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Salicylic acid signaling inhibits apoplastic reactive
oxygen species signaling
Enjun Xu1 and Mikael Brosché1,2*
Abstract

Background: Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development.
Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize
between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have
focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid
and cytokinin-auxin.

Results: In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling.
Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression
and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated
response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell
death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved
in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and
SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of
plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene
expression elicited by O3.

Conclusions: Based upon these findings, we conclude that plants are able to prioritize the response between ROS and
SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

Keywords: Cell death, Ethylene, Gene expression, Jasmonic acid, Reactive oxygen species, Salicylic acid
Background
As sessile organisms, plants have evolved a highly
sophisticated and elaborate signaling network to respond
and adapt to various biotic and abiotic stresses. To
precisely respond to diverse stimuli in different tissues
or developmental stages, the defense signaling network
must be orchestrated within a larger physiological and
developmental context. Numerous data from large scale
transcriptome profiling analysis strongly support the
existence of regulatory interactions and coordination
between signaling networks, rather than linear pathways
[1,2]. To some extent the signaling components of this
intricate network to biotic and abiotic stresses are
universal [3,4]. Comparing multiple gene expression ex-
periments performed on the Affymetrix ATH1 platform
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has identified a universal stress response transcriptome
[5]. In addition to a general stress response, there are
also several studies that indicate that plants are able to
prioritize between different stresses and that a combination
of stresses leads to unique gene expression profiles [6-10].
Execution of an appropriate defense response is linked to
multiple interacting components, including a rapid and
transient Reactive Oxygen Species (ROS) burst, altered
cytoplasmic and chloroplastic Ca2+ transients, plant hor-
mones including salicylic acid (SA), jasmonic acid (JA),
abscisic acid (ABA), ethylene, and transcriptional repro-
gramming [11-13].
Activation of a ROS burst is a common response to

both biotic and abiotic stress [14,15]. In addition, ROS
are signaling molecules involved in control and regula-
tion of other biological processes, such as aging, cell
death, and development [16,17]. Exposure of plants with
the gaseous ROS ozone (O3) triggers an apoplastic ROS
production, which is similar to the ROS burst observed
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after pathogen infection and activation of cell wall
peroxidases and NADPH oxidases [14,18,19]. Extensive
comparisons of altered gene expression profiles from
Arabidopsis thaliana elicited by O3 and other abiotic
and biotic stresses indicate a high degree of overlap
between O3 and treatment with a bacterial microbe
associated molecular pattern (MAMP) flg22 [13,20-22].
One of the earliest responses elicited by flg22 treatment
is an apoplastic ROS burst [23,24], thus providing a
mechanistic link for the similarity between gene expres-
sion changes elicited by O3 and flg22. Apoplastic ROS
are also regulators of cell death through interplay with
several other signaling pathways, including SA and JA/
ethylene signaling pathways [25].
SA, JA, and ethylene are involved in many aspects of

defense signaling and numerous studies have investigated
the interaction between these hormones [26]. It is gener-
ally believed that antagonism between SA and JA allows
plants to prioritize the defense between biotrophic or
necrotrophic pathogens and insects. SA antagonism of JA
signaling is a robust response observed both when plants
are infected with different pathogens [27]; and when
plants are directly treated with hormones [28]. Regulators
of the SA-JA antagonism include the SA receptor/tran-
scriptional co-activator NPR1 and the transcription factor
ORA59 [29,30]. Several additional signals directly or indir-
ectly interplay with SA to promote defense response [31].
Early in 1990s, SA level and ROS (e.g. H2O2) production
were found to be closely connected [32]. Both elevated
endogenous SA and application of exogenous SA in
Arabidopsis and tobacco are accompanied by increased
ROS (H2O2 and O2

−) production [33-36], indicating the
existence of a positive feedback amplification loop with
SA and ROS as central players. However, continuous
defense signal amplification would waste energy and indi-
cate that coordination of SA-dependent and independent
signaling components with ROS signaling are of central
importance to provide an appropriate defense response.
Lesion mimic mutants that display spontaneous cell

death have been extensively used to study the regulation
of cell death [37]. In addition to misregulated cell death
they often have other phenotypes including dwarfism,
constitutively higher accumulation of SA and enhanced
pathogen resistance [38,39]. Some of them show accumu-
lation of ROS (H2O2 and O2

−) in or around the lesion area
[40], which make lesion mimic mutants a powerful tool to
investigate the relationship between ROS and SA. In
genetic analysis, production of SA can be reduced by the
mutation sid2, which is defective in the main biosynthesis
pathway (ISOCHORISMATE SYNTHASE1, ICS1), or by
expression of a bacterial SA degrading enzyme NahG. In
several lesion mimic mutants, including acd6, acd11 and
lht1 expression of NahG abolishes cell death [41-43].
Given the importance of SA in defense signaling it is not
surprising that several other regulators working in parallel
with SA signaling, or affecting SA accumulation, have been
identified through various screens including suppression of
lesion mimic phenotypes [44-46]. These regulators include
ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), AG2-
LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and FLA
VIN-DEPENDENT MONOXYGENASE1 (FMO1) which
regulate cell death and defense responses [46-49]. Like
SID2, ALD1 and FMO1 are necessary for systemic accu-
mulation of SA and downstream signaling after pathogen
infection [49,50]. Furthermore, a chloroplastic derived O2

