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Abstract

are feasible and relatively efficient.

Background: Drought stress is one of the major limiting factors for maize production. With the availability of maize B73
reference genome and whole-genome resequencing of 15 maize inbreds, common variants (CV) and clustering analyses
were applied to identify non-synonymous SNPs (nsSNPs) and corresponding candidate genes for drought tolerance.

Results: A total of 524 nsSNPs that were associated with 271 candidate genes involved in plant hormone
regulation, carbohydrate and sugar metabolism, signaling molecules regulation, redox reaction and acclimation of
photosynthesis to environment were detected by CV and cluster analyses. Most of the nsSNPs identified were
clustered in bin 1.07 region that harbored six previously reported QTL with relatively high phenotypic variation
explained for drought tolerance. Genes Ontology (GO) analysis of candidate genes revealed that there were 35 GO
terms related to biotic stimulus and membrane-bounded organelle, showing significant differences between the
candidate genes and the reference B73 background. Changes of expression level in these candidate genes for
drought tolerance were detected using RNA sequencing for fertilized ovary, basal leaf meristem tissue and roots
collected under drought stressed and well-watered conditions. The results indicated that 70% of candidate genes
showed significantly expression changes under two water treatments and our strategies for mining candidate genes

Conclusions: Our results successfully revealed candidate nsSNPs and associated genes for drought tolerance by
comparative sequence analysis of 16 maize inbred lines. Both methods we applied were proved to be efficient for
identifying candidate genes for complex traits through the next-generation sequencing technologies (NGS). These
selected genes will not only facilitate understanding of genetic basis of drought stress response, but also accelerate
genetic improvement through marker-assisted selection in maize.

Background

Drought is one of the most important environmental
stresses around the world [1]. The climate changes
and increasing population pose serious challenges to
crop improvement. It is believed that understanding
of how plants respond to drought stress at the
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molecular level are useful for developing improved
genotypes which would perform well under water-
limited conditions [2]. Maize (Zea mays spp. mays
L.), one of the most important food crops in the
world, is very sensitive to water-deficiency, especially
during flowering, pollination and embryo develop-
ment [3].

Previous studies reaffirmed that drought tolerance is a
complex trait controlled by many genes [4]. It is important
to mine candidate genes and unravel molecular mechanisms
in response to drought stress in maize, which would help
accelerate genetic improvement through marker-assisted se-
lection. So far, genetic studies using strategies such as
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quantitative trait locus (QTL) mapping, subtractive
hybridization (SSH), Real Time-PCR and ¢cDNA micro-
array technology, have been reported in maize [2,5-8].
However, QTL identified under a specific genetic back-
ground usually show relatively small effects or even
cannot be detected under other genetic backgrounds
[9], and several studies have been done to integrate the
results from multiple independent QTL mapping ex-
periments to unravel genetic factors underlying com-
plex traits [9-11].

Despite the surfeit of mapping publications, only a few
QTL have been identified to date at the gene level
through map-based cloning due to the complexity of the
maize genome [12], resulting in largely unknown mecha-
nisms of drought response. The next-generation sequen-
cing (NGS) technologies, which provide direct insight
into the DNA variation, have been used for genome-
wide sequencing (GWS), polymorphism detection and
marker development, DNA methylation and histone
modification, alternative splicing identification, gene ex-
pression analysis and DNA-protein interactions [13-15].
NGS has also become a vital choice for identifying can-
didate genes and variants underlying simple and even
complex traits through linkage mapping, association
mapping and other approaches [5]. A known QTL
(GWH5) associated with rice grain width was successfully
identified using 209 K SNPs that were produced by
whole-genome resequencing of a recombinant inbred
line population [16]. Besides, transcriptome sequencing
is also applied in transcriptional and post-transcriptional
regulation analyses of genes under abiotic stress and glo-
bal expression pattern analysis of complex genomes
[17-20]. The transcriptome of maize reference genome
B73 was studied using RNA-seq to compare gene ex-
pression in fertilized ovaries and basal leaf meristem tis-
sues collected under drought-treated and well-watered
conditions [17]. Moreover maize miRNAs regulating abi-
otic stress-associated processes and the gene networks
were identified, and a gene model showing how they
worked was proposed [20,21].

Finding and exploiting DNA sequence variation within
a genome is of utmost importance for crop genetics and
breeding. Thanks to the availability of whole-genome or
transcriptome sequences in public databases and the re-
cent advent of bioinformatics tools, mining genetic vari-
ation has become easier and more cost-effective. The
objectives of this study are to 1) screen SNPs that play
important roles in maize drought tolerance using
genome-wide sequencing data; 2) identify corresponding
candidate genes based on the identified nsSNPs and
compare them with reported QTL for drought tolerance;
3) detect changes in expression level of these candidate
genes using RNA-seq data from different maize tissues
under two water treatments. The candidate genes could
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be the fundamental genetic resource for enhancement of
maize drought tolerance, and their expression analysis
and insight into molecular mechanisms would be helpful
for molecular breeding towards improving abiotic stress
adaptation.

Results

SNPs and their distribution in maize genome
Whole-genome resequencing was performed for 15 maize
inbreds and a total of 4.6 billion (407 gigabases) sequence
reads were aligned against the maize B73 reference gen-
ome using Short Oligonucleotide Alignment Program 2
(SOAP 2) [22], resulting in 85% of genome coverage on
average. The detailed resequencing information was pro-
vided in Additional file 1: Table S1. A total of 6,385,011
SNPs with high quality were called from 15 maize inbreds
and B73 reference genome. The number of SNPs was the
most on chromosome 1 (2,511,910) and the least on
chromosome 10 (1,205,225), accounting for 15.33%
and 7.36% of the SNPs, respectively. SNP density var-
ied among chromosomes, and chromosome 1 has the
highest density with 8.34 SNPs per Kb and chromo-
some 5 has the lowest density with 7.29 SNPs per
Kb (Table 1).

