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Abstract

Background: Yield losses as a result of abiotic stress factors present a significant challenge for the future of global
food production. While breeding technologies provide potential to combat negative stress-mediated outcomes
over time, interventions which act to prime plant tolerance to stress, via the use of phytohormone-based elicitors
for example, could act as a valuable tool for crop protection. However, the translation of fundamental biology into
functioning solution is often constrained by knowledge-gaps.

Results: Photosynthetic and transcriptomic responses were characterised in young tomato (Solanum lycopersicum
L) seedlings in response to pre-treatment with a new plant health activator technology, ‘Alethea’, followed by a
subsequent 100 mM salinity stress. Alethea is a novel proprietary technology composed of three key constituent
compounds; the hitherto unexplored compound potassium dihydrojasmonate, an analogue of jasmonic acid;
sodium benzoate, a carboxylic acid precursor to salicylic acid, and the a-amino acid L-arginine. Salinity treatment
led to a maximal 47% reduction in net photosynthetic rate 8 d following NaCl treatment, yet in Alethea pre-treated
seedlings, sensitivity to salinity stress was markedly reduced during the experimental period. Microarray analysis of
leaf transcriptional responses showed that while salinity stress and Alethea individually impacted on largely non-
overlapping, distinct groups of genes, Alethea pre-treatment substantially modified the response to salinity. Alethea
affected the expression of genes related to biotic stress, ethylene signalling, cell wall synthesis, redox signalling and
photosynthetic processes. Since Alethea had clear effects on photosynthesis/chloroplastic function at the
physiological and molecular levels, we also investigated the ability of Alethea to protect various crop species
against methyl viologen, a potent generator of oxidative stress in chloroplasts. Alethea pre-treatment produced
dramatic reductions in visible foliar necrosis caused by methyl viologen compared with non-primed controls.
Conclusions: ‘Alethea’ technology mediates positive recovery of abiotic stress-induced photosynthetic and foliar
loss of performance, which is accompanied by altered transcriptional responses to stress.

Keywords: Photosynthesis, Abiotic stress, Priming, Tomato, Transcriptomics, Potassium dihydrojasmonate, Sodium
benzoate, L-arginine

Background
Plants are necessarily exposed to a variety of stresses

stress responses has never been of greater importance,
as efforts are made to strengthen food crop provision for

throughout growth, many of which have a detrimental
effect on growth and development. As a consequence,
plants have evolved an equally wide variety of defence
systems to minimise the negative impacts of stress. The
development of technologies that exploit natural plant
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a growing global population in the face of current and
future food supply insecurities [1,2]. Threats to plant
productivity are routinely imposed by biotic stresses
such as herbivory and pathogenic disease [3,4], but abi-
otic factors, such as temperature, drought and salinity
stress, pose the greatest restriction on crop production
[5]. Although new genotypes provided by both conven-
tional breeding and genetic modification technologies
offer key steps forward, practical challenges still remain
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regarding the uptake and provision of breeding tech-
nologies [6]. Enhancing our mechanistic understanding
of plant responses to environmental stimuli in order to
augment existing grower practices is therefore one im-
portant route to closing the perceived yield gap of global
food crop production. Although active intervention to
buffer consequential yield losses due to stress has always
been an explicit component of food crop cultivation
practice (e.g. the use of applied agro-chemical com-
pounds), over time more sustainable approaches directly
exploiting fundamental plant responses in crop species
have been developed. These include, for example, the
use of partial root-zone irrigation strategies to increase
water use efficiency in crops such as maize and tomato
[7,8], or the early stage exposure of leafy vegetable
crops to solar ultraviolet radiation to drive enhanced
photoprotection and photosynthetic productivity [9].
Equally, there is currently marked opportunity to
exploit those increasingly well-defined plant signalling
responses to biotic stress in order to enhance plant
tolerance. For example, the exploitation of non-
pathogenic rhizobacteria for induced resistance against
the necrotroph Botrytis cinerea has been successfully
demonstrated in grapevine using mutant strains of
Pseudomonas fluorescens and P. aeruginosa [10]. Consid-
ering potential limitations in the application of a biotic
agent to induce a desired state of enhanced plant stress
protection, the use of chemical elicitors to mediate
tolerance or resistance to biotic stress is increasingly re-
ceiving attention [11]. For example, it is now well
established that applications of the non-protein amino
acid beta-aminobutyric acid (BABA) can enhance stress
responses to a variety of stimuli including drought stress
and disease infection [12,13]. Despite such advances,
large scale applications of ‘activator’ compounds often
do not represent an economically viable option. ‘Alethea’
is a novel proprietary technology composed of three key
constituent compounds; the hitherto unexplored com-
pound potassium dihydrojasmonate (PDJ), an analogue
of jasmonic acid (JA); sodium benzoate (SB), a carbox-
ylic acid precursor to salicylic acid (SA), and the o-
amino acid L-arginine (Arg) (Additional file 1). The roles
of the jasmonate and salicylate groups of phytohormones
have been the subject of extensive focus to date, princi-
pally with regard to cellular biosynthesis, transport and
perception [14,15], and particularly, the involvement of
both groups in plant defence; [16-18]. Alethea is
categorised as a ‘plant health regulator’ in the alleviation
of abiotic plant stress, yet has not been the focus of any
published studies to date. Knowledge of the capability of
technologies such as Alethea in limiting the impact of
abiotic stress, and elucidation of the mechanistic nature
of any induced resistance to stress, might represent a
step forward in the development of plant additives which
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could help reduce crop losses. In order to characterise
the effects of Alethea on plant biology, we focussed first
on stress caused by salinity. It has been estimated that
around 8% of the world’s food crop productivity could
be affected by elevated Na" levels [19], via an often tem-
porally separated combination of osmotic (rapid) and
ionic (acute) effects on plant growth, including reduc-
tions in stomatal aperture and net photosynthetic rate
[20], in addition to longer term consequences for shoot
growth [21]. The managed induction of enhanced plant
tolerance to salinity has received some attention to date.
For example, Jakab and colleagues [22] demonstrated
reduced sensitivity to both salinity and drought stress
following treatment of Arabidopsis seedlings with BABA,
demonstrating an abscisic acid (ABA)-dependent re-
sponse mediating protective effects. In addition, colon-
isation of Populus canescens with the ectomycorrhizal
fungus Paxillus involutus led to increased accumulation
of both ABA and SA under salinity stress [23], and
previous studies have raised the possibility that JA-
dependent processes may confer enhanced plant toler-
ance to salt-mediated effects [24].