−

signal can be processed by EDS1 to control SA-dependent
H2O2 accumulation as part of a mechanism limiting cell
death [51].
Elevation of cytosolic Ca2+ and production of ROS are

among the earliest events after initiation of stress re-
sponses [52]. Many studies have explored the role of
CNGC2 (CYCLIC NUCLEOTIDE GATED CHANNEL2)
in regulation of Ca2+ fluxes across the plasma membrane
and its contribution to signaling in the context of immun-
ity [53,54], senescence [55], heat stress [56], and pollen
growth [57]. Null mutation of CNGC2 was first isolated as
defense no death1 (dnd1), a mutant which exhibits a lesion
mimic phenotype which is dependent on growth condi-
tions [58], increased accumulation of SA and constitutive
defense activation [59], and altered Ca2+ transport [60].
Studies conducted in this mutant indicate that the influx
of Ca2+ is associated with the pleiotropic phenotype; how-
ever, the precise mechanism with regards to Ca2+ signaling
is still elusive. Furthermore, whereas in wildtype O3

strongly alters transcript levels for many defense genes, in
dnd1 this response is blocked [20]. Due to the pleiotropic
phenotype of dnd1 it is far from straight forward to pin-
point the exact process which blocks the apoplastic ROS
signal initiated by O3 treatment. In this study we investi-
gate through genetic analysis the relationship between
dnd1, the hormones SA, JA and ethylene, and apoplastic
ROS signaling in the regulation of defense gene expression
and cell death. In particular, we identify a novel antagonis-
tic interplay between SA and apoplastic ROS signaling
that may confer a high degree of responsiveness of plant
responses to a fluctuating environment.

Results
The dnd1 mutant displays constitutive expression of
defense genes
The dnd1 mutant displays constitutively elevated concen-
tration of SA and increased expression of SA induced and
defense related genes [61,62]. However, the phenotypes of
dnd1, including the appearance of spontaneous cell death,
is influenced by growth conditions [58]. Hence, we per-
formed DNA microarray analysis on wildtype and dnd1
from our growth conditions using six biological repeats
(see Methods). 69 genes had increased expression and 49
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genes had decreased expression (Additional file 1). The
annotations for many of these genes in the TAIR database
(http://www.arabidopsis.org/) indicated a function in plant
defense responses. To systematically evaluate the role of
these genes in plant stress responses a Bayesian hierarchal
clustering was made with dnd1 and experiments per-
formed on the Affymetrix ATH1 chip obtained from public
databases (Figure 1). These experiments were selected to
include pathogen infection, mutants that display constitu-
tive defense activation or spontaneous cell death, and the
stress hormones SA, its analog benzo (1,2,3) thiadiazole-7-
carbothioc acid S-methyl ester (BTH), methyl-jasmonic
acid (MeJA) and ethylene (see Methods for a complete list
of the experiments used). The genes with increased or
decreased expression in dnd1 were consistently regulated
in the similar direction by flg22, late SA and BTH treat-
ment, in mutants undergoing cell death mkk1mkk2, acd11,
csn3, csn4 and csn5 and in the constitutive defense mutants
siz1 and lht1. Cell death in these mutants are initiated via
different mechanisms: mkk1mkk2 is defective in two MAP
kinase kinases, acd11 lacks a ceramide-1-phosphate trans-
fer protein, csn3, csn4 and csn5 lack different subunits in
the COP9 signalosome – a regulator of protein degrad-
ation, siz1 lacks a SUMO E3 ligase and lht1lacks a lysine-
histidine transporter [43,63-66]. Despite different biological
mechanisms being altered in these mutants, they displayed
a common set of misregulated genes; this could indicate
that cell death is executed through a common mechanism.
We conclude that dnd1 in our growth conditions displayed
a constitutive activated defense gene expression profile,
similar to other mutants of this class [37].
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Figure 1 Cluster analysis of dnd1-regulated genes. Cluster analysis
of transcripts with altered expression in dnd1, in comparison with lesion
mimic mutants, constitutive defense mutants, hormone treatments,
senescence and biotic and abiotic stresses. Bayesian hierarchal
clustering of genes is shown in plants subject to different stress
treatments compared with control condition, or in mutant versus
wildtype. Values are mean of log2 ratio of the treatment and control
expressions. Magenta and green indicate increased and decreased
expression compared with untreated or wild-type plants, respectively.
Mutants with constitutive defense activation are defective
in ROS signaling
Treatment of plants with O3 generates a precise burst of
apoplastic ROS and is a convenient tool to study the role
of ROS in regulation of defense gene expression [21].
Previous analysis of defense marker genes in dnd1 treated
with O3 indicated that this mutant had an attenuated
response [20]. However, the role of the DND1/CNGC2
protein in apoplastic ROS signaling is an open question,
since the pleiotropic phenotype of dnd1, including high
SA concentration and constitutive activation of defense
genes could be the source of altered ROS signaling and
not the lack of Ca2+ transport from removal of DND1/
CNGC2. To explore this question, dnd1 and several other
mutants with increased SA concentration and constitutive
defense gene expression, cim7, cim13, lht1 and siz1-2
[43,66,67] were tested in gene expression analysis using
real time reverse transcriptase quantitative PCR (qPCR)
with marker genes selected from the dnd1 array analysis
(Additional file 1) and previous O3 gene expression ana-
lysis [20,21,68]. The constitutive defense mutants were
selected to include both dwarfed mutants and mutants
with more wildtype morphology (Figure 2a).
Consistent with previous characterization of these