The distribution of SNPs across genomic regions was
compared (Table 1). SNPs were most abundant in inter-
genic regions (84.58%), followed in an order of intronic,
promotor, exonic, UTR and splicing site regions. Not-
ably, more SNPs were located in 3’-UTR (1.12%) than in
5'-UTR (0.76%). Moreover, more SNPs were detected in
the introns (7.67%) than exons (2.70%). For exonic re-
gions, there were 232,997 synonymous SNPs, 205,214
nsSNPs, 3843 stop-gain and 883 stop-loss mutations.
Synonymous SNPs were more abundant and the average
non-synonymous to synonymous substitution ratio
(Nonsyn/Syn ratio) was 0.42 in the exonic regions.

Detection of nsSNPs and candidate genes using common

variants (CV) analysis

ANNOVAR tool was applied to filter nsSNPs [23]. Three
extremely drought-tolerant lines and three drought-
sensitive lines were used to detect candidate nsSNPs
[24-29]. There were 105,656 and 89,263 nsSNPs sharing
the same variants within drought sensitive group and
drought tolerant group, respectively. The variants dis-
tributed across genome regions showed different dens-
ities between the two groups (Figure 1A and B). There
were more variants located in telomeric regions than in
near centromere regions, which was in accordance with
the distribution patterns of genes in maize [30]. Among
the variants, 499 nsSNPs (0.24%) associated with 259
genes (266 transcripts) were different between the
groups (Figure 1C). Chromosomes 1 to 9 each contained
some candidate genes, while most of the candidate genes
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Table 1 Summary of SNPs and their distribution in different genomic regions

Chr. Total SNP Exonic region UTR Splicing Intronic Promotor Intergenic
Number Density? Nonsyn Syn Stop- Stop- 5-UTR 3-UTR 5-UTR/3- sites”  region region
gain loss® UTRY
1 2511910 8.34 31,289 36,761 619 126 14,036 29,588 631 725 213,368 80,967 2,103,800
2 1,915,130 8.08 25916 28767 442 108 10644 22370 402 567 150,733 60,545 1,614,636
3 1,862,945 8.03 22,218 25,182 451 106 9370  18,8% 295 494 138,043 55,225 1,592,667
4 1,991,721 8.25 20323 21,608 456 9% 8,740 17,449 458 447 117,866 54,140 1,750,138
5 1,588421 7.29 22810 27,197 371 105 10315 22,646 474 539 142,569 56,768 1,304,627
6 1,270,649 7.51 16936 19,001 308 77 7589 14,610 375 424 98,366 43,059 1,069,904
7 1,367,126 7.73 16,692 19323 301 60 7,361 14,499 301 388 105,085 40,322 1,162,794
8 1,403,887 7.99 18411 20233 376 75 43,688 16400 290 452 111,501 46,710 1,145,751
9 1,267,997 8.09 14,748 17468 279 71 6,789 14,366 245 355 96,433 38,962 1,078,281
10 1,205,225 8.02 15871 17457 240 59 5978 12,369 120 287 83,062 34,006 1,035,776
Total/ 16,385,011 7.95 205214 232997 3,843 883 124510 183,191 3,591 4,678 1,257,026 510,704  13,858374
Average
Percentage - 125%  142%  002% 001% 076%  1.12% 0.02% 0.03% 7.67% 3.12% 84.58%

Chr chromosome. Nonsyn: nonsynonymous SNPs. Syn synonymous SNPs. Density: SNP number per Kb. ® Stop-gain: changes an amino acid to a STOP codon.
“Stop-loss: the mutation results in the loss of a STOP codon. 95"-UTR, 3"-UTR: SNPs located in 5-UTR or 3-UTR of different transcripts. Splicing sites: SNPs in

different genomic regions refer to alternative splicing.

lay on chromosomes 1 and 8. The gene transcripts se-
lected by CV analysis are listed in Additional file 2: Table
S2.

Among the 259 genes, 99 contained more than one
nsSNPs. In particular, candidate genes GRMZM2G4665
63, GRMZM2G070038 and GRMZM2G172320 harbored
13, 12 and 12 nsSNPs with Nonsyn/Syn ratios of 0.40,
0.25 and 0.77, respectively. GRMZM2G466563, a member
of calmodulin-binding superfamily, has been demon-
strated to be an important signalling component in
stress-induced cellular signal transduction pathway
[4,31]. GRMZM2G172320, which encodes a keratin-
associated protein participated in the formation of rigid
and resistant hair shafts in mammalian [32,33], was proven
to be involved in water stress signaling pathway [34].

To explore selective constrains and evolutionary diver-
gence of these genes, the Nonsyn/Syn ratio for each candi-
date gene identified by CV analysis was also investigated
using different maize germplasm sets. Among these genes,
46.33% (120 genes) only have nsSNPs in coding region.
The Nonsyn/Syn ratios for candidate genes ranged from
0.03 (GRMZM2G104325) to 2.93 (GRMbZM2G071339),
with an average of 0.43, of which, 196 genes with the
ratios below 0.50 while 8 genes above 1.50. We also cal-
culated the average Nonsyn/Syn ratio of candidate
genes using the data from maize HapMap 2, which
were collected from a much larger set of germplasm in-
cluding wild, landrace and improved maize lines [35].
The mean Nonsyn/Syn ratio was 0.46 (0.02 -7.2). Most
of the genes (71.4%, 185 out of 259 genes) were under
purifying selection with the Nonsyn/Syn ratios below
0.50 (mean value: 0.23). In contrast, only 3.5% of the

genes (9 out of 259) were under positive selection with
Nonsyn/Syn ratios above 1.5 (mean value: 2.89).

