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Abstract

Background: TOR, the target of the antibiotic rapamycin in both yeast and mammalian cells, is a
potent cell growth regulator in all eukaryotes. It acts through the phosphorylation of downstream
effectors that are recruited to it by the binding partner Raptor. In Arabidopsis, Raptor activity is
essential for postembryonic growth. Though comparative studies suggest potential downstream
effectors, no Raptor binding partners have been described in plants.

Results: AtRaptor|B, a plant Raptor homologue, binds the AMLI (Arabidopsis Mei2-like I)
protein in a yeast two-hybrid assay. This interaction is mediated by the N-terminal 219 residues of
AMLI, and marks AMLI as a candidate AtTOR kinase substrate in plants. The AMLI N-terminus
additionally carries transcriptional activation domain activity. Plants homozygous for insertion
alleles at the AML/ locus, as well as plants homozygous for insertion alleles at all five loci in the AML
gene family, bolt earlier than wild-type plants.

Conclusion: AMLI interacts with AtRaptor|B, homologue of a protein that recruits substrates
for phosphorylation by the major cell-growth regulator TOR. Identification of AMLI as a putative
downstream effector of TOR gives valuable insights into the plant-specific mode of action of this
critical growth regulator.

Background

TOR, the target of the antibiotic rapamycin in both yeast
and mammalian cells, is a major regulator of cell growth
and translation [1]. TOR is a large (over 2,400 residues)
protein kinase [2] present in all eukaryotes analyzed. It is
thought to act in a nutrient-sensitive complex TORC1
with Raptor (regulatory associated protein of TOR) and
another protein to regulate cell growth [3-7] - though
there is some debate on the nutrient sensitivity of the
complex [8]. Raptor, a protein with HEAT and WD-40
protein interaction domains, recruits substrates for phos-
phorylation by TOR in yeast and mammals [3,7]. TOR

also acts in a second, nutrient-insensitive complex with-
out Raptor to regulate the cytoskeleton [3,8,10].

Disruption of the Arabidopsis TOR homologue AtTOR is
lethal early in plant embryonic development [11]. Disrup-
tion of AtRaptor (encoded by two paralogous loci in Ara-
bidopsis) causes seedling developmental arrest but allows
normal embryonic development [[12], manuscript in
preparation], suggesting that AtTOR embryonic activity is
independent of AtRaptor and that the TOR-Raptor com-
plex has been adapted in the ancestor of the angiosperms
to regulate post-embryonic growth. In support of this,
AtTOR has been show to be expressed in dividing and
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expanding cells [11]. Thus, identifying downstream acti-
vators of TOR signaling may provide insights into the
activity of AtTOR in post-embryonic growth.

Mei2 is a putative TOR substrate and potent meiosis-sign-
aling molecule identified in the fission yeast Schizosaccha-
romyces pombe [13,14]. Mei2 is bound by the Raptor
homologue Mip1 [15], and is an inactive phosphoprotein
under high nutrient conditions [16,17] - conditions
which promote TOR kinase activity. The kinase governing
two of the three Mei2 phosphorylation sites is known
[16]; TOR is a strong candidate for the kinase governing
the third. In diploids under low nutrient conditions,
unphosphorylated Mei2 accumulates and localizes to the
nucleus, where it binds to a noncoding, mRNA-like RNA
molecule meiRNA in an interaction mediated by the third
of its three RNA Recognition Motifs (RRMs)[14,16,18].
The Mei2-meiRNA interaction occurs as meiRNA is being
transcribed, tethering Mei2 to the meiRNA locus [19].
Accumulation of Mei2 at this focused point immediately
precedes meiosis.

Mei2-like proteins are predicted in a wide range of organ-
isms [20,21] including some fungi, alveolates, a diatom,
and all land plants, but they are absent from metazoans
and budding yeast. In land plants, predicted Mei2-like
proteins form a small conserved gene family, many of
whose members' transcripts accumulate in the shoot api-
cal meristem specifically or in the shoot apical meristem
in addition to a range of mature tissues [20].

