: Comparison of Mesostigma genes related to metabolic functions with Chlamydomonas and three embryophytes. The average
identity (Al) of pair-wise comparisons of Mesostigma expressed genes coding for the indicated metabolic function with the ESTs or

genome of the given organisms are presented.

Function! Chlamydomonas ~ Physcomitrella  Arabidopsis ~ Oryza
Metabolism (259) 0.613 0.601 0.593 0.594
Plastidic metabolism (107)?2 0,595 0,572 0,567 0,572
Mitochondrial metabolism (16)2 0,647 0,593 0,569 0,578
cytosolic metabolism (glycolysis, NDP-sugar metabolism, nucleotide synthesis, 22)2 0,568 0,639 0,641 0,632

'Numbers in brackets indicate the number of genes in this category.

ferent evolutionary rates for different cellular functions
observed in this study might explain this discrepancy.

We calculated the average identity (Al) values from auto-
matically generated BLAST output alignments. Automati-
cally derived alignments are prone to errors. However, we
believe that our approach is justified for the following rea-
sons: (1) the BLAST alignments cover only the conserved
parts of proteins and our calculated Al values indicate that
in most alignments more than half of the amino acids are
identical enhancing the quality of the automatically pro-
duced alignments; (2) although small mistakes may
occur, they are insignificant given the high number of
amino acids used to calculate the AI. On average the
BLAST alignments contained about 150 amino acids and
therefore about 45,000 amino acid positions were used in
the constrained data set. In large data sets small unbiased
errors become irrelevant [27]. Our results indicate that at
least 100 (better are 150-200) expressed genes have to be
used to obtain statistically significant results. It could be
argued that our analysis uses only similarity values and no
real evolutionary distances. Al values can be easily con-
verted into evolutionary distances using an approxima-
tion given by Kimura [28], with the effect that the
differences between the various organisms become larger
but no changes occur in the order of relatedness (included
in Table 4). We conclude that the Al of proteins shared
between different organisms represents a reasonable
measure of evolutionary relatedness, if sufficiently large
data sets are used.

In the following, we briefly discuss some major differ-
ences in coding potential observed between the different
photosynthetic eukaryotic organisms.

11 of 18 proteins included in supplemental Table 1 [see
Additional file 1] which are shared only by Mesostigma
and Chlamydomonas are associated with flagellar functions
such as axonemal dyneins or components of the IFT
(intra-flagellar transport) machinery. Most likely, the
angiosperms lost these proteins during evolution together
with the ability to produce flagellate cells. The absence of
these proteins in the ESTs from the moss Physcomitrella, is

presumably due to the fact that ESTs from developing
spermatozoids are not available.

Proteins shared by Mesostigma and the embryophytes but
not present in chlorophytes perform diverse functions.
There are some well known biochemical differences
between chlorophytes and streptophytes such as the pres-
ence of (Cu-Zn) superoxide dismutase [29,30] and glyco-
late oxidase in streptophytes [31,32] but not in
chlorophytes. In addition, streptophytes use the DXP and
mevalonate pathways for isoprene biosynthesis whereas
chlorophytes posses only the DXP pathway [33]. For all
these functions, we find molecular support in our
expressed gene data set except for the mevalonate pathway
of isoprene biosynthesis. Two genes matched two differ-
ent enzymes of the DXP pathway; however, no matches
for the MVA pathway were obtained, although the pres-
ence of this pathway has been demonstrated biochemi-
cally [33]. This could be due to the selective expression of
one or the other pathway under different environmental
conditions.

Remarkably, our list of proteins uniquely shared by Mes-
ostigma and the embryophytes includes several proteins
involved in steroid biosynthesis (e.g. a 3-oxo-5-beta-ster-
oid dehydrogenase and a C-4 sterol oxidase), a homeobox
protein of the knox family and proteins of the F-box fam-
ily. The latter protein family underwent a dramatic expan-
sion in the embryophytes (Arabidopsis has more than 700
members of this family).

Our expressed protein data set contains sequences similar
to a protein involved in vitamin B-12 metabolism
(present in rhodophytes and chlorophytes), an arginine
kinase and a ARL6 protein, the latter two are absent in
chlorophytes, embryophytes and red algae. It has been
shown that arginine kinase is part of the ATP regeneration
system in cilia of Paramecium [34]. Chlamydomonas lacks
arginine kinase and recently Pazour et al. [35] showed
that enzymes of the late glycolytic pathway are present in
the flagella of Chlamydomonas, suggesting that the ATP
required for flagellar function is produced by the glyco-
lytic pathway in Chlamydomonas. The ARLG protein has
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Table 7: Comparison of Mesostigma genes related to cell structure functions with the genome or ESTs of Chlamydomonas and three
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embryophytes. The average identity of pair-wise comparisons of Mesostigma expressed genes coding for the indicated cellular
functions with the ESTs or genomes of the given organisms are presented.