Variants on chromosome 1 revealed by cluster analysis

To select candidate loci related to drought tolerance,
SNP-based cluster analysis proposed by James Silva et al.
was carried out with minor modification using all
nsSNPs identified with all tested lines [36]. The nsSNPs
detected on each chromosome with the tested maize in-
breds were used for singular value decomposition (SVD)
and Ward’s minimum variance clustering. We used aver-
age variant frequency (AVF) with more than 0.8 in ex-
tremely drought-tolerant lines but less than 0.1 in
extremely drought-sensitive lines to decide the number
K of clusters. When the clustered number reached 31,
the AVFs on chromosome 1 showed distinct difference
between the two groups. The AVF values were 0.010,
0.067 and O for the three drought sensitive inbreds,
Ye478, Ji853 and B73, while they were 1, 1 and 0.837 for
the three drought tolerant inbreds, LX9801, Qi319 and
Tie7922, respectively. When the cluster number was less
than 31, the drought-tolerant inbred Qi319 had a lower
AVF value (less than 0.3) and the drought-susceptive in-
bred Ji853 had a modest AVF value (close to 0.50).
Therefore, the 104 nsSNPs grouped in single cluster 31
on chromosome 1 were selected to represent candidate
loci related to drought tolerance. A total of 41 candidate
genes (44 transcripts), which were associated with the
clustered SNPs, are summarized in Additional file 2:
Table S2. Comparing the physical positions with chromo-
some bin regions of candidate nsSNPs for drought toler-
ance, we found that 83.65% of candidate nsSNPs were
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Figure 1 Distribution of nsSNPs and associated genes on maize chromosomes. Concentric circles showed aspects of the genome. Density
of common nsSNPs identified in drought-tolerant maize inbreds (A) and in drought-sensitive maize inbreds (B). Genome mapping of candidate
nsSNPs identified by common variants method (C). The fold change of expression level for candidate genes in ovaries (D), leaves (E) and roots
(F) under water-stressed conditions compared with well-watered conditions. For Figure C, different colors indicate different strategies as shown at

the bottom of right corner. For Figures D, E and F, red and green bars represent up- and down- regulated expression, respectively.

clustered in bin 1.07 (Figure 2), and these nsSNPs were
related to genes involved in ABA and cytokinin catabol-
ism, stress signal conduction and redox reaction.

Biplot was created using the clustered nsSNPs to dis-
play the relationships between drought-susceptive in-
breds and the candidate nsSNPs. Figure 3 showed the
biplot of variants on chromosome 1. Six inbred lines
could be divided into two groups using the first and sec-
ond eigenvectors, which is in accordance with their
drought characteristics. The three extremely drought
sensitive lines were located around the same region
while the drought tolerant lines LX9801 and Qi319 lo-
cated in the opposite direction of the drought sensitive
lines.

Comparison of candidate genes with previously identified
QTL/genes

Both of the CV and cluster analyses successfully identi-
fied candidate genes for drought tolerance. A total of
524 nsSNPs were identified by two methods, among
which, 79 common variants associated with 28 genes
were detected by both methods (Figure 4A and B), which
account for 10.8% and 68.3% of the candidate genes re-
vealed by CV strategy and cluster analysis, respectively.
More interestingly, we found 77 out of the 79 common
variants were clustered in bin 1.07 (Figure 4A and B). In
addition, we compared the candidate genes with 48
QTL for drought tolerance on chromosome 1 retrieved
from Gramene database (http://www.gramene.org/) and
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Figure 2 The cluster regions of candidate nsSNPs for drought tolerance on chromosome 1 identified by cluster analysis. X-axis
represents the bin regions where the clustered nsSNPs located and Y-axis represents the percentages of nsSNPs identified by cluster analysis in
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nine published research articles using different mapping
populations and algorithms [5,37-43]. Of the 48 QTL, one
for female flowering time [43], two for grain yield [37,39],
one for ear number [37], one for stressed-leaf ABA
content [44] and one for ASI (anthesis-silking interval) [5]
were detected in bin 1.07. The distribution of reported
QTL and candidate nsSNPs on chromosome 1 are shown
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Figure 3 Biplot display of chosen variants on chromosome 1 in
three extremely drought tolerance inbreds (LX9801, Qi319 and
Tie7922) and three extremely drought sensitive inbreds (Ye478,
Ji853 and B73). The clustered nsSNPs on chromosome 1 were
selected to make the Biplot by transforming the nsSNPs into a (0, 1)
matrix. Then the Singular Value Decomposition (SVD) was applied to
the matrix with V matrix (for nsSNPs) and G matrix (for materials)
returned. The first two vectors of each matrix were used to make
X-axis and Y-axis. The blue dotted lines indicate the vectors of the
six inbred lines and red round dots represent the chosen variants on
chromosome 1.

in Figure 4C. The QTL explained relatively high propor-
tions of phenotypic variation (9%-15%). The 26 candidate
genes identified by cluster analysis shared the same
chromosomal region in bin 1.07 (Figure 2, Figure 4D).
These genes were involved in plant hormone regula-
tion, carbonhydrate and sugar metabolism, signalling
molecules regulation, redox reaction and acclimation
of photosynthesis to environment.

Among the candidate genes identified in bin 1.07, cyto-
chrome P450 (GRMZM2G092823) encodes a key enzyme
in ABA catabolism and plays a major regulatory role in
controlling the level of ABA in plants [45]. GRMZM2G09
0264 is a Type-A Arabidopsis response regulator (ARR),
which is rapidly induced by cytokinin and is a partially
redundant negative regulator of cytokinin signaling [46].
GRMZM2G163437 encodes a subunit of ADP-glucose
pyrophosphorylase, which is a key enzyme of the starch
biosynthesis pathway [47]. GRMZM2G179063 is gluco-
syltransferase involved in glucuronoxylan biosynthesis
and drought tolerance in Arabidopsis [48]. The putative
calmodulin-binding protein (GRMZM2G466563) and
leucine-rich repeat receptor-like protein kinase family
protein (GRMZM2G428554) play important roles in
signal transduction and drought response [49,50]. Be-
sides, induction of peroxidase is a common feature of all
the stress treatments [51], and GRMZM2G320269, a
peroxidase 27 precursor, maybe involved in the stress
response.

