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penetrometer resistance in maize.
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Background: Maize (Zea Mays L.) is one of the most important cereal crops worldwide and provides food for billions
of people. Stalk lodging can greatly undermine the standability of maize plants and therefore decrease crop yields.
Rind penetrometer resistance is an effective and reliable method for evaluating maize stalk strength, which is highly
correlated with stalk lodging resistance. In this study, two recombinant inbred line populations were constructed from
crosses between the H127R and Chang7-2 lines, and between the B73 and By804 lines. We genotyped these two
populations and their parents using 3,072 single nucleotide polymorphism markers and performed phenotypic
assessment of rind penetrometer resistance in multiple environments to dissect the genetic architecture of rind

Results: Based on two linkage maps of 1,397.1 and 1,600.4 cM with average interval of 1.7 and 2.1 cM between
adjacent makers, respectively, seven quantitative trait loci (QTL) for rind penetrometer resistance were detected in
the two recombinant inbred line populations. These QTL were distributed in seven genomic regions, and each
accounted for 4.4-18.9% of the rind penetrometer resistance variation. The QTL with the largest effect on rind
penetrometer resistance, gRPR3-1, was located on chromosome 3 with the flanking markers PZE-103123325 and
SYN23245. This locus was further narrowed down to a 3.1-Mb interval by haplotype analysis using high-density
markers in the target region. Within this interval, four genes associated with the biosynthesis of cell wall components
were considered as potential candidate genes for the rind penetrometer resistance effect.

Conclusions: The inheritance of rind penetrometer resistance is rather complex. A few large-effect quantitative trait
loci, together with a several minor-effect QTL, contributed to the phenotypic variation in rind penetrometer resistance
in the two recombinant inbred line populations that were examined. A potential approach for improving stalk strength
and crop yields in commercial maize lines may be to introgress favorable alleles of the locus that was found to have
the largest effect on rind penetrometer resistance (GRPR3-1).

Background

Plant lodging is a complicated phenomenon that is af-
fected by several factors, including genetics, environment
and field management. Lodging is a considerable chal-
lenge for main crops during the growth as it often causes
severe reduction in yields. In maize (Zea Mays L.), stalk
lodging, breakage that occurs at or below the ear, can lead
to loss of ears at harvest [1,2]. It is estimated that yield
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losses caused by stalk lodging range from 5 to 20% world-
wide [1,3]. Additionally, stalk lodging poses an obstacle to
mechanized harvesting, and consequently increases labor
costs. Thus, improving stalk-lodging resistance has be-
come a key target for maize breeding programs.
Developing an effective and accurate way to evaluate
stalk-lodging resistance is a critical issue in improving
maize stalk strength. Numerous quantitative methods
have been developed to predict stalk lodging resistance
potential, which mainly include chemical methods
based on analysis of stalk chemical composition and
anatomical structures, and mechanical methods based
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on measurements of stalk breaking, bending, penetration
and crushing [4-9]. Among the mechanical methods, rind
thickness and crushing strength have been useful in in-
creasing lodging resistance in maize as they have shown a
strong relationship with stalk lodging [7,9]. However, these
two methods are not ideal because they require the de-
struction of maize stalk. More recently, an efficient and
non-destructive measure, rind penetrometer resistance
(RPR), was developed to assess stalk strength [10]. In-
creased RPR shows a high correlation with stalk-lodging
resistance [11-15] and this method has been widely ap-
plied in estimating stalk lodging resistance potential in
maize [2,16-18] and in breeding maize hybrids that are
highly resistant to stalk lodging [1,11,12,19,20].

Despite these advances in measuring stalk lodging, little
was known about the genetic basis of stalk lodging and
RPR variation until quantitative trait loci (QTL) mapping
was applied to RPR. The first of these studies identified 35
individual QTL and 11 pairs of epistatic interactions asso-
ciated with RPR in four F,.3 populations derived from B73,
Mo47 and four inbred maize lines selected for stalk
strength diversity [2]. The majority of these QTL ex-
plained <15% of the phenotypic variation in RPR. An
additional nine individual QTL and one more pair of
epistatic interactions were detected in a recombinant in-
bred line (RIL) population crossed with a high-oil in-
bred line and B73, which account for another 1.15-
12.43% of the phenotypic variation [17]. Recently, 18
QTL and 141 significant associations for RPR were
identified using a nested association mapping panel
containing 4,536 lines and 174 intermated B73 x Mol7
RILs. Only 10 QTL were shared between two popula-
tions or two studies, reflecting the complex nature of
stalk lodging [2,17,18].