Function! Chlamydomonas Physcomitrella Arabidopsis Oryza
Cell structure (201) 0.629 0.641 0.627 0.618
Cytoskeleton (7) 0.751 0.729 0.0.731 0.731
Protein folding/Chaperones (21) 0.685 0.605 0.580 0.581
Cytosolic protein degradation (22) 0.682 0.733 0.722 0.703
Vesicular transport (22) 0.633 0.701 0.680 0.673
Regulation (18) 0.585 0.599 0.548 0.544
DNA structure, replication, cell cycle (21) 0.580 0.616 0.655 0.625
Transcription (16) 0.684 0.675 0.647 0.623
RNA metabolism (23) 0.599 0.619 0.637 0.637

'Numbers in brackets indicate the number of genes in this category.

been implicated in protein translocation at the 1ER [36],
although its exact function is still not known.

There are some typical embryophyte pathways that we
failed to detect in Mesostigma, e.g. sucrose metabolism,
hexokinase, and enzymes of cellulose biosynthesis. There
are no reports about the presence of sucrose metabolism
and hexokinase in green algae in the literature, whereas
embryophyte-like Ces genes (catalytical subunit of cellu-
lose synthase) have been reported in the streptophyte alga
Mesotaenium [37]. Although we cannot exclude that Mes-
ostigma lost these genes, we do expect to find theses genes
in the genome of Mesostigma.

Evolution of photosynthesis and photorespiration

It is well known that embryophytes and chlorophytes dif-
fer in important aspects of photosynthesis and its regula-
tion, and in photorespiration (e.g., presence of GAPDHB,
number of enzymes regulated by thioredoxin, glycolate
oxidase vs. glycolate dehydrogenase, and presence or
absence of (Cu-Zn) superoxide dismutase).

Table 8 summarizes the available information on the reg-
ulation of plastidic proteins by the thioredoxin system.
The number of thioredoxin-regulated proteins has appar-
ently increased during evolution and Mesostigma in this
respect most closely resembles the embryophytes. Simi-
larly, the peroxisomes of Mesostigma have been biochem-
ically characterized as "leaf-type peroxisomes" [38] in full
agreement with our EST-data. In contrast, chlorophytes
lack glycolate oxidase and photorespiration involves only
chloroplast and mitochondrial enzymes [38]. Interest-
ingly, red algae possess a peroxisomal glycolate oxidase
whereas the other enzymes of the photorespiratory cycle
are located in the mitochondrion [32]. Thus, it seems
likely that at the onset of streptophyte evolution major
changes occurred in the regulation of the Calvin cycle and
the subcellular organization of photorespiration. What
might have been the driving force for these changes? We

note that rhodophytes and chlorophytes both presumably
evolved in a marine environment [red algae in a coastal
benthic habitat, whereas chlorophytes proliferated as
marine phytoplankton [39]]. Streptophyte algae most
likely originated in a freshwater/brackish environment. In
contrast to their marine counterparts, they had to deal
with much higher light intensities and fluctuating envi-
ronmental conditions such as salinity and temperature.
With higher temperature, the rate of photorespiration
increases. The observed changes in regulation of the
Calvin cycle and photorespiration might be adaptations
to this stress. It is possible that these adaptations to a shal-
low freshwater/brackish environment prepared strepto-
phytes to colonize the terrestrial habitat later during
evolution. In this respect we note that in extant chloro-
phytes activation of carbon concentrating mechanisms
(CCM) is the dominant reaction to compensate for
increased photorespiratory losses [38]. In contrast, strep-
tophytes are able to channel large amounts of glycolate
through the photorespiratory cycle [38]. According to
Badger and Price [40] CCMs did not evolve until 400 mil-
lion years ago, long after streptophytes had evolved and
the colonization of the terrestrial habitat by streptophyte
algae took place. Therefore during the palaeozoic era with
reduced CO,- and increased O,-levels [40] streptophyte
algae might have had an advantage over chlorophyte algae
allowing them to colonize the terrestrial habitat during
that time.

Conclusion

In summary, our EST analysis shows that Mesostigma
shares more genes with the embryophytes than with the
chlorophyte Chlamydomonas reinhardtii, although both
organisms are flagellate unicells. Thus, it seems likely that
many typical biochemical characteristics of streptophytes
evolved early during the evolution of streptophytes, i.e.
before the transition to land. Alternatively, such character-
istics may haven been lost in the chlorophyte lineage or
remain to be discovered in other chlorophytes. A decision
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Table 8: Regulation of plastidic enzymes by the thioredoxin system. Proteins similar to embryophyte plastidic thioredoxin-regulated
proteins were identified in the genomes of Cyanidioschyzon, Chlamydomonas, and the ESTs of Mesostigma using the BLASTP or
BLASTX algorithms. A putative thioredoxin-regulated orthologue as revealed by the conserved cysteine residues is indicated with +.
An asterisk indicates putative cyanobacterial/plastidic proteins, which do not contain the conserved cysteines required for thioredoxin-

regulation. Missing enzymes are indicated with -.