Arabidopsis Mei2-like 1 (AML1), the first member of this
family to be described, was isolated in a screen for plant
c¢DNAs whose expression could complement defects in
the fission yeast meiosis signaling pathway [22]. Like
Mei2, AML1 has three RRMs. Expression of a protein frag-
ment containing only the third AML1 RRM was sufficient
for restoration of meiosis signaling in fission yeast lines
with defects upstream of Mei2, but not in lesions of the
mei2 locus itself. Terminal Ear 1 (tel), a more divergent
member of the mei2-like family of genes, regulates leaf ini-
tiation in maize; the tassel of mutant plants is encased a
whotl of leaves superficially resembling a maize ear [23].

Given the potential role of downstream AtTOR effectors
in post-embryonic growth, the intriguing signaling activ-
ity of Mei2 in fission yeast, and the known interaction
between Mei2 and the fission yeast Raptor protein, we
asked if the Mei2-Raptor interaction was conserved
between its Arabidopsis orthologues AML1 and
AtRaptor1B.

http://www.biomedcentral.com/1471-2229/5/2

Results

AMLI and AtRaptor|B interact in a yeast two-hybrid assay
To test for an interaction between the Arabidopsis pro-
teins AML1 and AtRaptorlB, the open reading frames
(OREFs) of each of the transcripts predicted to encode these
proteins were amplified via PCR with primers carrying
suitable restriction sites for cloning into the yeast two
hybrid vectors pGADT7 and pGBKT7. pGADT?7 encodes a
transcriptional activation domain (AD) which can recruit
the yeast transcription machinery. pGBKT7 encodes a
DNA binding-domain (BD) which binds to the promoters
of ADE2 and HIS3. pGADT7 and pGBKT7 additionally
carry the genes LEU2 and TRP1. When transformed into
the yeast line AH109, which is leu2-trpl-ade2-his3-, co-
transformed cells will grow on yeast medium lacking leu-
cine and tryptophan. Cells co-transformed with two-
hybrid constructs encoding proteins that interact will
grow on media additionally lacking histidine and adenine
(selective media).

AH109 yeast cells co-transformed with clones encoding
AML1 and AtRaptor1B in complementary two-hybrid vec-
tors grew on selective media. Co-transformations of con-
trol pGBKT7 and pGADT7 empty vectors, or either control
vector co-transformed with its complement harboring the
AML1 or AtRaptorlB ORF, yielded cells able to grow on
media lacking leucine and tryptophan but not on selective
media.

Evidence from other systems indicates that Raptor protein
fragments lose the ability to bind substrates [4]. Therefore,
only full length AtRaptor1B was tested in this assay. Mei2,
the fission yeast AML1 homologue, is highly modular. It
is divided into distinct N-terminal and C-terminal
domains. The N-terminal half of the protein appears to
play a regulatory role [24]. The C-terminal half of Mei2 is
sufficient to complement lesions in the mei2 locus [16].
Additionally, the AML1 C-terminal half, expressed in fis-
sion yeast meiosis signaling mutants, is able to comple-
ment meiosis signaling defects upstream of Mei2 [22].
Therefore we generated clones encoding fragments of
AML1 and assayed them for interactions with full length
AtRaptor1B.

AML1 fragments N412 and N219, comprised of the first
412 or the first 219 residues of the 915 residue AML1 pro-
tein, restored growth on media lacking leucine, tryp-
tophan, histidine and adenine when cloned into pGADT7
and co-transformed with pGBK-Raptor (Fig. 1). Neither
N163, nor 155-219, (the fragments which together com-
prise N219), nor 155-412 (which with N163 comprises
N412), could restore growth when cloned into pGADT7
and co-transformed with pGBK-Raptor. AML1 fragment
402C, comprised of residues 402 to the C-terminus of the
protein, and all C-terminal fragments tested (695C, 402~
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AMLI interacts with AtRaptorIB in a yeast two-
hybrid assay. A. Schematic diagram of AMLI fragments
cloned into pGADT7. The AMLI RNA Recognition Motifs
(RRMs) are indicated. Fragments interacting with
AtRaptor|B are labeled in red. B. Yeast two-hybrid results.
Numbers on each plate refer to the pGAD construct in A.
For each plate, the set of six cultures on the top half were
co-transformed with pGBK:Raptor; the set of six cultures on
the bottom half were co-transformed with pGBKT?7 vector.
The plate at left lacks leucine, tryptophan, histidine and ade-
nine and selects for a protein-protein interaction. The con-
trol plate at right lacks leucine and tryptophan, and indicates
co-transformation of the yeast cells with both a pGAD and a
pGBK plasmid.