GO enrichment analysis of selected candidate genes

GO based functional enrichment analysis of drought-
tolerant candidate genes was performed by the web-based
tools AgriGO (Go analysis toolkit and database for ag-
riculture community) (http://bioinfo.cau.edu.cn/agriGO/
index.php) and AgBase (http://www.agbase.msstate.edu/).
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Figure 4 The densities of candidate nsSNPs by both CV and cluster analyses and reported QTL on chromosome 1 for drought
tolerance. The densities of candidate nsSNPs identified by cluster analysis (A) and CV analysis (B) and reported QTL (C) on chromosome 1 for
drought tolerance. (D) represents genetic distances and bin regions on chromosome 1.

The results revealed that 35 GO terms showed signifi-
cant differences between the candidate genes and all the
B73 genes pre-computated as background reference, in-
cluding 19 GO terms (Additional file 3: Figure S1) in-
volved in biological processes and 16 GO terms
(Additional file 4: Figure S2) involved in cellular compo-
nents. There was no GO term in the category of
molecular function. The most enriched terms of bio-
logical process ontology were development- and cellu-
lar response-related, such as developmental process
(GO: 0032502), multicellular organismal development
(GO: 0007275), anatomical structure development (GO:
0048856), system development (GO: 0048731), response
to biotic stimulus (GO: 0009607), cellular response to
chemical stimulus (GO: 0070887) and response to other
organisms (GO: 0051707). On the other hand, there was
also a significant difference in negative regulation of
biological process (GO: 0048519), negative regulation of
cellular process (GO: 0048523) and chromatin modifica-
tion (GO: 0016568). To the cellular component ontol-
ogy, candidate genes were enriched in membrane
and vesicle related cellular component including the
membrane-bounded organelle (GO: 0043227), intracel-
lular membrane-bounded organelle (GO: 0043231),
cytoplasmic part (GO: 0044444), vesicle (GO: 0031982),
plastid (GO: 0009536) and membrane-bounded vesicle
(GO: 0031988).

A detailed comparison of biological process groups in-
volved in drought responses to background is provided
in Figure 5. With the biological process ontology, devel-
opmental process (GO: 0032502) and signalling (GO:
0023052), multicellular organismal process (GO: 0032501)
and response to stimulus (GO: 0050896) were enriched for
the drought response candidate genes. Meanwhile, negative
regulation of biological process (GO: 0048519) and death
(GO: 0016265) also showed a relatively high rate than

the all given genes from reference genome B73 as
background.

Validation of candidate genes

To validate whether the selected candidate genes re-
spond to drought tolerance, we examined expression
level changes of 271 candidate genes through transcrip-
tome analysis of the roots from drought tolerant inbred
AC7643, and the leaves and ovaries from drought sensi-
tive inbred line B73 under well-watered and water-
stressed conditions. The fold changes of candidate genes
expression responsive to water stress in ovaries, leaves
and roots are displayed in Figures 1D,E and F, respect-
ively. A total of 262 genes revealed by CV and cluster
strategy showed change of their expression levels in dif-
ferent water conditions, of which 181 genes (around
70%) changed significantly (P < 0.05) and 77 genes had a
fold change of more than two in ovaries, leaves or roots.
In drought tolerant inbred AC7643, 177 genes displayed
significantly different expression in roots under two
water treatments, including 43 up-regulated genes and
134 down-regulated genes. The expression level of aser-
ine/threonine-protein kinase family member (GRMZM?2
G179789) substantially changed, with a 7-fold-increase
under water-stress condition. A hypothetical protein
(GRMZM2G050741) exhibited a more than 9-fold de-
crease in expression level under water-stress condition.
Although the candidate genes showed different expres-
sion characters due to the different tissues and inbreds
used for RNA sequencing, the relatively high rate of genes
significantly altered their expression levels under water-
stress condition, which indicated these candidate genes
identified by CV and cluster strategies were associated
with drought tolerance. Expression level difference of
candidate genes in ovaries, leaves and roots under two
water treatments and the expression change based
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Figure 5 Flash bar chart of over represented terms for drought-tolerant candidate genes in biological process category. The Y-axis is
the percentage for the input genes in different GO terms calculated by the number of genes mapped to the GO terms divided by the number of
all input genes. The same calculation was applied to the reference list to generate its percentage. These two lists are represented using different

hierarchical clustering are shown in heat map with dif-
ferent colors representing relative mRNA expression
(Figure 6).

Validation of SNPs

To verify the accuracy of SNPs, comparison of the
46,556 loci identified from Illumina SNP50K Chip and
SNPs called from 12 resequencing inbreds were per-
formed. The results indicated that more than 99% of
SNPs were in accordance with the physical positions and
genotypes. The SNP discordant rates between two data-
sets were presented in Additional file 1: Table S1. In
addition, all the 16 inbred lines were used for SNP valid-
ation through PCR amplification and HRM validation.
Five candidate genes were randomly selected for valid-
ation and corresponding five primer pairs were designed
(Table 2). The HRM result of PCR amplicons for the
candidate gene GRMZM2G467339 is shown in Figure 7.
The two groups with SNP locus “A” in red curves and
“G” in green curves in 16 inbred lines were distinguished
successfully. The sequence of amplicon with the SNP in
“A” had a lower melting temperature compared with sin-
gle base mutation of “G”. The difference in melt
temperature indicated the SNP existed in the chosen
maize inbred lines. The HRM genotyping results also
confirmed that the candidate nsSNPs were consistent
with the sequences generated by NGS.