The availability of the complete maize genome sequence
[21] and haplotype maps [22,23] have facilitated the devel-
opment of single nucleotide polymorphism (SNP) geno-
typing technologies for maize [24]. SNPs have become
widely used markers in investigations of genetic variation
and in linkage and association analyses in maize [25-32].
Compared with simple sequence repeat markers, SNPs
are more accurate, less time-consuming and lower cost to
identify, and better suited to high throughput genotyping
platforms [33-35]. Currently, two GoldenGate assays con-
taining 1,536 SNPs each and one Infinium BeadChip con-
taining 56,110 SNPs have been developed for maize
[34,36,37]. These SNP assays have been successfully used
to examine the population structure and estimate genetic
diversity of maize populations [34,36,37], and to identify
variants associated with maize agronomic and quality
traits [25-32].

In this study, we developed two RIL populations,
H127R x Chang7-2 (referred to as POP-HRC) and
B73 x By804 (referred to as POP-BYB), from four inbred
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lines with varying stalk strengths, and genotyped them
using a GoldenGate maize SNP assay containing 3,072
SNPs to increase QTL resolution. Our objectives were
to (1) identify QTL associated with RPR of maize stalks;
(2) dissect the main-effect QTL with detailed haplotype
in the target region; and (3) mine candidate genes asso-
ciated with maize stalk strength.

Results

Phenotypic variation in RPR

Significant difference in RPR was observed between the
H127R and Chang7-2 parental lines, whereas no signifi-
cant difference was observed between the B73 and By804
lines (Table 1). Among these four parental lines, H127R,
which is highly resistant to stalk lodging, had the highest
RPR (37.64+6.18 N/mm?), followed by Chang7-2
(23.25+221 N/mm?®), By804 (21.67 +2.63 N/mm?) and
B73 (21.09 + 2.82 N/mm?). The mean RPR value for the
H127R x Chang7-2 RIL population (hereafter referred to
as POP-HRC) was lower than the mean parent value, and
the mean RPR value for the B73 x By804 RIL population
(hereafter referred to as POP-BYB) was higher than the
mean parent value (Table 1). RPR in both RIL populations
showed a wide range with a normal distribution (Figure 1).
Highly significant effects of genotype, environment, and
genotype x environment interactions on RPR were ob-
served in POP-HRC. In POP-BYB, both genotype and en-
vironment showed significant effects on RPR (Table 1).
Broad-sense heritability estimates were 81.5% and 74.6%
for POP-HRC and POP-BYB, respectively (Table 1).

Summary of SNPs and genetic linkage maps

A total of 2,866 and 3,029 high-quality SNPs were de-
tected for POP-HRC and POP-BYB, respectively. The
missing rate for these SNPs ranged from 0 to 15.35% in
POP-HRC (average 0.83%) and from 0 to 17.02% in
POP-BYB (average 0.90%). The minor allele frequency
(MAF) for these SNPs ranged from 0 to 0.5 in both pop-
ulations, with an average of 0.21 in POP-HRC and 0.23
in POP-BYB and the heterozygosity ranged from 0 to
13.49% in POP-HRC (average 2.38%) and from 0 to
4.79% in POP-BYB (average 0.92%) (Table 2). 6% (12/
200) RILs of POP-BYB with SNP heterozygosity > 0.1
were excluded for further analysis. Of the high-quality
SNPs, 2,252 SNPs were polymorphic in one or both of
the RIL populations. 1,391 SNPs (45.3%) were poly-
morphic between the parents of POP-HRC, 1578 SNPs
(51.4%) were polymorphic between the parents of POP-
BYB, and 717 SNPs (23.3%) were polymorphic in both
RIL populations.

After quality control, 822 SNPs in POP-HRC (215
lines), and 756 SNPs in POP-BYB (188 lines) were used
to construct linkage maps. The total length of the link-
age map for POP-HRC was 1,397.1 cM with an average
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Table 1 Descriptive statistics and broad-sense heritability for RPR in two RIL populations

Population POP-HRC POP-BYB

Parents

Means + SD (N/mm?) H127R 37.64+6.18 By804 2167 £2.63
Chang7-2 23251221 B73 2109+ 282