Here, we investigated the impact of Alethea treatment
in tomato plants under salinity stress. Photosynthetic
and related plant gas exchange variables demonstrated a
clear protective effect of Alethea, and our subsequent
transcriptomics approach identified a number of genes
responsive to Alethea application plus a modification of
the salt stress response in the presence of Alethea. On
the basis of the results, we extended our investigation to
evaluate the protective effects of Alethea in response to
another model photosynthetic stress, the reactive oxygen
species-generating methyl viologen (paraquat). Alethea
dramatically reduced the extent of necrosis in a number
of key crop species following application of methyl violo-
gen, indicating a general protection against oxidative
stress by Alethea. This study provides further knowledge
regarding responses to salinity stress at the transcrip-
tome level, and confirms the potential for the use of a
novel plant activator-based approach to crop protection.

Results

Alethea regulates photosynthetic protection against
salinity stress

Salinity stress is known to lead to deleterious conse-
quences for photosynthetic performance [25]. We first
characterised the protective effects of the Alethea plant
activator by measuring various leaf level gas exchange
parameters in young tomato plants for a period of 8 days,
with Alethea and salinity stress (100 mM) applied twice
in total during that period. There were no differences in
photosynthetic or transpiration rates, stomatal conduct-
ance, or internal leaf CO, concentration between
Alethea-treated and non-Alethea treated control plants
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24 h following Alethea treatment, i.e., immediately prior
to application of salinity stress (Net photosynthesis:
Alethea = 16.28 + 0.27 umol CO, m™ s, H,O = 1591 +
0.30 umol CO, m™? s P>0.05). Following salt treat-
ment, salinity stress caused a marked reduction in
various gas exchange variables, notably in non-Alethea
treated control plants, where overall photosynthetic rate
was significantly reduced by salinity across the measure-
ment period (P < 0.001; Figure 1A), and on a time-point
basis, photosynthetic rate had decreased by 47.3% by
Day 8 as compared to Day 0 values (P<0.001;
Figure 1A). Similarly, transpiration rate was decreased in
response to salt treatment over the whole measurement
period (P <0.001; Figure 1B), and was significantly re-
duced by 38.5% by Day 8 (P < 0.001; Figure 1B). Stomatal
conductance was significantly lower in response to salin-
ity stress across the measurement period (P < 0.001;
Figure 1C), and was significantly decreased by 48.3% at
Day 8 (P<0.001; Figure 1C). In Alethea treated plants,
overall photosynthetic rate was still somewhat reduced
in response to salt (P < 0.05; Figure 1A), but was signifi-
cantly higher than non-primed salt-treated control
plants across the entire measurement period (P < 0.001,
Figure 1A), with significant increases in photosynthetic
rate compared to non-Alethea salt treated plants ob-
served on Days 4, 6, and 8 of 12.3, 25.5, and 18.4% re-
spectively (P<0.05, P<0.001, P<0.01; Figure 1A).
Transpiration rate was significantly higher in Alethea-
primed salt treated plants across the whole measurement
period compared to controls (P < 0.001; Figure 1B), and
particularly on Day 6, where Alethea-treated plants
exhibited a 16.2% increase in transpiration rate as
compared to salinity-stressed control plants (P <0.01;
Figure 1B). Similarly, stomatal conductance was signifi-
cantly elevated in Alethea-treated plants across the
measurement period (P < 0.001; Figure 1C), with a 17.4%
increase in stomatal conductance rate by Day 6 as
compared to non-Alethea treated controls (P <0.001;
Figure 1C). Internal CO, concentration did not alter
according to Alethea treatment in response to salinity
stress during the measurement period (P> 0.05;
Figure 1D). In summary, treatment of tomato plants
with Alethea leads to a marked increase in photosyn-
thetic tolerance towards subsequent salinity stress.