Discussion

Functional and regulatory genes for drought tolerance in
maize

Plant roots have the ability to grow toward the direction
of high water availability and away from that of high
osmolarity (hydrotropism). Xiong et al. searched for phe-
notypes conferred by drought stress and identified the
inhibition of lateral root development by drought stress
as an adaptive response to the stress [52]. Ovaries in tis-
sue subjected to drought stress stop growth within 1 to
2 day after pollination [53], and tolerance to water stress
in female floral parts has been correlated with yield in
maize [54]. Gene expression studies in maize in response
to water stress have been conducted in roots [55], seed-
lings [56], and developing ear and tassel [57]. In the
study, transcriptome analysis of leaves, ovaries and roots
from drought sensitive inbred and tolerance inbred was
thus performed to further validate the candidate genes
and elucidate mechanisms for its regulation.

The response of plants to drought stress is very complex
and involves lots of genes and pathways related to diverse
mechanisms [4,9,58,59]. However, some secondary physio-
logical traits have been investigated as a drought tolerance
measurement and some universal genes, such as NAC
transcription factors, are involved in abiotic stress response
in different varieties and even species [60,61]. This provides
us an opportunity to mine important universal drought
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Figure 6 Clustering of candidate genes according to their
changed expression levels in water-stress condition. The color
scale shown on the top left represents the changed gene expression
values (Log, fold change) under water-stressed condition. “roots’,
"ovaries” and “leaves” column present the tested genes in the roots,
ovaries and the basal leaves, respectively. The dose red and blue colors
represent up-and down-regulated expression, respectively.
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response genes by assessing the variations capably inducing
modification of the protein sequences in maize inbreds
with different genetic backgrounds.

Page 8 of 15

In this study, we identified genes involved in plant
hormone regulation (especially ABA synthesis and me-
tabolism), carbonhydrate and sugar metabolism, signal-
ling molecules regulation and redox reaction. These
genes may function as regulatory protein factors in-
volved in the regulation of signal transduction and gene
expression functioning in stress responses [62]. One of
the major unresolved issues concerning the genetic
architecture of abiotic stress response is whether func-
tional variation arises from variation in core signaling
components, such as transcription factor, kinases and
phosphatases, or these variations are confined to effector
genes, such as biosynthetic enzymes, redox regulators
and heat shock proteins [63]. Gene families with essen-
tial functions (for example, ubiquitin and cellulose syn-
thase families) in rice tended to have substantially lower
Nonsyn/Syn ratios, whereas gene families that func-
tioned in regulatory processes and signal recognition,
such as disease resistance family, had higher ratios [64].
In our research, candidate genes with more than 10
nsSNPs involving in stress signaling pathway and
functioning as regulators also had higher Nonsyn/
Syn ratios, which were consistent with the results
in rice.

On the other hand, from an evolutionary viewpoint,
more than 70% of the candidate genes were under
negative selection with a relatively low average Nonsyn/
Syn ratios in both maize inbred lines population and a
much larger set of germplasm including wild, landrace
and improved maize lines. The result indicated that
these genes possess central and essential functions and
nonsynonymous mutations impacting on the genes
function have been removed by purifying selection
[65]. A similar result was observed in Eucalyptus
camaldulensis seedlings subjected to water stress
via transcriptome sequencing [66].

CV and cluster analyses for mining candidate genes

Recent advances in whole-genome sequencing have
allowed identification of candidate genes responsible for
abiotic and biotic stresses. Silva et al. used CV and prin-
cipal component-biplot (PB) selection strategy to exploit
whole genome sequences of 13 rice inbred lines and
identify nsSNPs and candidate genes for resistance to
sheath blight, a disease of worldwide significance [33]. In
our study, both CV and cluster analyses successfully
identified the candidate genes associated with drought
tolerance. Gene expression studies through RNA-seq on
ovaries and basal leaves of drought sensitive inbred B73
confirmed that around 80% of the candidate genes
showed decreased or increased expression under water-
stress condition [17]. Moreover, transcriptome analysis
conducted on the roots of drought tolerant inbred
AC7643 validated 65.7% of candidate genes displayed
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Table 2 Information of the primers used for high resolution melting (HRM) analysis

Primers Target gene (ID) Product size Annealing temperature Primer sequence (5-3') (bp)
(bp) Q)
1 GRMZM2G072292 88 62 F: GCAAGCGGGGACATGAGC
R: TCTTGGAGAAGCCCAGCGA
2 GRMZM2G055844 69 62 F: TATGTCCAGTCAGCGAGAG
R.GGCTATGTCCACGATCATTG
3 GRMZM2G386229 68 62 F: GAGGCGTTCTACTCCGAG
R: AGCGACAGGAGACAGTAC
4 GRMZM2G467339 90 59 F: GTATGTCTTAATAGGTATGTCTCA
R: GTACACCCGATGTTCTTC
5 GRMZM2G109448 70 60 F: GCTGTCTCATCCTCATCG

R: CCAATCTGTGAAGAAGTGAAG

significantly different expression under water-stressed
conditions, including 44 up-regulated genes and 134
down-regulated genes. Interestingly, the candidate genes
identified by CV analysis showed more significant and
severe change in expression level, indicating that CV
analysis might be more efficient than clustering. How-
ever, from methodology perspective, the procedure of
CV analysis is somewhat tedious while cluster analysis is
more systematic as described by Silva et al. [36]. Besides,
cluster analysis has another advantage that the candidate
loci identified can be clustered in some chromosomal re-
gions. In our analysis, the majority of candidate nsSNPs
detected by cluster analysis were located in bin 1.07, ac-
counting for 83.65% of the total candidate nsSNPs.
Compared with the reported QTL for drought tolerance,
this chromosomal region (bin 1.07) harbored important
QTL involving in flowering time and grain yield under
water-stress condition, suggesting that cluster analysis
was credible and successful in mining candidate genes

for the target traits in our study. Moreover, more than
10% of the candidate genes could be identified by both
methods, most of which were clustered on chromosome
1 (binl.07). For a large number of clusters, candidate
SNPs identified by both methods were almost indistin-
guishable [36].