Cyanobacteria Rhodophytes Cya-

nidioschyzon

PRK
SDPase
G6PDH
FBPase
v-ATPase
GABDHB - -
NADP-MDH - -
Rubisco activase -3) -

* ¥ ¥ ¥ +
+

Chlorophytes Mesostigma Embryophytes
Chlamydomonas

+ + +

+ + +

+ n.d. +

+ + +

+ + +

- + +
+2) n.d. +

sk ES (+)4)

n.d. not detected in Mesostigma. ! In Galdieria (Cyanidioschyzon) 2 (1) of the 3 conserved cysteines occurring in the Viridiplantae are present [48]. 2
Chlorophyte NADP-malate dehydrogenase possesses a C- and N-terminal extension like the embryophyte enzyme, however only the C-terminal
cysteines of the embryophyte enzyme are conserved [49, 50]. 3 A few cyanobacteria contain an unusual rubisco activase. Only the central AAA*
domain shows similarity to plant rubisco activases, whereas the N and C terminal domain are very different [51]. 49 Many angiosperms contain two
forms of rubisco activase. Only the long form is regulated by the thioredoxin system [52].

between these alternatives requires further information
on the genomes of other preferentially early branching
chlorophytes such as Pyramimonas.

Our EST-analysis of Mesostigma supports the notion that
this organism should be a suitable unicellular model for
the last flagellate common ancestor of the streptophytes.

Methods

Plant material, RNA preparation and construction of
libraries

Total RNA was isolated from cultures of Mesostigma viride
Lauterborn (strain NIES 476, Tsukuba, Japan) and mRNA
isolated using the mTRAP™ Total Kit (Active Motif). 5 pg
of mRNA were converted into ¢cDNA using the Super-
Script™ Plasmid System (Invitrogen) and the cDNA
obtained was fractionated by column chromatography. A
large and a small size fraction were cloned into the
pSPORT1 vector (Invitrogen).

Normalized full-length cDNA was prepared by Evrogen
JSC (Moscow, Russia). cDNA was prepared from total
RNA using the SMART approach [41] normalized using
the DSN normalization method [42] and then amplified
by PCR. cDNAs were either directly cloned into a pPCR-
Script Amp SK(+) Vector (PCR-Script Amp Cloning Kit,
Stratagene) or a large size fraction was isolated by column
chromatography and then cloned into a pGEM-T Easy vec-
tor (Promega). All libraries were transformed into TOP 10
E. coli cells (Invitrogen) by electroporation.

Sequencing, contig assembly and data analysis

Clone preparation and sequencing

Isolated plasmids were sequenced by the cycle sequencing
method using an ABI3700 96 capillary sequencer. A min-

imal contig set was assembled using the phrap assembler
and all contigs were manually curated.

Annotation

Each contig was compared as 3-frame translations to the
protein databases Swissprot and genpept using blastx.
Furthermore, all contigs were compared using the
tBLASTX search algorithm to the genome sequence of
Chlamydomonas reinhardtii, Cyanidioschyzon merolae, Tha-
lassiosira pseudonana, Arabidopsis thaliana, Oryza sativa and
to the EST databases of Physcomitrella patens and Porphyra
yezoensis. The results were compiled to an Excel compati-
ble file. Analyses of COG and KOG categories [43,44] and
Interpro protein domains [45] for the contigs were also
performed.

Analysis of metabolic pathways

Using the metabolic pathways present at the AraCyc web-
site [46], we identified all expressed genes with significant
similarity to Arabidopsis genes present in AraCyc.
Expressed genes that showed no significant similarity to
Arabidopsis genes but to enzymes from other organisms
were assigned to a pathway using the MetaCyc database
[47].

Phylogenetic analysis of glycolate oxidase

Thirteen  glycolate  oxidase/lactate = dehydrogenase
sequences were obtained from public databases (Cyanidi-
oschyzon merolae [KEGG:CMQ436C]; Chlamydomonas rein-
hardtii  [JGI:C_340068]; Spinacia oleracea  [Swiss-
Prot:P05414]; Nostoc punctiforme PCC 73102 [Gen-
bank:ZP_00106740.1]; Nostoc sp. PCC 7120 [Gen-
bank:BAB77694.1]; Anabaena wvariabilis ATCC 29413
[Genbank:ZP_00160276.2]; Arabidopsis thaliana [Gen-
bank:CAB78838], Oryza sativa [Genbank:AAB82143],
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Nicotiana tabacum [Genbank:AAC33509], Homo sapiens
[Genbank:CAC34364], Drosophila melanogaster [Gen-
bank:AAO41411|, Dictyostelium  discoideum  [Gen-
bank:XP_629946], Lactobacillus johnsonii NCC 533
[Genbank:NP_965805]). The nearly complete Mesostigma
glycolate oxidase sequence was obtained by complete
sequencing of EST clone Meso2b12b08. The sequences
were aligned using Clustal X. The alignment was checked
manually. Phylogenetic analyses were performed using
the Phylip (neighbour joining and parsimony method)
and MRBAYES software v 3.0 (Bayesian inference).

Data deposition

Sequence data from this article have been deposited with
the EMBL/Genbank data libraries under accession num-
bers DN254242 to DN264595.
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