704) failed to restore growth on selective medium. None
of the AML1 fragments cloned into pGADT7, and cotrans-
formed with empty pGBKT7 control vector, yielded trans-
formants able to grow on selective medium.
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The AMLI N-terminus harbors transcriptional acti-

vation domain activity. One-hybrid assay on AMLI frag-
ments cloned into pGBK. The plate at left lacks tryptophan

and adenine, and growth indicates transcriptional activation

domain activity in the tested fragments. The control plate at
right lacks adenine, and indicates transformation of the cells
with the desired pGBK construct.

AMLI fragments N412 and N163 harbor activation
domain activity in a yeast one-hybrid assay

AML1 N412, cloned into pGBKT7, restored growth on
selective medium to cells co-transformed with either
pGAD:Raptor or pGADT?. To investigate this result fur-
ther, we tested all AML1 fragments for native transcrip-
tional activation domain activity in a yeast one-hybrid
assay. AML1 fragments were cloned into pGBKT7, singly
transformed into AH109 yeast cells, and assayed for
growth on media lacking tryptophan (to confirm transfor-
mation) and media additionally lacking adenine. The
DNA binding-domain of the pGBKT?7 tethers any C-termi-
nally fused fragments to the ADE2 promoter. In the
absence of a binding partner, BD-fusion chimeric proteins
trigger transcription of ADE2 only if the protein fused to
the BD contains native transcriptional activation activity.

AML1 N412 and AML1 N163, but not full length AML1,
AML1 N219 or any C-terminal AML1 fragments, were able
to restore growth on media lacking tryptophan and ade-
nine (Fig. 2). AML1 N122 was similarly unable to restore
growth. AML1 fragments 155-219 and 155-412, in
pGBKT7, could not be stably transformed into yeast.
These results were observed in multiple independent
transformant lines for a given construct. Cotransforma-
tion of any of the pGBKI7-derived constructs with
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AML loci and insertion alleles. The position of the inser-
tion in each locus is indicated by a triangle below the locus
picture. The wild-type loci were described previously (17).
The thin central line indicates genomic DNA. Solid blue
blocks spanning the central line indicate coding exons. Solid
blue blocks below the line indicate untranslated regions. T-
DNA insertion left borders are indicated with a triangle
below the locus. Binding sites for primers used to genotype
the wild-type allele of each locus are indicated with arrows.
Binding sites for primers used to ascertain the effect of
homozygosity at the mutant allele are indicated with triangles
tagged by a single hash line if the PCR product spans the
insertion site, or a doublet hash line if the PCR product is
from a region downstream of the insertion site.

pGADT7 did not affect the growth of any of the trans-
formed lines on media lacking tryptophan and adenine.

Plants homozygous for insertion alleles of AMLI1 and of all
five AML family members show early flowering