Functions of SNPs in different genomic regions

SNPs were very commonly used for association studies
to identify genes or genetic regions contributing to com-
plex traits [67,68]. From these genome-wide researches,
SNPs could be identified in almost all genomic regions
to explain variation of phenotypic traits to various de-
grees. From the point of view of molecular level, func-
tional SNPs can affect the phenotype by interfering both
transcription level and protein synthesis [69]. It has been
long considered that the SNPs on protein-coding se-
quences have potential effects on gene function, espe-
cially the nsSNPs that could lead to amino acid residue

Unprocessed RFU (1043)

curves indicate SNP loci A and G, respectively.

Temperature
Figure 7 High resolution melting analysis (HRM) of PCR amplicons for gene GRMZM2G467339 in 16 maize inbreds. Red and green
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changes and altered functional or structural properties
of the protein. Although the non-coding SNPs could not
cause any amino acid change, they may affect transcrip-
tion factor binding sites, splice sites and other functional
sites in transcriptional level. In maize, 21% of the SNPs
in HapMap 2 were associated with a genic region [35],
which suggested that the polymorphisms in coding se-
quences were less than non-coding areas. Furthermore,
Li et al. analyzed genic and non-genic contributions to
natural variation of quantitative traits in maize and re-
vealed that 79% of the explained variation could be at-
tributed to trait-associated SNPs located in genes or
within 5 kb uptream of genes [70]. This indicates that
variations in genic and promotor regions would be more
important in genetic resolution of complex traits. The
less in numbers but more significant in terms of func-
tions has made the nsSNPs an ideal marker type in com-
plex trait association analysis. More than 200 genes with
selected nsSNPs for resistance to sheath blight disease
were detected in rice by whole-genome sequencing. In
the study, we focus on the nsSNPs and drought associ-
ated candidate genes within nsSNPs were successfully
detected by comparative analysis of different maize in-
bred lines.

Genetic resources for drought tolerance in maize

Maize is an important crop for food, feed, forage, and
fuel across tropical and temperate areas of the world. Di-
versity studies at genetic, molecular, and functional
levels have revealed that tropical maize germplasms,
landraces and wild relatives harbor a significantly wider
range of genetic variation. Landraces from dry habitats
have been used successfully in breeding for water limited
environments, and wild species and progenitors of our
cultivated crops were always on the agenda as possible
donors for drought tolerance [71,72].

From an evolutionary perspective, drought is an im-
portant abiotic stress that influences yield with strong
interactions between genes and environment [73], which
was also an important evolutionary force responsible for
population diversification in some species [74]. Plants
exhibit morphological and physiological adaptations to
cope with environmental stresses. However, evidence for
selection (natural or artificial) of drought tolerance has
rarely been examined in maize. Many researches have
indicated that, the ancestor of maize, teosinte, is a
drought tolerant grass while domesticated landraces and
inbred lines have differentiated in drought tolerance. As
a result, some landraces and inbred lines are drought
tolerant while others are drought susceptible. Back to
the process of domestication, drought tolerance might
be selected together with plant productivity in farming
practice, and comparing with wild type, domesticated
plants reduced defense ability exposure to biotic and
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abiotic stresses (which was identified in sunflower but
has not been reported in maize) [75,76]. Therefore, iden-
tifying more drought tolerance genes and exploring the
nature of drought tolerance may open new avenues for
their use in maize improvement.

The advent of whole genomics technologies provides
necessary tools for identifying the key gene networks
that respond to drought stress [77]. Based on all avail-
able knowledge for the traits related to yield and drought
tolerance, randomly dispersed QTL, trans-genes or both
can be accumulated into elite genotypes through “breed-
ing by design” [15,78]. Better understanding of the gen-
etic bases of the secondary drought tolerance traits and
analysis of allelic variation at the corresponding loci
would enable the breeders to design new ideotype crops.

Conclusions

A total of 524 nsSNPs were selected by CV analysis and
clustering using B73 reference genome and whole-
genome resequencing of 15 maize inbreds with various
drought characteristics. Two hundred seventy one
drought-tolerant candidate genes corresponding to the
candidate nsSNPs were identified, which involved in a
variety of physiological and metabolic pathways in re-
sponse to the water stress. GO based function analysis
and comparison of candidate genes with reported
drought associated QTL indicated that these candidate
genes were notably associated with drought tolerance.
Furthermore, about 70% of candidate genes showed sig-
nificantly expression change under two water conditions
by transcriptome analysis of fertilized ovaries, basal
leaves and roots. Two methods used in the study are ef-
ficient approaches for detecting candidate genes under-
lying complex traits, including drought tolerance.
Results from this study also provide a foundation for fu-
ture basic research and marker-assisted breeding for im-
proving drought tolerance in maize.

Methods

Plant materials and DNA extraction

A total of 16 maize inbred lines were selected based on
their drought responses identified in our previous exper-
iments [61] and other reports [24-26] based on selection
criteria such as grain yield, anthesis-silking interval and
leaf senescence under well-watered and water-stressed
environments (Table 3). Among them, maize inbred
lines B73, Ye478 and Ji853 were extremely drought-
sensitive, while LX9801, Qi319 and Tie7922 were ex-
tremely drought-tolerant. Besides, 10 maize inbred lines
with moderate drought sensitive tolerance were also
used in the study. These materials were chosen from dif-
ferent heterotic groups, Stiff Stalk (SS) and non-Stiff
Stalk (NSS) [70,71] and heterotic group containing trop-
ical or subtropical maize inbreds (TST). Genomic DNA
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Table 3 Maize inbred lines used in the study
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Name Pedigree Origin  Drought tolerance Selection criteria References Heterotic Adaptation
characteristics groups