mutants as constitutive defense mutants, a majority of the

http://www.arabidopsis.org/
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Figure 2 Arabidopsis mutants with constitutive defense activation are deficient in ROS signaling. a, Morphology of three weeks old
Arabidopsis constitutive defense/lesion mimic mutants dnd1, cim7 (constitutive immunity 7), cim13 (constitutive immunity 13), lht1 (lysine histidine
transporter1) and siz1-2 (scale bar 1 cm). b, Relative expression of marker genes in clear air and after two hours of 350 nL L−1 O3 were analyzed with
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was calculated on log2 transformed data by Two-way ANOVA with Tukey-test. (a, b, c represent comparison of different genotypes in clean air;
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marker genes, including PAD3, SAG21, WRKY40 and
WRKY75, had increased expression in the mutants as
compared to Col-0 in control conditions (Figure 2b; note
the logarithmic scale). A two hour O3 treatment led to
strong induction of the defense genes in Col-0, whereas
the effect of O3 was attenuated in all of the constitutive
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defense mutants, which was more pronounced in dnd1
(Figure 2b). We conclude that constitutive activation of
defense signaling in several different mutants interfere
with the plants ability to properly respond to a ROS signal
from the apoplast.

SA signaling inhibits apopastic ROS signaling
The results in Figure 2 indicate that SA signaling has the
capacity to interfere with apoplastic ROS signaling. To
directly test the role of SA, plants were treated with 0.3 or
1 mM SA 24 hours before a two hours O3 exposure
(Figure 3). Treatment with SA alone increased the expres-
sion of the classical SA marker genes PR1 and PR2. Fur-
thermore, several of the other marker genes in this study
were also regulated by SA, including CML37, PAD3,
SAG21, WRKY40, WRKY75, ZAT10 and ZAT12. Strik-
ingly, SA pre-treatment at both concentrations signifi-
cantly reduced the response to subsequent treatment with
ozone for all marker genes except PR1 and PR2 (Figure 3).
In an attempt to also identify marker genes with an oppos-
ite behavior (i.e. additive effect of combined SA and ozone
treatment, rather than an antagonistic effect), we tested
the expression of FRK1, a flg22 responsive gene [69]. In
contrast to all other genes tested, expression of FRK1 was
synergistically increased by the combined SA and ozone
treatment.
To further explore whether low endogenous SA level

alter apoplastic ROS signaling, the SA biosynthesis defi-
cient sid2 and the low SA accumulation mutant ald1
were used [50,70]. In both mutants O3 treatment led to
a stronger induction of most marker genes than ob-
served in wt plants (Figure 4). We conclude that there
exists an inhibition by SA on apoplastic ROS signaling
in transcriptional activation of defense related genes.
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Elimination of SA in dnd1 partially restores its response to
apoplastic ROS
Both ROS and SA are involved in defense signaling and
regulation of cell death responses. Furthermore, elevated
levels of ROS lead to SA accumulation and vice versa,
which has been termed the oxidative cell death cycle
[25]. However, deciphering all components involved in
the complex ROS signaling network through a genetic
analysis requires the use of mutants involved in different
signaling pathways [71]. The dnd1 mutant was crossed
with various other mutants defective in different hormone
signals, MAP kinases, transcription factors, ROS biosyn-
thesis or mutants with a previously described role in cell
death or defense against pathogens (Table 1). The extent
of cell death in the double and triple mutants was exam-
ined with trypan blue staining (Figure 5 and Additional
file 2). Of these double mutants, SA biosynthesis or SA
signaling related genes SID2, ALD1, EDS1 and FMO1
reduced the amount of cell death and partially restored
the altered leaf morphology of dnd1 (Table1, Figure 5
and Additional file 2). In selected double mutants gene
expression was tested after two hours O3 treatment
(Figure 6). In dnd1sid2 a partially restored response to
O3 was observed (Figure 6). In contrast, although loss of
ald1 in dnd1 background reduced the amount of cell
death, it did not impact on the O3 induced gene expres-
sion profile (Figure 6).
The name given to dnd1, defense no death, was based

on its lack of pathogen induced cell death [58]. Numerous
other mutants with spontaneous cell death and elevated
levels of SA have been identified and includes accelerated
cell death 5 (acd5) and CALMODULIN BINDING TRAN
SCRIPTION ACTIVATOR (CAMTA3/sr1) [90,91]. To
further explore if the cell death phenotype of dnd1 was
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due to activation of similar signaling pathway as in other le-
sion mimic mutants, we introduced the acd5 and sr1 muta-
tions into the dnd1 background. The lesion and dwarfism
phenotype in the resulting double mutants were severely en-
hanced, indicating that dnd1 activated cell death in parallel
pathways to acd5 and sr1 (Figure 5 and Additional file 2).