An interaction with AtRaptorlB points to AML1 as a
downstream effector of TOR signaling in plants. Addition-

http://www.biomedcentral.com/1471-2229/5/2

AML1 AML2 AML3 AML4 AMLS
Primers Q6 Ws Q6Ws Q6Ws Q6Ws Q6 Ws

Y sl ol Wl ] w
i) » 18 2 E O O
Ml il | wl wl W
iv) § Y I s |

Figure 4

AML mutant allele characterization. i) PCR product to
identify the wild-type allele of each AML locus. ii) PCR prod-
uct to identify the mutant allele of each AML locus. iii)) PCR
product to assay for accumulation of cDNA from transcripts
transcribed across the insertion site. iv) PCR product to
assay for accumulation of cDNA from transcripts transcribed
from the AML locus downstream of the insertion site. AML4
was excluded from this assay because the mutant allele is dis-
rupted in the center of its coding region. Q6 refers to
genomic DNA or cDNA template extracted from quintuple
insertion allele homozygotes; Ws refers to genomic DNA or
cDNA template extracted from wild-type (Wassilijewskia
ecotype) plants.

ally, the dramatic phenotype mei2 disruption and the
intriguing mode of Mei2 action led us to ask what the con-
sequences would be of disruption of the AML1 locus and
of all five AML gene family members. To obtain insertion
alleles in AML1 and other AML gene family members, we
screened the insertion allele populations at the University
of Wisconsin Arabidopsis Knockout facility [25], obtain-
ing alleles harboring insertions in AML1, AML3, AML4
and AML5 (Fig. 3). An AML?2 insertion allele was obtained
from the SIGnAL collection at the Salk Institute [26].

By RT-PCR using primers which anneal to the cDNA at
sites spanning the insertion site of each insertion allele,
we established that no wild-type transcripts accumulate in
homozygous mutants (Fig. 4). By a series of crosses, we
then generated higher-order insertion homozygotes, cul-
minating in the quintuple insertion homozygotes Q6 and
Q17. All lines were viable and fertile.

AML insertion homozygotes bolted earlier than wild-type
lines (Fig. 5A and 5B). This effect was independent of the
number of insertion alleles carried by the mutants; AML
'quint’ lines Q6 and Q17 were not qualitatively different
than lower order insertion allele homozygotes.

Additionally, AML insertion homozygote seedlings were
assayed for a differential response to a range of signaling
molecules. Seedlings were germinated on culture medium
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AML insertion mutants bolt early. A. Wassilijewskia
(Ws) and AMLI insertion homozygotes (AML[-/-) grown
under long days. B. Bolting time and number of rosette leaves
at time of bolting for AML single insertion and higher order
insertion mutants. Plants were grown under |16 hour days.
Ws and Columbia (Col 0) ecotypes are the two points in the
top left of the graph; the cluster of points at the lower right
are all AML-/- mutants.

supplemented with the gibberellic acid GA;,
paclobutrazol, the auxin 2,4-D, 1-amino-cyclopropane-1-
carboxylic acid, 1% sucrose, 6% sucrose and kinetin, and
in the dark. Quintuple insertion mutants responded
slightly more than wild-type seedlings to GA; as measured
by the change in seedling length in the presence vs. in the
absence of the hormone. This effect was repeatable but
weak, and no other differential hormonal response was
observed (data not shown).

Sequence downstream of the mutant allele insertion sites
is transcribed

Given the mild phenotype of the AML insertion homozy-
gotes, we further investigated the extent of the effect of the
insertions at each locus. RT-PCR, as previously stated,
showed that no wild-type transcripts accumulate in lines

http://www.biomedcentral.com/1471-2229/5/2

Q6 and Q17. In fission yeast, however, the C-terminal
half of the protein is sufficient to complement lesions of
the mei2 locus [16]. The insertion alleles of all but AML4
are disrupted at or near the 5' ends of their predicted cod-
ing regions. We therefore designed primers that anneal to
the region downstream of the insertion site in each allele
and performed polymerase chain reactions to assay for
accumulation of fragments capable of encoding the C-ter-
minal half of any of the AML proteins (Fig. 4). To deter-
mine whether the amplified fragments corresponded to
AML cDNAs, we performed restriction digests on the PCR
products, which confirmed that the cDNAs originated
from AML gene transcripts. Weak amplification of cDNA
representing transcripts originating downstream of the
insertion site was observed for AML1, AML2 and AML3;
amplification of the AMLS5 3' region was indistinguishable
from the amplification seen from of wild-type cDNA
template.