RILs

Population mean + SD (N/mmz) 2719+2.12 2295+1.03

Range (N/mm?) 22.59-33.65 20.75-26.13

F value Environment 397.20%* 11643**

Genotype 9.51%* 3.94%%

Environment x Genotype 1.76**

Replication (environment) 3.75

Heritability (H%) ® (%) 815 746

Confidence interval® 77.5-84.8 69.2-78.8

**Significant at P <0.01.
2Broad-sense heritability (H?) of RPR.
P90% confidence intervals of broad-sense heritability.

interval of 1.7 cM, and the total length of the map for
POP-BYB was 1,600.4 cM with an average interval of
2.1 cM (Table 3, Additional file 1). The relative locations
of 86.3% (710) of the SNPs in POP-HRC and 68.1% (515)
of the SNPs in POP-BYB were the same as their physical
locations in the B73 reference genome Version 5b.60 [38].
Among these mapped SNPs, 37.0% (304) in POP-HRC
and 24.9% (188) in POP-BYB showed segregation distor-
tion at P < 0.05, which formed nine and six hot blocks of
segregation distortion, respectively (Additional file 1).

QTL analysis

In total, seven QTL were detected that appeared to be
associated with RPR in the two RIL populations (Table 4,
Additional file 1). The empirical threshold logarithm of
odds (LOD) values for the genome-wide significance
(P < 0.05) were determined to be 3.1 for POP-HRC and
3.2 for POP-BYB after 1000 permutations. These seven

QTL were distributed in seven genomic regions across five
chromosomes with marker intervals ranging from 0.6 to
24.9 Mb. The phenotypic variation in RPR explained by
each QTL ranged from 4.4% (qPPR2) to 18.9% (qPPR3-1).
We identified three main-effect QTL in three chromo-
somal regions which accounted for >10% of the RPR
variation.

In POP-HRC, four of the RPR-associated QTL, located
on chromosomes 2, 3 and 9 (Table 4, Additional file 1),
together explained 50.4% of the phenotypic variation.
The QTL on chromosome 3 flanked by the PZE-
103123325 and SYN23245 markers, gRPR3-1, had the
largest effect and accounted for 18.9% of the phenotypic
variation in RPR. The H127R allele at this locus was cor-
related with a 1.05 N/mm? increase in RPR. The second
largest-effect QTL for RPR, gRPRY, which explained
8.1% of the phenotypic variation, was located between
PZE-109058177 and PZE-109076761 on chromosome 9.

804

60+

40+

Number of RILs

20

<+—Chang7-2

«—H127R

0

20 22 24 26 28 30 32 34 36 38
RPR (N/mm?)

values are indicated with arrows.

Number of RILs

Figure 1 Frequency distribution of RPR for RILs in the two populations in all environments. (A) POP-HRC. (B) POP-BYB. Parental strain

70

60-{

B73
By804

40-]
30-]
20|

10

L.

T T T T T T T )
22 23 24 25 26 27 28 29
RPR (N/mm?)

T T T
19 20 21




Li et al. BMC Plant Biology 2014, 14:152 Page 4 of 11
http://www.biomedcentral.com/1471-2229/14/152
Table 2 Summary of SNP characteristics in the two RIL populations
POP-HRC POP-BYB

Mean + SD Range Mean + SD Range
High-quality SNP number 2866 3029
SNP missing rate (%) 083+ 144 0.00-15.35 090+ 1.60 0.00-17.02
MAF of SNPs 021+022 0.00-0.50 023+0.22 0.00-0.50
SNP heterozygosity (%) 238+286 0.00-13.49 092+1.10 0.00-4.79
SNP missing rate in each line (%) 0.83+0.53 0.07-3.49 0.90 + 246 0.00-17.70
SNP heterozygosity in each line (%) 240+148 0.10-7.68 092+1.12 0.00-5.88

The remaining two QTL, gRPR2 on chromosome 2 and
qPPR3-2 on chromosome 3, explained 4.4% and 6.7% of
the phenotypic variation, respectively. The alleles that
were associated with increased RPR at these two loci
also came from HI127R.

In POP-BYB, the remaining three RPR-associated QTL,
qRPR4, gRPR6-1 and qRPR6-2, accounted for 31.7% of the
phenotypic variation. The B73 alleles at gRPR4 and
gRPR6-2 were correlated with similar 0.39 N/mm? in-
creases in RPR. The By804 allele at gRPR6-1, had an addi-
tive effect of 0.27 N/mm? for increased RPR.