Alethea drives transcriptional reprogramming and
modifies the response to salinity

In order to examine the impact of Alethea on the plant
response to salt at the molecular level and to develop
an understanding of the mechanisms underlying its
protective effect on leaf physiology, we performed a
transcriptomic analysis using Affymetrix Gene Chip
technology. Plants were pre-treated with water or
Alethea, and then subjected to control (water) or salt

Page 3 of 15

treatments 24 h later. After a further 24 h, leaf
tissues were harvested for microarray analysis. Genes
responding to either Alethea or salinity treatment were
identified from the appropriate pair-wise comparisons
using Rank Product analysis [26] with a 5% false discov-
ery rate used to define differentially-regulated probe sets.
This approach revealed a total of 223 probe sets respon-
sive to salt and 388 that were regulated by Alethea
treatment. There were 51 probe sets common to both
responses. The full list of differentially-regulated genes is
provided in Additional file 2. Amongst the genes
differentially-regulated by salinity, we could identify a
substantial number that had previously been identified
as salt responsive in tomato [27], including several
transcription factors, cell wall proteins and cell wall-
modifying enzymes and various stress-related genes.
One of the largest changes in expression we observed
was the down-regulation of proline oxidase, a well
known response to drought and osmotic stress consist-
ent with an accumulation of proline which acts as a
compatible osmolyte [28]. Analysis of the differentially-
expressed gene sets using gene ontology (GO) classifica-
tions identified several biological processes that appear
to be regulated by Alethea or salinity (Table 1). GO
terms over-represented amongst genes up-regulated by
salinity treatment include protease inhibitors, ethylene
receptors and genes involved in amino acid catabolism
and negative regulation of ABA signalling, whilst genes
involved in cell wall organisation, and in particular
xyloglucan endotransglycosylases (XETs), were down-
regulated. For Alethea treatment, “response to biotic
stimulus”, “defense response” and “response to stress”
were over-represented amongst up-regulated genes.
However, within those groups, we did not identify sig-
nificant numbers of genes typically associated with either
JA or SA signalling pathways, such as JA or SA biosyn-
thesis genes, or classic markers for JA-responses in to-
mato such as proteinase inhibitors, polyphenol oxidase,
leucine amino peptidase, threonine deaminase, or SA
markers such as PR genes.

Hierarchical clustering was performed to visualise the
patterns of regulation of the differentially-expressed
genes. By visual inspection of the resulting cluster
diagram (Figure 2), we identified nine gene clusters
representing distinct combinations of responses to
Alethea and salinity (a full list of annotated genes and
associated GO terms for each cluster are available in
Additional file 3). The largest two clusters (Clusters 4
and 7) represent genes which respond to Alethea treat-
ment independently of salinity stress. Clusters 1 and 8
meanwhile, contain genes that are regulated by salinity.
These responses are largely independent of Alethea, al-
though there is some evidence of an attenuation of the
magnitude expression of salt-induced genes by Alethea
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Figure 1 Photosynthetic performance in primed and salt
stressed tomato plants. Gas exchange parameters as a
percentage (%) of non-NaCl treated control plants were
characterised in 30 day old tomato plants from application of
NaCl and for eight days subsequently, following priming
application of ‘Alethea’ 24 h prior to Day 0, where plants were
subjected to a 100 mM salinity treatment. Both Alethea and
salinity treatments were then repeated exactly as before 5 d
following original treatment days (Day 4 = Alethea, Day 5=
salinity), with plants watered with H,O only on all other days in
order to replace transpirational losses. (A) Net photosynthesis, (B)
transpiration rate, (C) stomatal conductance, (D) internal CO,
concentration. Asterisks indicate pair-wise significant differences
at * P <0.05, ** P<0.01, ** P <0.001. Values are the average of 10
individual plants with standard errors.