Transgenic lines overexpressing AMLI:GFP or GFP:AMLI
fusion proteins could not be recovered

The AML1 ORF was separately cloned into the
pCambia1302 358S::GFP plant transformation vector both
5' and 3' of the GFP ORF, and the construct was trans-
formed into Arabidopsis via Agrobacterium-mediated flo-
ral dip [27]. Transformants, identified by resistance to the
antibiotic hygromycin and confirmed through PCR, were
recovered at a very low rate of less than .01%. No fluores-
cence was observed in any tissues of any transformants
assayed, and AML1:GFP transcripts could not be detected
via RT-PCR performed on ¢cDNA transcribed from RNA
extracted from bulk shoot tissue (data not shown).

Discussion

Raptor proteins in yeast and mammals function by
recruiting substrates for TOR, a central regulator of cell
growth in response to nutrients [4,7,28]. An interaction
with Raptor therefore strongly suggests that a given pro-
tein is a TOR substrate and downstream effector of TOR
signaling. Plants homozygous for lesions at both AtRaptor
loci show normal embryonic development but are unable
to maintain shoot meristem activity [12]. TOR substrates,
then, may play a role in regulating meristem-driven post-
embryonic growth. The interaction between AML1 and
AtRaptor1B implicates the AML family of proteins in TOR
signaling. It points specifically to a role for the AML pro-
teins in regulation of shoot meristem activity.

An interaction between Mei2 and the fission yeast Raptor
homologue Mip1 has been reported previously; indeed,
Mipl (Mei2 interacting protein 1) was the first Raptor
homologue characterized in any eukaryote [15]. The con-
servation of this interaction from fission yeast to plants
suggests that the well-characterized Mei2 signaling path-
way may provide insight into the function of the AMLs.
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Mei2 is a potent meiosis-signaling molecule. It triggers
pre-meiotic cell differentiation and meiosis in response to
nutrient stress [13,14]. Meiosis signaling in fission yeast is
a model for cell differentiation in response to external
nutrient cues. Thus the AMLs may also play a role in cel-
lular differentiation or in meiosis signaling.

Aside from the effect of Mei2 in development, there is the
intriguing issue of its mode of action. Mei2 sub-cellular
localization is mediated by an interaction with a noncod-
ing, mRNA-like molecule [14,19]. There is a fairly large
population of mRNA-like transcripts conserved among
land plants despite lacking large conserved open reading
frames [29]. Of these, the conserved alfalfa transcript
ENOD40 has been shown to mediate the sub-cellular
localization of an RNA-binding protein [30] and to medi-
ate phytohormone responses [31]. AML1 may be a bind-
ing partner of one or more of these mRNA-like noncoding
molecules in plants.

The transcriptional activation activity of the AML1 N-ter-
minus observed in the yeast one hybrid assay has not been
ascribed to Mei2 and may represent a novel activity of
plant Mei2-like proteins. This activation activity localizes
to the N-terminal 163 residues, but is strongly influenced
by the adjacent residues. Activity is lost in N219, regained
on N412 and lost again in full length AML1. This suggests
that the AML1 N-terminal half has multiple configura-
tions, and that the accessibility of the activation domain
varies among configurations. We should emphasize, how-
ever, that the AML1 N-terminal fragment transcriptional
activation activity has yet to be shown in planta, and that
the activity may result from fusion to the DNA binding
domain rather than being present in native AML1.

AtRaptor1B binding to AML1 is also localized to the N-ter-
minus, and appears to be mediated by multiple sites in
this region. This suggests that the N-terminus may contain
a TOR phosphorylation site, and that this site may influ-
ence the configuration of the N-terminus.

The repeated failure to recover transgenic lines expressing
AML1 suggests that its unregulated overexpression is
lethal. Future efforts to characterize the AML proteins in
transgenic plants may benefit from the use of inducible
promoters driving transgene expression to circumvent the
putative lethality of unregulated AML expression.