Several SA dependent and independent regulators
additively contribute to the attenuated apoplastic ROS
response
The results presented in Figure 5 and Additional file 2
demonstrated that SA biosynthesis and signaling regula-
tors, such as ALD1, PAD4, and EDS1 were important for
spontaneous lesion formation since inactivation of either
one of them partially rescued the dnd1 spontaneous cell
death phenotype. To further explore how these defense
signaling regulators interplayed and contributed to the
development of cell death and apoplastic ROS response, a
number of combinations were made among these genes in
dnd1 background (Figure 7). The triple mutants dnd1ald1-
sid2, dnd1eds1sid2, dnd1sid2pad4 and dnd1ald1pad4 had
less cell death and better growth than all double mutants
(Table 1, Figures 5 and 7 and Additional file 2). To further
investigate the role of the combination of these genes in
relation to apoplastic ROS response, dnd1ald1sid2 and
dnd1eds1sid2 were treated with two hours O3 and gene
expression of selected marker genes tested with qPCR. Re-
markably, inactivation of either ald1 or eds1 in dnd1sid2
genetic background completely restored the O3 response
in dnd1 to the wild type (Figure 8). We conclude that
several SA dependent and independent signaling pathways,
mediated via ALD1 and EDS1, are co-activated in lesion
formation and contribute to the attenuated apoplastic ROS
signaling response in dnd1.
JA signaling restricts lesion formation
Interplay between the hormones SA and JA optimizes the
response to abiotic and biotic stresses [12,92]. In addition,
the JA insensitive mutants jar1 and coi1 have previously
been shown to be sensitive to O3 [14,18,21]. To gain further
insight into the role of JA in the dnd1 pleiotropic pheno-
types, a mutation that blocks JA biosynthesis [80], allene
oxide synthase (aos) was introduced into dnd1 and
dnd1sid2. The dnd1aos double mutants showed severe
dwarfism compared to dnd1 single mutant (Figure 7 and
Additional file 2). Similar to the dnd1 single mutant, the
dnd1aos double mutant had an attenuated gene expression
response after two hours O3 treatment (Figure 8). Simultan-
eous mutations of both SA and JA signaling in dnd1sid2aos
relieved the growth retardance of the dnd1aos double mu-
tant, but induced more visible chlorosis than either dnd1aos
or dnd1sid2 double mutants (Figure 7). We conclude that
JA has no major role in the attenuation of apoplastic ROS
signaling, but is involved in regulation of plant development
and cell death in the dnd1 background.



Table 1 Morphology and amount of cell death in dnd1 single, double and triple mutants

Genotype Cell death Size of the rossette Involved in Leaf shape Reference to
single mutant

Col-0 +++++++

dnd1 ++++ ++++ SA/Defense/Ca2+ channel Slim and curled leaves [61]

dnd1 ein2 ++++ +++ ET * [72]

dnd1 etr1-1 +++++ ++ ET * [73]

dnd1 mpk3 ++++ ++++ MAP kinase * [74]

dnd1 mpk6 ++++ ++++ MAP kinase * [74]

dnd1 ibr5 +++++ ++++ MAP kinase phosphatase More curled leaves than dnd1 [75]

dnd1
rbohDrbohF

+++++++ + ROS biosynthesis * [76]

Note: Highly dwarfed, seedless

dnd1 rbohD ++++ ++++ ROS biosynthesis * [76]

dnd1 rbohF ++++ ++++ ROS biosynthesis * [76]

dnd1 WRKY70 ++++ ++++ Transcription factor * [77]

dnd1 jin1/myc2 +++++ ++++ JA/Transcription factor More curled leaves than dnd1 [78]

dnd1 wrky25 +++++ ++++ Transcription factor * [79]

dnd1 aos ++++ ++ JA biosynthesis * [80]

Note: No trichomes, male sterile

dnd1 sid2 +++ +++++ SA biosynthesis Wider leaves than dnd1 [81]

dnd1 npr1 ++++ ++++ SA/Defense Wider leaves than dnd1 [82]

Note: Bleached leaves

dnd1 eds1 +++ ++++++ SA/Defense * [83]

dnd1 pad4 +++ +++++ SA/Defense * [84]

dnd1 ald1 +++ +++++ SA/Defense * [50]

dnd1 fmo1 ++ ++++++ SA/Defense Leaf is less curled than dnd1 single
mutant

[47]

dnd1 CBP60g +++++ +++ SA/Transcription factor * [85]

dnd1 sr1/camta3 ++++++ +++ SA/Transcription factor * [86]

dnd1 agb1gpa1 +++ ++++ G protein subunits Round leaf shape [87]

dnd1 era1 ++++ +++ ABA Wider leaves than dnd1 [88]

Note: Slow growth, difficult to obtain
seeds

dnd1 rar1-21 ++++ ++++ R gene mediated proteins/
Defense

* [89]

dnd1 acd5 +++++++ + SA/Defense * [90]