pre-treatment. Of the remaining clusters, clusters 2,6
and 9 contain genes that show additive responses to salt
and Alethea. Two clusters, however, represent more
complex interactions between salt and Alethea. Cluster 5
contains genes that are up-regulated by salinity in con-
trol plants, but not in plants pre-treated with Alethea,
whilst cluster 3 contains genes down-regulated by salt
only in control plants. Alethea therefore appears to
attenuate the salt-responsiveness of these groups of
genes. To validate the microarray data, we selected rep-
resentative genes regulated by Alethea and/or salinity for
analysis by reverse transcription (RT) PCR. The results
(Figure 3) generally show close agreement with the array
data.

To gain a better understanding of the biological pro-
cesses affected by salinity and Alethea, we used MapMan
software [29] to display the microarray data on biological
pathway maps. Figure 4 presents a visual summary of
those groups that were significantly affected under at
least one treatment condition, and shows that salinity
and Alethea affect distinct collections of biological
processes. The full statistical results are provided in
Additional file 4. We produced a custom MapMan
diagram containing the main differentially-regulated
processes to allow easy visual comparisons between
treatment effects (Figure 5). Figures 4 and 5 show that
Alethea treatment caused significant effects in several
areas of the transcriptome. Genes showing up-regulation
include those in processes related to biotic stress, ethyl-
ene signalling, some transcription factor families and
some areas of protein synthesis. Processes in which
genes tended to be down-regulated by Alethea include
cell wall structure, tetrapyrrole synthesis and redox regu-
lation (particularly glutaredoxins). Interestingly, genes
encoding proteins with roles in the light reactions of
photosynthesis were also significantly altered by Alethea.

MapMan revealed significant effects of salinity over a
wider range of processes. In the absence of Alethea, the
most significant effect was on protein turnover, with



Wargent et al. BMC Plant Biology 2013, 13:108
http://www.biomedcentral.com/1471-2229/13/108

protein synthesis being down-regulated along with a
concomitant up-regulation of genes involved in protein
degradation. Several classes of transcriptional regulators
were also induced, whilst arabinogalactan proteins
(AGPs) and cell wall-modifying enzymes were down-
regulated. In Alethea-treated plants, the overall response
to salinity was broadly similar. However, the responses
of several categories of genes appeared to be attenuated,
whereas some responses were enhanced. For example,
Alethea pre-treatment reduced salt-induced changes in
genes involved in protein turnover, whilst changes in cell
wall genes were enhanced. Furthermore, some classes of
genes appeared to be significantly altered by salinity
only in control plants or only following Alethea pre-
treatment. For example, salt-induced changes in genes
related to lipid metabolism, lignin and wax metabolism,
and various transcription factor families were significant
only in the absence of Alethea, whereas carotenoid
metabolic genes were induced only in Alethea-treated
plants. Overall, the main impression is that salinity and
Alethea affect different but overlapping patterns of gene
expression, and that the salt stress response is substan-
tially reduced following Alethea pre-treatment.
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Protection of photosynthetic capability mediated by
Alethea is wide-ranging

The transcript analysis suggested that Alethea both
modifies the salt stress response and adds an additional
level of modification of gene expression, including ef-
fects on redox regulation and photosynthetic gene ex-
pression. Further inspection of the photosynthetic genes
up-tregulated by Alethea in Mapman revealed four NAD
(P)H dehydrogenase (NDH) subunits. The NDH com-
plex has been implicated in photosynthetic tolerance to
various abiotic stresses, particularly under conditions
that decrease CO, assimilation [30-32]. We therefore
reasoned that the protective effect of Alethea on photo-
synthetic performance under salt salinity may extend to
other abiotic stresses. To test this hypothesis, we treated
tomato, maize, wheat, brassica and bean plants with me-
thyl viologen (‘MV’; also known as N,N’-dimethyl-4,4"-
bipyridinium dichloride or Paraquat), a herbicide which
is reduced by Photosystem I to generate reactive oxygen
species in chloroplasts [33]. Application of MV to control
plants caused high levels of visible necrosis as a result of
oxidative damage, whereas symptoms in plants pre-treated
with Alethea were dramatically reduced (Figure 6; Table 2).