AC7643  Unknown CIMMYT Moderate tolerance NDVI, AS|, LS, CC, RC, [561] TST Tropical/
GY, GYC subtropical

CML206  [EV7992#/EVPO44SRBC3]#BF37SR-2- CIMMYT Moderate sensitive  ASI, LS, GY, GYC, PH [25] TST Tropical/
3SR-2-4-3-BB subtropical
Ye478 U8112/Shen5003 China Extremely sensitive  ASI, LS, GY, GYC, PH, [25,26] SS Temperate

RWC
Dan598  (Dan340/Danhuang11)/(Danhuang02/  China Moderate tolerant  ASI, LS, GY, GYC, PH [25] NSS Temperate
Dan599)

Si287 444/255 China Moderate tolerant  ASI, LS, GY, GYC, PH [25] SS Temperate
Jig53 (Huangzao4/7i330)/Zi330 China Extremely sensitive  ASI, RWC, MDA, EC 271 NSS Temperate
[X9801  Ye502 x H21 China Extremely tolerant  ASI, LS, GY, GYC, PH [25] SS Temperate
Qi319 American hybrid P78599 China Extremely tolerant  ASI, LS, GY, GYC, PH [25] NSS Temperate
Tie7922  American hybrid P3382 China Extremely tolerant  ASI, LS, GY, GYC, PH [25] SS Temperate
Han21 American hybrid P78599 China Moderate tolerant  ASI, LS, GY, GYC, PH [25] NSS Temperate
Zheng22 (Duqing/E28)/Lujiukuan China Moderate sensitive  ASI, LS, GY, GYC, PH [25] SS Temperate
Jia19 Si419/(B68HT/Mo17) China Moderate sensitive  ASI, LS, GY, GYC, PH [25] NSS Temperate
ES40 Landrace Linshuidadudu from Sichuan China ~ Moderate sensitive  ASI, PH, EC, GY [24] SS Subtropical

81565 (Huobai/Jing03)/(S2/Heibaio4) China Moderate tolerant  ASI, PH, EC, GY [24] TST Tropical/
subtropical
X178 Selected from an introduced hybrid China Moderate tolerant  ASI, PH, EC, GY [24] SS Temperate
B73 BSSS China Extremely sensitive  RWC, LAI, RWC [28,29] SS Temperate

SS Stiff stalk heterotic group with representativeness of B73. NSS Non stiff stalk heterotic group. TST heterotic group containing tropical or subtropical maize
inbreds. NDVI normalized difference vegetation index. AS/ anthesis-silking interval. LS leaf senescence. CC chlorophyll content. RC root capacitance. GY grain yield.
GYC grain yield components. PH plant height. RWC relative water content. MDA maleic dialdehyde. EC electric conductivity. LAl leaf area index.

was extracted from 2-week old seedlings using CTAB
method.

Maize genome sequencing, SNP calling and nsSNP
identification

Sequences were generated for maize lines while paired-
end libraries were constructed according to the Illumina
manufacturer’s instructions. Whole-genome resequencing
was performed on Illumina Hiseq 2000 platform for 15
maize inbreds and a total of 4.6 billion (407 gigabases) se-
quence reads were aligned against the maize B73 refer-
ence genome (Www.maizesequence.org, Release 5b) using
SOAP 2 [22] (http://soap.genomics.org.cn/) which is a
widely used reads alignment tool. There were around 1.8
billion reads were uniquely mapped onto B73 reference
genome, with average of 0.12 billion reads for each maize
inbred (Additional file 1: Table S1). SNP calling and valid-
ation were performed as Chia et al. [35]. Sequencing and
SNP calling were carried out at BGI (Shenzhen, China).
The nsSNPs within the genes were filtered using ANNO-
VAR tool [23] that can be used to functionally annotate a
list of genetic variants including intronic, exonic, inter-
genic, 5'/3-UTR, splicing site and upstream/downstream
variants. Promotor sequences were determined at 2 Kb
upstream of transcription initiation site.

Identification of nsSNPs in candidate drought tolerance
genes

Common variants (CV) analysis and SNP based cluster
analysis proposed by James Silva et.al [36], with minor
modification, were used separately to identify nsSNPs and
their associated candidate genes for maize drought toler-
ance. The CV analysis for filtering candidate genes was
taken as following steps: 1) screening SNPs which were
common within the two groups containing three ex-
tremely drought-tolerant maize inbreds (LX9801, Qi319
and Tie7922) and three drought-sensitive inbreds (B73,
Ye478 and Ji853), respectively; 2) selecting candidate
nsSNPs that were different between two groups for
drought tolerance; 3) identifying associated candidate
genes for maize drought tolerance using the selected
nsSNPs.

To identify efficiently nsSNPs related to drought toler-
ance, SNP based cluster analysis was also carried out
using all nsSNPs detected from all tested lines. The
strategy includes the following steps. 1) Remove com-
mon variants across the tested materials and transform
the remaining nsSNPs into a (0, 1) matrix. At each locus,
variant frequency was denoted by “0” if the allele was
the same with that in B73 reference genome represent-
ing drought-sensitive line; otherwise it was denoted by
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“1”. 2) Singular Value Decomposition (SVD) was applied
to standardize variant frequencies in the matrix. The
SVD procedure returned three matrixes, V (for nsSNPs),
D (diagonal containing eigenvalues) and G (for materials).
Ward’s minimum variance clustering was performed
using V matrix in SAS software (Release 9.3; SAS Insti-
tute, Cary, NC, USA). 3) For each cluster identified in
step 2, the average values of variant frequencies were cal-
culated for the 16 maize inbreds. The single cluster with
AVF > 0.8 in extremely drought-tolerant lines but < 0.1 in
extremely drought-sensitive lines were selected for each
chromosome. 4) Screen significant nsSNPs based on step
3, and identify the corresponding candidate genes for
drought tolerance. 5) Create GGEbiplot display using
clustered nsSNPs through GGEBiplotGUI package of R
program.