Note: Few seeds

dnd1 sid2 ald1 ++ ++++++ SA/Defense Wider leaves than dnd1

dnd1 sid2 eds1 ++ ++++++ SA/Defense Wider leaves than dnd1

dnd1 aos sid2 ++++ ++++ SA/JA/Defense Wider leaves than dnd1

Note: No trichomes, male sterile

dnd1 sid2 pad4 ++ ++++++ SA/Defense Wider leaves than dnd1

dnd1 ald1 pad4 ++ ++++++ SA/Defense Wider leaves than dnd1

+represent the relative extent of cell death or size of the rosette. Cell death was determined by trypan blue staining as in Figures 5 and 7.
*represent similar leaf shape as dnd1 single mutant.
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Col-0 sid2ald1 sr1dnd1

dnd1sid2dnd1ald1 dnd1sr1dnd1fmo1dnd1eds1 dnd1pad4

dnd1ein2

Figure 5 SA-dependent and SA-independent signaling both contribute to development of cell death in dnd1. Cell death of three weeks
old plants were visualized and microscopically examined by trypan blue staining. From three rosettes per genotype and staining, one fully
expanded and representative leaf (not the oldest leaf) was used for figures. White scale bar 1 cm, black scale bar 200 μM.
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Constitutive activation of ethylene signaling does not
impact on apoplastic ROS signaling
The constitutive defense mutants used in Figure 2 are all
characterized by having elevated SA concentration [43,61,
66,67]. Another plant stress hormone, ethylene, also regu-
lated the same set of genes as in dnd1 (Figure 1). The ctr1
mutant displays constitutive activation of ethylene signal-
ing [93] and is a dwarf similar to dnd1 (Figure 9a). How-
ever, no differences were seen between Col-0 and ctr1 in
control conditions, or after O3 treatment for the marker
genes tested in qPCR (Figure 9b). We conclude that consti-
tutive activation of ethylene signaling does not interfere
with apoplastic ROS signaling.

Discussion
Antagonistic interaction between plant hormone signaling
pathways is frequently observed, exemplified by SA-JA in
pathogen responses and cytokinin-auxin in root and shoot
development [94]. In this study we have explored another
antagonistic interaction, the attenuation of apoplastic ROS
signaling by SA at the level of gene expression. Several
lines of evidence led to this conclusion: mutants that
constitutively accumulate higher concentration of SA had
a dampened response to O3 for several different marker
genes (Figure 2b) and pre-treatment of plants with SA led
to attenuation of gene expression after a subsequent O3

treatment (Figure 3). Conversely, increased O3-induced
expression of SA marker genes was observed in the plants
with low endogenous SA levels (Figure 4). However, it
is also clear that SA alone does not fully explain why
lesion mimic mutants such as dnd1 have attenuated O3

responses. Blocking SA biosynthesis by introducing the
sid2 mutation into dnd1 could only partially restore a
wildtype gene expression response to O3 (Figure 6).
Instead introduction of an additional mutation in EDS1 or
ALD1, giving the triple mutants dnd1sid2ald1 and dnd1si-
d2eds1, brought back the gene expression pattern to the
level of the Col-0 wildtype (Figure 8). Thus, the attenuated
O3 response in dnd1 is due to the inhibition on apoplastic
ROS signaling by both SA dependent and independent
signaling. Furthermore, two other defense hormones
ethylene and JA did not appear to play any major role in
this attenuation of apoplastic ROS signaling since ctr1 had
wildtype response to O3 and dnd1aos had a similar
response as dnd1 (Figsures 8 and 9b). The marker genes
selected for qPCR were chosen for their O3 induction,
however, the expression in single mutants sid2 and ald1
indicated that especially PHYTOALEXIN DEFICIENT3
(PAD3) and WRKY75 required a basal amount of SA to
reach normal expression levels (Figures 6 and 8). In con-
trast ZAT10 and ZAT12 were not sensitive to background
SA (Figure 6). The attenuation of apoplastic ROS signaling
by SA was valid across all marker genes tested and high-
lights the robustness of the response (Figures 3 and 10a).
Treatment of Arabidopsis with flg22 rapidly activates an

apoplastic RBOH-dependent ROS burst [95], and in turn
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Figure 6 Abolishing SA biosynthesis in dnd1 partially restores its response to apoplastic ROS signaling. Relative expression of marker
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induces SA related genes, including SID2, PR1 and NPR1
(NON-EXPRESSOR OF PR GENES1) [69,96,97]. Meta-
analysis of microarray data shows that 4 hours flg22
treatment triggers similar changes in gene expression as
elicited by an apoplastic ROS burst with O3 [13], implying
that flg22 and O3 induce similar apoplastic ROS signals.
Consistent with our findings that dnd1 has an attenuated
response to O3 (Figure 2b), flg22 triggered oxidative burst
was significantly reduced in dnd1 [23]. Flg22 treatment
can reduce SA induced changes in gene expression [98],
the same type of interaction observed between apoplastic
ROS and SA described in this study (Figure 3). This
suggests that the effect of flg22 on SA mediated gene
expression could be mediated via an apoplastic ROS burst.
If the flg22-SA and apoplastic ROS-SA antagonisms are

two aspects of the same biological phenomenon, what
benefit does this antagonism provide to the plant? Activat-
ing plant defenses is costly to the plant, and given the