Disruption of any of the AML loci causes early bolting in
plants grown under long days. However, lines
homozygous for insertions in all five AML loci did not dif-
fer dramatically from lower-order insertion homozygotes,
despite the fact that RT-PCR performed with primers span-
ning the insertion sites show that the wild-type transcript
does not accumulate.

http://www.biomedcentral.com/1471-2229/5/2

Transcripts originating downstream of the insertion sites
but still capable of encoding the C-terminal half of the
wild-type protein accumulate from all loci but AML4. This
raises the possibility that the AML quintuple insertion
homozygote lines do not represent total disruption of
AML activity. Four of the five AML open reading frames in
the insertion mutant are apparently truncated and all are
divorced from their native promoters, but some promoter
activity (perhaps from the 35S viral promoters harbored
within the inserted DNA) remains and may be sufficient
to cause transcription of AML coding region DNA down-
stream of the insertion site.

Viewed in this light, the early flowering phenotype of AML
insertion homozygotes may arise not from the total dis-
ruption of AML activity but from the accumulation of
AML proteins which, due to the truncations in their N-ter-
mini caused by the insertions, are no longer bound by
AtRaptor1B, no longer phosphorylated by AtTOR, or no
longer able to activate transcription of floral repressors.

Finally, these results provide a cautionary tale. RT-PCR
performed using primers which span an insertion site may
not be sufficient to conclude that all activity of a protein
of interest is abolished.

Conclusion

TOR is a major regulator of cell growth in eukaryotes, but
little is known about its downstream effectors in plants.
This work shows that AML1 binds AtRaptor1B, and sug-
gests that the AML protein family may be phosphorylated
by AtTOR in an AtRaptorlB-mediated interaction. The
interaction with AtRaptor1B implicates AML1 as a down-
stream effector of AtTOR kinase signaling, and provides
insight into the mode of action of this critical growth
regulator.

Methods

Generating the two-hybrid constructs

AML1 was cloned via RT-PCR. The cDNA template was
reverse-transcribed using Omniscript (Qiagen) from RNA
extracted from bulk shoot tissue using Trizol Reagent
(Invitrogen). Restriction sites Ncol and Xmal/Smal were
added to the 5' and 3' ends of the ORF and of all smaller
AML1 fragments via PCR using ExTaq high-fidelity
polymerase (Takara). An EST clone (RZLO3b06) tagging
AtRaptor1B was obtained from Kazusa DNA institute and
sequenced. Restriction sites Ncol and EcoRI were added at
the 5' and 3' ends of the ORF via PCR. pGBKT7 and
pGADTY7 are distributed by BDBiosciences.

Yeast two-hybrid assay

AH109 cells (leu2-trp1-ade2-his3-) were grown in YEPDA
liquid plates or on YEPDA plates with 17 g/L Agar-Y
(Bio101 Systems). Cells were transformed using the

Page 6 of 8

(page number not for citation purposes)



BMC Plant Biology 2005, 5:2

Yeastmaker Yeast Transformation System2 (BD Bio-
sciences) and plated on medium lacking the appropriate
macronutrients (Bio101 Systems). Colonies were
observed 3-7 days after transformation.

Genotyping of insertion alleles

DNA from lines harboring insertion alleles was extracted
using the alkaline boiling method [32]. Provisional
homozygotes were confirmed via a second extraction
using the C-TAB DNA extraction protocol. PCR to assay
for wild-type and insertion alleles was performed in 20 uL
volumes using ExTaq polymerase and buffers and the fol-
lowing cycling parameters: 94°C, 15 seconds; 61°C, 30
seconds; 72°C, 2 minutes; 35 cycles. Genotyping primers

were as follows: AML1-5sm
5'atagaaggaaacaaaaaggaaaggaggaa3l’; AML1-3sm
5'tagcatatcacttccctgtagecgeactg3'; AML2-5sm
5'attgctctgtctctgatgatgttttgtcg3’; AML2-3sm
5'gcagcaatatttctaaagcatcgggttcas’; AML3-5sm
5'ctttagttccctctttectetgetgtgat3’; AML3-3sm
5'ctgccaagaacgggaaaacaaacataaa3’; AMIL4-5sm
5'ttgcaagcggtagtccatataaatcctc3’; AMIL4-3sm
5'atgctaccgggagaacctaagtgaaatc3’; AML5-5sm
5'tctttagccacatcaatcattctcatect3’; AML5-3sm
5'atcagcgtcaagttccattcctectccac3’; JL-202
5'cattttataataacgctgcggacatctac3’; JL-270
5'tttctccatattgaccatcatactcattg3’; pROC-737