To further confirm the seven RPR-associated QTL
identified using the best linear unbiased prediction
(BLUP) values, we also mapped RPR-associated QTL
in the RIL populations grown in different environ-
ments and replications grown in the same environ-
ments (Additional file 2). The association with RPR
was stable for gRPR3-1 in all environments/replica-
tions, whereas the remaining six QTL differed signi-
ficantly in at least two environments/replications or
showed obvious LOD peaks in different environments/
replications. In addition to the original seven QTL, 13
QTL were identified that associated with RPR in one
or two environments/replications.

Beyond individual QTL, one pair of epistatic QTL be-
tween gRPR3-1 and gRPR3-2 was detected in POP-HRC.
The type of epistasis between gRPR3-1 and gRPR3-2 was
additive interacted by additive. This pair of epistatic
QTL explains 2.5% of the phenotypic variation with a
positive effect on RPR coming from the parental digenic
combination. None epistatic QTL were identified in
POP-BYB.

Fine mapping of gRPR3-1 in POP-HRC

Because of the large effect of gRPR3-1 and the high
density of SNP markers available at this locus, we were
able to precisely determine the critical recombination
breakpoint using SNPs that were polymorphic between
two parents of POP-HRC in the QTL interval. Initially,
qRPR3-1 was localized to between the SNP makers PZE-
103104806 (M1) and PZE-103132112 (M10), with the
LOD values of all SNP markers in this interval greater
than 3.1 (Figure 2A). This region spanned a genetic dis-
tance of 27.9 cM, corresponding to a physical distance of
21.9 Mb in the B73 reference sequence Version 5b.60 [38].
Using 10 polymorphic SNP markers in this region, 20
haplotypes were observed for the 215 RILs in POP-HRC.
Of these haplotypes, only 12 had only one recombination

Table 3 Summary of the linkage map characteristics of the two RIL populations

POP-HRC POP-BYB
Chromosome Number  Length Average Minimum Maximum  Number Length Average Minimum Maximum
of markers (cM) interval (cM) interval (cM) interval (cM) of markers (cM) interval (cM) interval (cM) interval (cM)

1 99 1824 1.8 0.2 75 117 2531 2.2 03 133

2 96 162.2 1.7 0.2 14.0 74 1785 24 03 154

3 80 1716 2.2 0.2 9.7 60 184.4 3.1 03 14.3

4 88 155.8 18 02 115 84 141.0 1.7 03 82

5 95 168.0 1.8 03 8.7 91 171.2 1.9 03 14.6

6 75 1179 16 0.2 83 83 148.2 1.8 03 15.0

7 73 1318 18 02 118 90 1725 19 03 120

8 87 117 13 0.2 132 73 140.5 19 03 1.9

9 81 1114 14 0.1 13.1 50 1257 25 03 114

10 48 843 18 02 123 34 85.3 25 03 14.2
All 822 1,397.1 1.7 756 1,600.4 2.1
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Table 4 RPR-associated QTL in the two RIL populations
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Population QTL Chromosome Peak® (cM) Marker interval Genetic Physical LOD AS R? (%)¢
interval (cM) position® (Mb)

POP-HRC gRPR2 2 162.1 SYN6917-PZE102193611 160.1-162.2 236.4-237.0 38 045 44
GRPR3-1 3 1074 PZE-103123325-SYN23245 104.5-111.1 181.1-184.7 140 105 189
gRPR3-2 3 1339 PZE-103156977-PZE-103160158  132.4-134.2 209.1-211.2 59 061 6.7
gRPR9 9 47.0 PZE-109058177-PZE-109076761  42.4-50.0 99.4-124.3 6.6 0.66 8.1
Total® 504

POP-BYB gRPR4 4 557 PZE-104080388-PZE-104084757  50.3-55.7 154.7-158.7 79 -039 140
gRPR6-1 6 894 PZE-106088503-SYN4646 88.5-91.9 146.1-147.7 36 0.27 6.0
gRPR6-2 6 1433 SYN34377-PHM3466.69 133.3-148.2 163.2-167.0 6.2 -039 138
Total® 317

*The peak position with the highest LOD of each QTL.

PThe physical positions of the identified QTL according to B73 reference sequence Version 5.60 [38].
€ Additive effect of the identified QTL: a positive value indicates that the alleles from H127R and By804 increases RPR, and a negative value indicates that the

alleles from Chang7-2 and B73 increase RPR.

dpercentage of phenotypic variation explained by additive effects of the identified QTL.