Col-0 dnd1 dnd1aos dnd1sid2ald1

dnd1sid2eds1 dnd1sid2pad4 dnd1ald1pad4 dnd1sid2aos

Figure 7 SA-dependent and SA-independent signaling additively
regulate development of cell death. Cell death of three weeks old
plants were visualized and microscopically examined by trypan blue
staining. From three rosettes per genotype and staining, one fully
expanded and representative leaf (not the oldest leaf) was used for
figures. White scale bar 1 cm, black scale bar 200 μM.
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large number of potential biotic and abiotic challenges
that a plant could face, it has a clear need to prioritize
which challenge should be given the highest priority. This
forms the basis for SA-JA antagonism where defense
against insects and necrotrophic fungi rely on the JA
branch and defense against biotrophic pathogens on the
SA branch. The apoplastic ROS burst could have different
sources, either locally from e.g. activation of RBOH or cell
wall peroxidases by an invading pathogen or from sys-
temic signaling, the so called ROS wave. The ROS wave is
mediated by RBOHD generated ROS production and its
ability to travel along the plant suggests that it could act
as a systemic signal in response to various environmental
stimuli [99]. Thus, there could be a situation where one
part of the plant has already initiated SA mediated
defenses due to e.g. pathogen attack, would subsequently
be the recipient of the ROS wave from another part of the
plant. In this situation it might be preferable to execute
the already initiated local defense program and put lower
emphasis on the systemic ROS signal. This might reveal
itself as the antagonism by SA on apoplastic ROS signal-
ing observed in this study and could be a beneficial way
for the plant to respond and prioritize between different
environmental stimuli.
Lesion mimic mutants have been crucial to identify

various regulators of cell death, including the role of
hormones and ROS [37,100]. As a lesion mimic mutant,
dnd1 also contributes to the study of e.g. the potential role
of Ca2+ in cell death regulation. The extensive double
mutant collection generated in this work to study the role
of apoplastic ROS signaling also allow the dissection of
signaling pathways involved in regulation of cell death in
dnd1. Of the 22 double mutants and seven triple mutants
generated, many of them did not alter the extent of cell
death, thus excluding a role for MAP kinases, G-proteins
and several transcription factors in execution of cell death
in dnd1 (Table 1). However there were several informative
mutant combinations mainly related to ethylene, JA, SA
and SA-related processes. The ethylene mutants (etr1-1,
ein2) and JA biosynthesis mutant (aos) enhanced growth
defects of dnd1, but did not alter the extent of cell death,
implicating that these hormonal signal pathways in the
dnd1 background are not strictly required for cell death
execution. In contrast, ein2 enhances cell death in the
lesion mimic double mutant syp121syp122 [101] and
the JA insensitive coi1 (coronatine insensitive1) enhances
the lesions in hrl1 (hypersensitive response-like lesions1)
[102,103]. Thus, the requirements for ethylene and JA in
cell death regulation appear to be context dependent.
SA is a crucial regulator of cell death shown by introdu-

cing the SA deficient mutant sid2 or a bacterial salicylate
hydroxylase (NahG) into several lesion mimic mutants,
including acd6, atg5, and dnd1 [37,46,104]. These obser-
vations indicate that biosynthesis of SA via ICS1 acts as a
central hub of a SA inducing cell death program. How-
ever, SA depletion by introducing sid2 could only partially
relieve the cell death in dnd1 [59]. Several other mutations
which are typically associated with or acting in parallel
with SA also partially reduced cell death in dnd1 and
included eds1, pad4, ald1 and fmo1 (Table 1; Additional
file 2). Furthermore, substantially reduced cell death and
improved growth was observed in triple mutants with
ald1, eds1, fmo1 or pad4 in the dnd1sid2 background
(Figure 5 and Additional file 2). FMO1 is a suggested posi-
tive regulator of cell death [105]. ALD1 is associated with
biosynthesis of Pip (a non-protein amino acid pipecolic
acid, a product of lysine degradation). Endogenous Pip is a
regulator of SAR (systemic acquired resistance) and con-
tributes to defense and SA signal amplification [49]. Since
cell death was further reduced in dnd1ald1sid2 as com-
pared to the double mutants dnd1sid2 and dnd1ald1,
this indicates that SA and the lysine catabolite Pip func-
tion synergistically in regulating cell death (Figure 10b).
EDS1 and PAD4 are interacting proteins that play mul-
tiple roles in plant defenses, including regulation of cell
death and amplification of transcriptional responses
[106]. Expression of EDS1 is negatively regulated by
CAMTA3/SR1 (a CaM binding transcription factor)
[86]. Mutation of CAMTA3/SR1 in dnd1 background
resulted in enhanced cell death (Figure 5), possibly a
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result of increased EDS1 signaling and increased SA
production in dnd1sr1.
Extensive double and triple mutant analysis to find regu-