5'gggaattcactggccgtegttttacaa3'. The wild-type loci were
assayed with the above pairs. The insert was assayed using
the following pairs: AML1-5sm or AML1-3sm with JL-270
or JL-202, AML2-5sm with pROC-737, AML3-5sm with
JL-270 or JL-202, AML4-3sm with JL-270 or JL-202,
AML5-5sm with JL-202.

Insertions in the AML1 and AML5 loci were obtained from
the University of Wisconsin alpha collection using their
described protocol and are in the Wassiljewskia (Ws) eco-
type background. The AML1 insertion was found in pool
CSJ8-46-H35. The AML5 insertion was found in pool
CSJ1091-H45. Insertions in the AML3 and AML4 loci
were obtained from the University of Wisconsin Basta col-
lection and are in the Ws background. The AML3 insertion
was found in pool 67-6-F. The AML4 insertion was found
in pool 18-2-H. The insertion in AML2 was obtained from
the line 029713 from the Salk collection and is in the
Columbia (Col-0) ecotype background. Aside from
regions genetically linked to any of the insertion loci, the
AML quintuple insertion allele homozygote lines are in
the genomic background of a Col-0 x WS F; individual
once backcrossed to the WS background.

RNA extraction, RT-PCR

RNA extraction was performed using TRIzol™ Reagent
(Invitrogen) essentially according to manufacturer's
instructions. Total RNA was treated with DNA-free™

http://www.biomedcentral.com/1471-2229/5/2

DNase (Ambion) and reverse transcribed using Omnis-
cript reverse transcriptase (Qiagen) with an oligo-dT
primer. Primer pairs spanning the insertion site for RT-
PCR on all five lines are as follows: AML1 117-138

5'gtgatggatgcgattggataga3’, AML1 556-534rc
5'attgtggcttcagctggtaactt3’; AML2 86-109
5'tttgcttctecgattctcttectt3’, AML2 456-4351c
5'agcatcgggttcaacatcttcc3’; AML3 548-568
5'gtagcggaggaggtcttgaat3’, AML3 1060-10391c
5'tctccttgatctcgecataaac3’; AMILA4 1932-1955
5'aagcggtagtccatataaatcctc3’, AML4 2944-29271c
5'tcccctgaatccgaccat3’; AMLS5 104-124
5'cgtgatcatcgtcggtgttgg3’, AMLS 1047-1024r1c

5'ctcgacgaatttgtgatgectctta3'. Reactions were performed
using Takara ExTaq and 35 cycles of 94 °C for 30 sec, 58°C
annealing (AML1,2,4) or 60°C annealing (AML3,5) for
30 sec, and 72°C for one minute.

Primer pairs amplifying a region 3' of the insertion site for
RT-PCR on AMLI, AML2, AML3 and AML5 insertion

homozygotes are as follows: AML1  +1635
5'aggctctcgecgecctatta3’, AML1 -2466
5'cgttgccaccttctcgetatt3’; AML2 +1779
5'accggggaacagtagtgaac3’, AML2 -2107
5'ctgtcggcaagcatagaaag3’; AML3 +1756
5'tctggcctgctgctacaatgg3’, AML3 -2326
5'cgccgacaagaagatgagaaaac3’; AML5 +1268
5'gcaacggcttccaacagtca3’, AML5 -1869

5'acgaggcctaccattttcatacaa3'. All reactions were performed
with a 59°C annealing temperature.
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