“Total percentage of phenotypic variation explained by all QTL computed by MIM.

breakpoint in the QTL interval (Figure 2B). We next com-
pared the mean RPR, estimated using the BLUP values, of
individuals with and without H127R alleles using a two-
sample t-test. We observed that the RPR values of haplo-
types 4-8 (28.28-30.60 N/mm?) were significantly higher
than the RPR value of haplotype 1 (26.24 N/mm?), which
did not carry H127R alleles at any of the 10 SNPs (a = 0.05,
P =113 x 1072-4.32 x 10~®), whereas haplotypes 2, 3, and
9-12 showed similar RPR values (25.14—27.41 N/mm?) to
haplotype 1. Therefore, we were able to narrow the location
of gRPR3-1 to a 3.1-Mb window between the markers PZE-
103123992 (M8) and SYN23245 (M9). To further confirm
the interval narrowed down, we also performed haplotype
analysis using the RPR value in each environment, and the
identity interval was inferred (data unpublished).

Candidate genes in the target QTL region

Based on the available annotation of the B73 reference se-
quence Version 5b.60 [38], there are 86 predicted genes in
the 3.1-Mb target region (Additional file 3). Of these genes,
32 encode proteins of unknown function and the remaining
54 encode proteins that could be classified into four cat-
egories (Figure 3); protein kinases, enzymes involved in cell
wall component synthesis and degradation, transcription
factors, and enzymes related to other biological pathways.

Discussion

Genetic characterization of RPR in maize

Precise phenotypic measures are crucial for genotype-
phenotype association analysis [39]. Previous studies have
shown that RPR is highly associated with stalk-lodging
resistance in maize [8,11,12,20]. For example, divergent
selection for stalk crushing strength in synthetic maize
populations has resulted in increased RPR [6,40]. In
addition, RPR of the internodes below the uppermost

ear has been found to be highly correlated with the RPR
of internodes between the last ear and ground on maize
plants [41]. Thus, measuring RPR of the internode
below the uppermost ear is suggested to be one of the
best ways to evaluate stalk-lodging resistance in maize
in the current status.

Although RPR is a complex quantitative trait that can
be affected by environment, most of the phenotypic vari-
ation appears to be due to genetic factors. The broad-
sense heritability of RPR in maize, estimated in two previ-
ous studies as well as our study, reached over 90% in some
segregating populations [2,17]. The high broad-sense her-
itability reflects the accuracy and feasibility of the method
used to quantify RPR in these studies. Whereas, broad-
sense heritability values of RPR in maize estimated from
nested association map families are far lower than the
values we estimated, ranging from 8 to 34% (averaged
21%) across 26 RIL populations [18]. The reduced herit-
ability values may be attributable to the different popula-
tions surveyed, differences in the growing environments,
or to the relatively low number of replications examined
for each line in their study [18]. Further characterization
of RPR in more bi-parent segregating populations is
needed to reconcile these differences in heritability values.

The complex nature of RPR in maize

The present study identified seven RPR-associated QTL
were identified in two RIL populations. Among these
QTL, only the largest-effect QTL, gRPR3-1, was also
identified in two previous studies by Flint-Garcia et al.
[2] and Hu et al. [17]; gRPR3-2 and gRPR6-2 were also
detected in the Flint-Garcia et al. study and were found
to explain 6.7% and 13.8% of the phenotypic variation, re-
spectively [2]. Our study revealed that a few large-effect
QTL, together with some minor-effect QTL, provide most
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Figure 2 Haplotype analysis and fine mapping of gRPR3-1 in POP-HRC. (A) LOD profile for gRPR3-1 estimated using the BLUP values of
plants grown in the three locations/years. (B) Detailed haplotype analysis of the putative RPR-associated interval with the BLUP value of RPR. The
red lines indicate the narrowed interval of gRPR3-1, M1-M10 represent the SNP markers PZE-103104806, PZE-103110761, PZE-103112971, PZE-103114860,
PZE-103118170, SYN31220, PZE-103123325, PZE-103123992, SYN23245 and PZE-103132112, respectively.

of the genetic basis of RPR, consistent with previous
studies [2,17,18]. Together with this study, a total of 69
RPR-associated QTL have been identified in 33 segre-
gating populations. The phenotypic variation explained
by the largest-effect QTL in each population ranged
from 5.6 to 20.2%. Among these QTL, only ~10 were
common in at least two populations. The low repeatabil-
ity across populations may be due to the complex nature
of RPR in maize, and the fact that most individual loci
have small effects, which results in relatively small differ-
ences in RPR between parent strains [2,17,18].