Gene ontology (GO) analysis of selected candidate genes
Candidate genes were submitted to AgriGO (Go analysis
toolkit and database for agriculture community) (http://
bioinfo.cau.edu.cn/agriGO/index.php) and AgBase (http://
www.agbase.msstate.edu/) for gene ontology analysis [79].
Singular enrichment analysis (SEA) was used to select
enrichment GO terms (http://bioinfo.cau.edu.cn/agriGO/
analysis.php) with the maize reference genome B73 as
background (Maizesequence, version: 5b). The over rep-
resented terms in three categories, biological process, cel-
lular component and molecular function, were filtered by
statistical information including Fisher’s exact test and
the Bonferroni for multi-test adjustment method [79].

Validation of candidate genes using RNA-seq data

To further validate the candidate genes for drought tol-
erance revealed by CV and SNP based cluster analysis,
the expression level of candidate genes under two water
conditions was evaluated using transcriptome analysis of
drought tolerant inbred AC7643 and available RNA-seq
data of drought sensitive inbred B73 (http://www.ncbi.
nlm.nih.gov/sra/).

For transcriptome analysis, the seeds of maize inbred
AC7643 were surface-sterilized and grew in the same
nutrient solution and environment condition as reported
[80]. At the three-leaf-stage, 20% PEG were subjected
for 24 h and the roots of inbred AC7643 under well-
watered and drought-stressed conditions were sampled
for RNA extraction separately using TRIzol® reagent
(Invitrogen, USA), RNA sequencing were performed at
BGI-Shenzhen (Shenzhen, China) using Illumina deep
sequencing according to the manufacturer’s instructions.

The RNA-seq data obtained using Illumina deep se-
quencing from leaf meristem and pollinated ovaries of
drought sensitive inbred B73 under well-watered and
water-stressed conditions were downloaded from the
publicly available databases SRA project (SRP014792)
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(http://www.ncbi.nlm.nih.gov/sra/). NCBI SRA toolkit
was used for data format exchanging [81]. All raw reads
were then applied in the FASTX toolkit (http://hannon-
lab.cshl.edu/fastx_toolkit/) for reads quality control prior
to mapping. The fastx_clipper and fastx_artifacts_filter
programs were used to remove Illumina adapter se-
quences and artifactual sequences such as homopoly-
meric sequences. Then low quality reads with length
shorter than 30 bp or less than 33 of Phred score were
discarded using the fastq_quality_trimmer. Qualified
RNA-seq reads were mapped to the maize B73 reference
genome (http://ftp.maizesequence.org/release-5b/) with
known transcripts and annotation (http://ftp.maizese-
quence.org/) using programs Bowtie2 (version2.0.2) and
TopHat (version 2.0.6) [82,83]. HTSeq-DEseq workflow
was used for differential expression analysis [84]. A false
discovery rate of 0.05 after Benjamini-Hochberg correc-
tion for multiple tests was applied. The expression heat
map for candidate tolerance genes was made by the R
ggplot2 package.

SNP validation using gene chip and HRM

In our previous research, 12 of 15 resequencing samples
were genotyped with Illumina Maize SNP50 chip, from
which, 46,556 high-quality SNPs were selected and then
their probe sequences were mapped to the B73 reference
to get the exact physical positions. To verify the accuracy
of SNPs, comparison of chip-based genotyping and SNP
calling from 12 resequencing inbreds were conducted
based on their physical positions. Besides, five primer
pairs were designed for the five candidate genes contain-
ing target nsSNPs (Table 2), and genomic DNA of the 16
tested maize inbred lines were chosen as the templates.
PCR reactions were performed on Bio-Rad CFX96 real-
time PCR detection system (Bio-Rad, Inc., Hercules,
CA). The reaction volume and cycling conditions were
followed by the SsoFastTMEvaGreensupermix (Bio-Rad)
manual. All samples were amplified in duplicate reactions
and together with a non-template control. HRM curve
data was analyzed using the manufacturer’s software.

Additional files

Additional file 1: Table S1. The detailed resequencing information and
SNP discordant rate between chip-based genotyping and resequencing.

Additional file 2: Table S2. The transcripts identified by common
variants (CV) and cluster analyses, A = alanine, C = cysteine, D = aspartic
acid, E = glutanic acid, F = phenylalanine, G = glycine, H = hisitidine,

| = isoleucine, K = lysine, L = leucine, N = asparagine, M = methionine,
P = proline, Q = glutamine, R = arginine, S = serine, T = threonine,

W = tryptophan, Y = tyrosine, V = valined.

Additional file 3: Figure S1. Hierarchical tree graph of overrepresented
GO terms in biological process category generated by singular
enrichment analysis. Boxes in the graph represent GO terms labeled by
their GO ID, term definition and statistical information. The significant
(adjusted P < = 0.05) and non-significant terms are marked with color
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of a box is positively correlated to the enrichment level of the term. Solid,
dashed, and dotted lines represent two, one and zero enriched terms at
both ends connected by the line, respectively. The rank direction of the
graph is set to from top to bottom.

GO terms in cellular component category generated by singular
enrichment analysis. Boxes in the graph represent GO terms labeled by
their GO ID, term definition and statistical information. The significant
(adjusted P <= 0.05) and non-significant terms are marked with color

of a box is positively correlated to the enrichment level of the term. Solid,
dashed, and dotted lines represent two, one and zero enriched terms at
both ends connected by the line, respectively. The rank direction of the
graph is set to from top to bottom.

and white boxes, respectively. The diagram, the degree of color saturation

Additional file 4: Figure S2. Hierarchical tree graph of overrepresented

and white boxes, respectively. The diagram, the degree of color saturation
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