lators of cell death has been done in the background of
acd6 and syp121syp122 [46,101]. ACD6 encodes a plasma
membrane protein with a cytoplasmic ankyrin repeat
motif, but how this protein migh activate cell death is
unknown. The syp121syp122 double mutant lacks two
syntaxin proteins which are part of the SNARE machinery,
controlling vesicle traffic and bulk transport of cargo in
cells. Despite the different biological processes impaired in
dnd1, acd6 and syp121syp122, exactly the same regulators
were found to be the crucial in all three lesion mimic
mutants, and implicate SA biosynthesis (via SID2), in
combination with EDS1, PAD4, ALD1 or FMO1 as the
major pathway towards cell death. Furthermore, other
double mutants between various lesion mimic mutants
and i.e. sid2 or eds1 show the same suppression of cell
death and include acd11 [42], lsd1 [107], ssi2 [48] and lht1
[43]. Thus in contrast to the context dependence of JA or
ethylene for cell death execution, the requirement for SA
and EDS1 appears more universal.
Future research should focus on how EDS1, PAD4,

ALD1 and FMO1 interact with SA to regulate cell death.
It is unlikely that low SA accumulation on its own would
be sufficient to fully prevent cell death [46,48,59]. EDS1
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shuttles between the cytoplasm and nucleus, where nu-
clear EDS1 localization regulates defense gene expression
[108] and cytosolic EDS1 regulates cell death [106]. How-
ever, SA might be more likely to execute its function
through changes in gene expression. Thus one potential
explanation for the full suppression of cell death in lesion
mimics when both sid2 and eds1 are mutated could be
that both nuclear and cytosolic regulators of cell death are
removed. ALD1-dependent Pip accumulation in systemic
leaves during SAR is dependent on FMO1, indicating that
there is possible signal amplification loop between Pip,
ALD1, FMO1 and SA [49,109]. All together, we propose a
signaling network where ALD1, EDS1, and FMO1 work
synergistically with SA to induce cell death in lesion
mimic mutants (Figure 10b).

Conclusions
In summary, we have identified an antagonistic relation-
ship between SA and apoplastic ROS signaling that regu-
late defense gene expression in plants. This mechanism
is likely timing and context dependent. Furthermore,
identification of regulatory components required for exe-
cution of cell death in dnd1 reinforces the crucial role of
SA, ALD1 and EDS1 in cell death regulation. How the
altered cytosolic Ca2+ transport in dnd1 connects to
downstream signaling pathways will require more studies
and may include a recently identified dnd1 suppressor
mutant, repressor of defense no death1 (rdd1) [110].

Methods
Plant materials and growth conditions
Mutant seeds were obtained from the Nottingham Arabi-
dopsis Stock Centre (NASC; http://arabidopsis.info/) or
were gifts from Dr Günter Brader (wrky70), Dr Hans
Thordal-Christensen (ald1, fmo1), Dr Heribert Hirt
(mpk3, mpk6), Dr. Jeff Dangl (rar1-21), Dr. Alan Jones
(gpa1, agb1), Dr. Bonnie Bartel (ibr5), Dr Miguel Torres
(rbohD, rbohF) and Dr. Roberto Solano (jin1). Wild type
Arabidopsis accession Columbia-0 (Col-0) was used as
control plant for all experiments. Double and triple mu-
tants were constructed using dnd1 as pollen acceptor. All
mutants were in the Col-0 background, double and triple

http://arabidopsis.info/


Apoplastic
ROS

O3

dnd1
lht1/cim7/cim13

siz1-2/sr1

?

Defense gene
expression

SA

ALD1/FMO1

Pip

EDS1?

JA/ET

SID2

NPR1

Cell death
Retarded growth

?

SA

dnd1

a

b

Figure 10 The signaling network for interactions among SA, JA,
ethylene and ROS that modulate defense activation or
development of cell death. a, SA inhibits apoplastic ROS signaling
and expression of defense genes. Mutants with elevated SA
accumulation display constitutive expression of defense related genes
and an attenuated O3 gene expression response. Simultaneously
abolishing SA dependent and independent signaling components
(ALD1, SID2, EDS1) in dnd1 restore its response to ozone. Moreover,
pretreatment of wildtype with SA leads to a reduced response to
ozone. b, SA-dependent and SA-independent signaling components
synergistically regulate development of cell death. The exact function
of DND1 function in cell death still remains to be determined, but it is
likely that high SA concentration in this mutant contributes to cell
death. Consequently, a mutation in SID2 can significantly reduce the
amount of SA accumulation and cell death in dnd1. ALD1 and FMO1
are required for Pip induced SAR and SA accumulation in systemic
tissues and appears to synergistically regulate cell death and defense
response with SA. Moreover, EDS1 affects the onset of SA synthesis
and can also directly regulate cell death. Abolishing JA in dnd1sid2
double mutant strengthened cell death suggested that there is the
anti-death regulatory function of JA signaling either through
JA-SA interaction or unknown signaling components.
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mutants were screened for the visible dnd1 mutant
phenotype (dwarf, curly leaves, and early senescence) and
subsequently genotyped using PCR-based CAPS, dCAPS
and T-DNA markers (see Additional file 3). The homozy-
gosity of all double and triple mutants was confirmed in
F3 or F4 generations.
Seeds were sown on germination medium containing ½