In addition to single-effect QTL for RPR, Flint-
Garcia et al. [2] and Hu et al. [17] detected 11 pairs of
epistatic QTL in three F,.;3 populations and one pair of
epistatic QTL in one RIL population. The majority of
these pairs of epistatic QTL explained <10% of pheno-
typic variations in each population. These findings, to-
gether with one pair of epistatic QTL identified in our
study, suggest that epistasis also contributes to the
genetic basis of RPR, but the effect of epistasis is

relatively weak and not consistent in different bi-
parent populations.

Pleiotropic loci for stalk components
RPR is a physical measure of maize stalk strength, and sig-
nificantly correlates with levels of some cell wall compo-
nents [17,42]. Specifically, selection for stalk strength in a
maize synthetic line using RPR found that divergent selec-
tion for increased RPR leads to increases in crude fiber,
cellulose and lignin content in the plants [42]. Similarly,
RPR significantly correlates with the levels of cell wall
components, including acid detergent fiber, acid detergent
lignin, crude fiber, cellulose, and neutral detergent fiber in
internodes of a Ce03005/B73 RIL population [17]. The
high correlation indicates that RPR-associated QTL may
overlap, at least to some degree with QTL related to cell
wall components of maize stalks.

Because RPR results from the combination of different
cell wall component levels, it is likely that many of the
same polymorphisms underlie the QTL associated with
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Figure 3 Functional category annotations and respective
percentages for 86 candidate genes within the narrowed
qRPR3-1 interval.

these two traits. Previous studies have identified 55 gen-
omic regions related to cell wall components [43-45], in-
cluding three loci in chromosome bins 3.06, 3.08 and 6.07
that are located near RPR-related genomic regions de-
tected in our study. The largest-effect QTL for RPR in
chromosome bin 3.06, gRPR3-1, co-localized with QTL
clusters for acid detergent lignin and hemicelluloses de-
tected in a F288 x F271 RIL x F286 top-cross population
[45]. Another RPR-associated QTL in chromosome bin
3.08 in POP-HRC, gRPR3-2, is close to a QTL for Klason
lignin in an RIL population derived from a cross between
an old Minnesotal3 line and a modern Iodent line [43].
This QTL also co-localizes with the hemicellulose-
associated QTL in the F288 x F271 RIL x F286 top-cross
population [45]. The POP-BYB QTL in chromosome bin
6.07, gRPR6-2, co-localized with a QTL that controls acid
detergent fiber in De811 x B73 RIL populations [44].
Taken together, this information will help us to mine
the candidate genes underlying QTL for RPR based on
pleiotropy.

Co-localization of RPR-related QTL and candidate genes

Generally, the final goal of primary QTL mapping is to
clone genes of interest. Association analysis combined
with traditional linkage analysis can speed up the process
of cloning genes [46]. Recently, Xu et al. [32] reported that
haplotype analysis using high-density markers within the
target QTL interval in segregation populations is an
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effective way to narrow down the primary QTL with large
effects. Applying this strategy, we narrowed gRPR3-1 to a
3.1-Mb window predicted to contain 86 genes. Although
this still leaves many possible genes within the loci that
could be responsible for the RPR association of gRPR3-1,
knowledge of connection between RPR and cell wall
components can guide the choice of candidate genes for
further study and potential cloning. Consequently, the
four candidate genes known to be involved in cell wall
component metabolism are considered the most likely to
be the RPR-related gRPR3-1 gene. GRMZM2G132169 en-
codes a laccase that has been shown to play a role in
lignin polymerization in Arabidopsis thaliana [47,48].
GRMZM2G359234 encodes a UDP-glucuronic acid
decarboxylase that produces UDP-xylose, a substrate
for xylan biosynthesis [49], and decreased xylan con-
tent leads to reduced stem mechanical strength [50].
GRMZM?2G440016 encodes pectin methylesterase, which
catalyses the de-esterification of pectin, and is significantly
associated with stem strength in Arabidopsis thaliana
[51]. GRMZM2G126077 encodes the precursor of
pectate lyase, and is involved in the pectin biode-
gradation pathway. Although some evidence from
Arabidopsis supports the idea that GRMZM2G359234
and GRMZM2G440016 are the top candidates to be the
RPR-associated genes, further investigation is necessary to
confirm this connection, such as candidate-gene associ-
ation mapping, fine mapping, and functional validation.
Besides these four candidate genes, the other genes of un-
known function or genes with function not linked to cell
wall metabolism may also be the true variant for gRPR3-1.

Application of RPR-related QTL to the improvement of
maize stalk strength

Stalk strength is an important factor in breeding maize
varieties to maintain grain yield. Phenotypic selection based
on RPR has been successful in improving stalk strength in
several maize synthetic populations [11,12,19,20,42,52,53].
Marker-assisted selection (MAS) is an alternative way
to improve target traits [54-57], including disease re-
sistance in maize [58]. Flint-Garcia et al. compared the
efficiency of MAS and phenotypic selection for RPR,
and found that MAS was more efficient [1]. Therefore,
understanding the genetic architecture of stalk strength
will enhance efforts to optimize stalk strength, and ul-
timately mitigate stalk lodging. The large-effect QTL for
RPR, gRPR3-1, is a potential QTL for improving stalk
strength via MAS. Additionally, gRPR3-1 was narrowed
to a relatively small QTL interval, which reduces the
probability of linkage drag with deleterious alleles. The
genetic effects of gRPR3-1 associated with maize stalk
cell wall components will provide additional phenotypic
markers to guide the introgression of favorable alleles at
the gRPR3-1 locus.
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Conclusions

In this study, we mapped RPR-associated QTL in two
RIL populations using medium SNP-density based link-
age maps. We found that four QTL in POP-HRC and
three in POP-BYB explained 50.4% and 31.7% of RPR
variation, respectively. Only one of the seven QTL
accounted for >15% of the RPR variations. These find-
ings indicate that a few large-effect QTL and additional
minor-effect QTL contribute to the phenotypic variation
in RPR in the two RIL populations, reflecting the com-
plex nature of stalk strength. The largest-effect QTL in
chromosome bin 3.06 in POP-HRC, gRPR3-1, was nar-
rowed to a 3.1-Mb interval by haplotype analysis using
high-density markers in the target QTL interval. Within
this interval, four genes associated with the biosynthesis
of cell wall component were considered the most likely
candidate genes for the gRPR3-1 locus. This information
will be valuable for introgressing favourable alleles of
qRPR3-1 into elite inbred lines to enhance stalk strength,
and in turn mitigate stalk lodging.

Methods

Genetic materials

One maize Fy RIL population, consisting of 200 lines,
was derived from a cross between the B73 and By804
lines. B73 is an elite inbred line derived from the Iowa
Stiff Stalk Synthetic maize population. By804 is an in-
bred line developed from a Beijing high-oil population.
Due to the high heterozygosity of 12 RILs in this popula-
tion (>10%), only the remaining 188 lines were selected
for subsequent analysis. Another F¢ RIL population, con-
taining 215 lines, was constructed by crossing the inbred
lines H127R and Chang7-2. H127R is a parental line of
the elite hybrid Zhongnongda 4, and Chang7-2 is the
male parent line of the hybrid Zhengdan985. H127R is
more resistant to stalk lodging than Chang7-2. For sim-
plicity, we refer to the B73 x By804 RIL population as
POP-BYB, and the H127R x Chang7-2 RIL population as
POP-HRC.

Field experiments and phenotyping

All 415 RILs, together with the four parent lines, were
planted in a randomized complete block design from
2011 to 2013. For POP-HRC, two replications were
planted in each of three environments, including Beijing
in 2012 and in 2013 and Henan in 2013. For POP-BYB,
one replication was planted in each of six environments,
including Hainan in 2011 and in 2012, and Beijing,
Henan, Chongqing and Yunnan in 2012. Each line was
grown in a single 2.5 m row, rows were 0.67 m apart,
and planting density was 45,000 plants/ha. The RPR of
six randomly selected plants in each row was evaluated
in the middle of the flat side of the internodes below the
primary ear with an electronic penetrometer (AWOS-
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SL04, Aiwoshi Company, Hebei, China) at two weeks
after flowering at the average level of each population,
which roughly corresponded with the milk stage.