Murashige and Skoog (MS) and 0.4% phyto gel, stratified
for three days, the plates were placed at 22°C/19°C under
a 12-h light/12-h dark cycle for one week. Subsequently,
one week old plants were transplanted into 1:1 peat:
vermiculite mixture, five seedlings per pot (8 × 8 cm),
grown at 22°C/19°C, and relative humidity of 70%/90%,
under a 12-h light/12-h dark cycle for two weeks. All
plants were grown in controlled environment growth
chambers (Weiss Bio1300; Weiss Gallenkamp). Three
weeks old plants were used for all experiments. Plants for
O3 treatment and clean air control were randomized and
grown side by side in identical environment.

Ozone and SA treatment
O3 treatment was started at 9 am. Three weeks old plants
were exposed with 350 nL L−1 ozone for two hours. To
study the role of SA, Col-0 was treated with 0.3mM and 1
mM SA for 24-hr before ozone exposure. All samples
were harvested in parallel from ozone treated and clean
air control after the onset of ozone treatment, and imme-
diately shock-frozen in liquid nitrogen.

Determination of cell death
Three and five week old plants grown in clean air were
used for trypan blue staining. From three rosettes per
genotype and staining, one fully expanded and representa-
tive leaf (not the oldest leaf) was used for figures. The
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experiment was repeated at least three times per genotype.
Trypan blue stain was performed as previously described
in [111].

RNA isolation
5-15 plants per genotype from control or O3 treatment were
pooled, frozen in liquid nitrogen and stored at -80°C. Total
RNA was extracted using GeneJet Plant RNA purification
Mini Kit (Fermentas, now part of Thermo Scientific).

Microarray analysis
RNA was isolated from three to four week old Col-0 and
dnd1 plants. RNA samples from six biological replicates
were used for cDNA synthesis, labeling with Cy3 and Cy5,
and array hybridization was done as previously described
[65]. Full experimental details and raw data are available
from ArrayExpress, accession number E-MEXP-3768. The
dnd1 raw data and Affymetrix raw data were processed
with robust multiarray average normalization using
Bioconductor limma and affy packages in R [112,113].
Gene expression for each experiment was computed by
log2-base fold changes between treatment and control, or
between wild type and mutants. The processed data was
discretized and clustered using Bayesian Hierarchical
Clustering method, as implemented in the R package
BHC [114]. Bootstrap analysis was done as previously
described in [20].
Raw data from the Affymetrix ATH1-121501 platform

was obtained from several data sources: NASC Arrays
http://affymetrix.arabidopsis.info/link_to_iplant.shtml
(BTH, NASCARRAYS-392; Senescence experiment 1,
NASCARRAYS-52; Senescence experiment 2, NASCAR-
RAYS-150; SA, NASCARRAYS-192). (ArrayExpress http://
www.ebi.ac.uk/arrayexpress/ (MeJA, EATMX-13) Gene
Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/ (H2

O2, GSE5530; Syringolin, E-MEXP-739; csn3, csn4 and
csn5, GSE9728; lht1, GSE19109; mkk1mkk2, GSE10646;
sni1, GSE6827; siz1, GSE6583; SA 24 h, GSE14961; Ethyl
ene, GSE14247; Flg22, GSE5615; Botrytis cinerea infection,
GSE5684; Pseudomonas syringae ES4326, GSE18978;).
Raw data for acd11 [115] were obtained from John
Munday.

Real-time quantitative PCR analysis
Two ug of RNA was DNAseI treated and used for cDNA
synthesis with RevertAid Premium Reverse Transcriptase
according to the manufactures’ instructions (Fermentas,
now part of Thermo Scientific). The reverse transcription
reaction was diluted to a final volume of 100 ul, and 1 ul
was used per PCR reaction. Quantitative PCR was
performed in triplicate with EvaGreen Supermix (Solis
Biodyne) on a CFX384 thermal cycler 1000 (Bio-Rad).
The cycle condition was performed as previously de-
scribed [116]. Three reference genes (SAND, TIP41, YLS8)
were used for normalization. Amplification efficiency of
all primer pairs were calculated through amplification of
serially diluted cDNA. Primer sequences and amplification
efficiency are listed in Additional file 4. Gene expression
analysis was performed using qBaseplus2 (Biogazelle). At
least three biological repeats per experiment were used for
analysis. Statistical analysis was calculated by two-way
ANOVA with Tukey-test using SigmaPlot 11.0.

Additional files

Additional file 1: Genes with significant change of expression in
dnd1 compared with Col-0 identified through microarray analysis.

Additional file 2: Visual phenotype of five week old dnd1 single,
double, and triple mutants. Five week old plants were used to visualize
cell death with trypan blue staining. From three rosettes per genotype
and staining, one fully expanded and representative leaf (not the oldest
leaf) was used for figures.

Additional file 3: Primers and restriction enzymes used for mutant
genotyping.

Additional file 4: Primers used in qPCR and amplification
efficiencies.
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