Phenotypic data analysis

The variance components of RPR were estimated using
PROC GLM in SAS 9.2 (SAS Institute). The model for va-
riance analysis for POP-HRC was: yy = p + e+ ripy + fi +
(fe)is + €ii, where p is the grand mean of RPR, f; is the gen-
etic effect of the “i’th line, ¢; is environmental effect of the
“I"th environment, (fe); is the interaction effect between
genetic and environmental effects, ;) is effect of replica-
tions within environments, and g is the residual error.
For POP-BYB, the interaction effect between environment
and genotype was treated as residual error due to the fact
that there were no replications within each environment.
These variance components were used to calculate
broad-sense heritability based on the population means
[59]. The broad-sense heritability in POP-HRC was esti-

2 2y 2, 2 2 2
mated as /i = o/ (ag + 0 /e+ o, /re) , where oy is the

genetic variance, aée is the interaction of genotype with

environment, o2 is the residual error, e and r represent
the number of environments and replications in each
environment. In POP-BYB, the broad-sense heritability

was estimated as h* = g/ ((ff, + o? /e) , where o7 is the

genetic variance, o2 is the residual error, e stands for the
number of environments. Confidence interval of />
were calculated according the method described by
Knapp et al. [60].

A mixed linear model was fitted to each RIL to obtain
the BLUP for RPR: y;=p+f;+e;+¢; where y; is the
phenotypic value of individual i, ¢ is the grand mean for
all environments, f; is the genetic effect, e; is effect of dif-
ferent environments, and ¢; is the random error. The
grand mean was fitted as a fixed effect, and genotype
and environment were considered random effects. The
MIXED procedure in SAS9.2 (SAS Institute) was used to
obtain the BLUP value.

Genotyping and genetic map construction
Genomic DNA was extracted from leaf tissue of the RILs
and parent lines using the modified CTAB method [61]
and used for genotyping with the MaizeSNP3K subset
(3,072 SNPs) of the Illumina MaizeSNP50 BeadChip [37].
SNP genotyping was performed on the Illumina Golden-
Gate SNP genotyping platform [62] at the National Maize
Improvement Center of China, China Agricultural Univer-
sity. The quality of each SNP was checked manually as de-
scribed by Yan et al. [34], and SNPs with poor quality
were excluded for further analysis.

In each RIL population, the missing rate, MAF and
heterozygosity for each SNP and the missing rate and
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heterozygosity for each line were calculated using PLINK
packages [63]. The SNPs with missing rates <20% and
MAFs 20.05 were used to construct the genetic linkage
map with JoinMap 4.0 [64], using the Kosambi mapping
function for calculating map distances. Linkage groups
were formed at a minimum LOD of 6, and a regression-
mapping algorithm was used to calculate map distances.

QTL mapping

Windows QTL Cartographer 2.5 [65] was used for QTL
detection with the RPR BLUP values across the different
populations, environments and replications. The whole
genome scan was performed using composite interval map-
ping with a 0.5 cM scanning interval between markers, and
the window size was set at 10 cM. Model 6 of the Zmapqtl
module was selected for detecting QTL and estimating
their effects. Forward—backward stepwise regression
with five controlling markers was used to control for
background from flanking makers. After 1,000 permuta-
tions, the threshold LOD value was determined at a sig-
nificance level of P <0.05. The confidence interval of
QTL position was determined with one-LOD support
interval method [66]. To estimate the interactions of
significant QTL and their total phenotypic variation,
multiple interval mapping (MIM) in Windows QTL
Cartographer 2.5 was performed with Bayesian Informa-
tion Criteria (BIC-MO) as criteria of MIM model [67].

Annotation of candidate genes

Based on the information available in the MaizeSe-
quence database [38], the function of each gene within
the largest-effect QTL interval was inferred from ortholo-
gues in Arabidopsis or rice. Additional protein prediction
information was obtained from the InterPro module in
the European Bioinformatics Institute database (http://
www.ebi.ac.uk/interpro/) [68].

Additional files

Additional file 1: Genetic maps and distribution of putative
RPR-related QTL in two RIL populations. (A) POP-HRC. (B) POP-BYB.
The red bar on each chromosome indicates the hot block of segregation
distortion, and the black bar indicates the location of the identified QTL,
the blue oval represents the centromere of each chromosome

Additional file 2: LOD profiles of the identified RPR-associated QTL
in the RIL populations grown in different environments. (A) POP-HRC.
E1, 2013 Beijing replication 1; E2, 2013 Beijing replication 2; E3, 2013 Henan
replication 1; E4, 2013 Henan replication 2; E5, 2012 Beijing replication 1; E6,
2012 Beijing replication 2; E7, BLUP. (B) POP-BYB. R1, 2011 Hainan; R2, 2012
Chongging; R3, 2012 Yunnan; R4, 2012 Henan; R5, 2012 Beijing; R6, 2012
Hainan; R7, BLUP.

Additional file 3: Annotation of the 86 predicted genes located
within the narrowed gRPR3-1 interval in POP-HRC.
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