Table 1 Enriched GO terms from the tomato function, process and component ontologies with P-value <= 0.05
(with permutation correction) for genes up- or down-regulated by salt or Alethea treatment

Expression class Ontology category

Gene Ontology term Corrected P-value

Salt: up-regulated Function Protease inhibitor activity <0.001
Function Two-component sensor activity 0.005

Function Acetylornithine deacetylase activity 0.037

Process Response to stimulus 0.013

Process Amino acid catabolic process 0.014

Process Peptidyl-histidine phosphorylation 0.024

Process Negative regulation of abscisic acid mediated signaling 0.025

Process Nitrogen compound catabolic process 0.027

Salt: down-regulated Function Xyloglucan:xyloglucosyl transferase activity <0.001
Function Structural constituent of cell wall 0.037

Function Delta12-fatty acid dehydrogenase activity 0.037

Function Omega-6 fatty acid desaturase activity 0.037

Process Glucan metabolic process <0.001

Process Cell wall organization 0.002

Process Cellular carbohydrate metabolic process 0.023

Component Extracellular space <0.001

Component Cell wall <0.001

Component Apoplast 0.002

Alethea: up-regulated Function Acetyl-coA C-acyltransferase activity 0.022
Function Flavonoid 3',5-hydroxylase activity 0.028

Process Response to biotic stimulus 0.015

Process Defense response 0.016

Process Response to stress 0.036
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(See figure on previous page.)

Figure 2 Hierarchical clustering of differentially-regulated genes. Heatmap display of the clustered non-redundant list of differentially-
regulated probe sets derived from Rank Products analysis. Colour scheme represents standardised expression signals relative to the mean (white)
for each probe set, with increasing red intensity representing high levels of expression, and blue, low expression relative to the mean. Clusters of
genes showing different patterns of regulation are identified at the right of the cluster diagram, and the respective trends in expression for each
cluster are illustrated by mean expression profiles for standardised data (+ standard deviation) for all genes within each cluster. Notation
designates Pre-treatment/Treatment, where W = water, A = Alethea, S = salt.

Discussion

The commercial plant activator product ‘Alethea’ con-
tains a combination of agents designed to promote plant
stress tolerance based on changes in the activities of a
range of metabolic and signalling pathways. Here, we
demonstrate protective effects of Alethea on photosyn-
thesis in plants under salinity stress and identify under-
lying transcriptional reprogramming events which may
underpin such physiological changes. Alethea includes
low concentrations of jasmonate and salicylate deriva-
tives along with the amino acid, arginine. There is some
evidence that salicylates can mediate protection against
various aspects of abiotic stress, including salinity [34];
for example, consistent with the data presented here,
Stevens et al. [35] showed that application of a root
drench containing 0.1 mM SA significantly reduced the
impact of salinity on photosynthesis, transpiration and
stomatal conductance in tomato. Similarly, the allevi-
ation of salt stress (including effects on photosynthesis)
by pre-treatment of plants with jasmonates has been
demonstrated in pea and barley [36-38]. In tomato, JA is
required for salt-induced gene expression [39] and acti-
vation of JA signalling can promote salt tolerance [40].
However, in comparison with the majority of reports
dealing with the exogenous application of salicylates and
jasmonates, their concentrations in Alethea are rather
low. For example, the majority of studies focused on
jasmonate responses in tomato have tended to apply JA
concentrations in the range of 1.0-1.5 mM [41-43], and
while there is a good deal of variation in the SB/SA lit-
erature, concentrations in the range of 0.5-1.0 mM are
not uncommon [44-46]. Whilst JA and SA can act syner-
gistically when applied together at lower concentrations
[47], our microarray analysis did not reveal patterns of
gene expression typical of either JA or SA-mediated ef-
fects following Alethea treatment. For example, whilst
application of methyl jasmonate to leaves of tomato
plants resulted in the up-regulation of genes in the JA
biosynthetic pathway and classic markers of JA re-
sponses such as proteinase inhibitors and polyphenol
oxidase [48], we did not observe similar effects in
Alethea treated plants. Nor did we observe widespread
expression of SA-responsive PR genes. Moreover, follow-
ing a small-scale screen of salinity response in tomato
plants following treatment with individual or combined
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regulated genes. (A) RT-PCR products generated using cDNA
templates from RNA extracted from one of the microarray replicate
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(See figure on previous page.)

Figure 4 PageMan display of MapMan gene categories affected by Alethea and salinity. The Wilcoxon rank sum test was used to identify
functional groups where the distribution of responses within a group differed from the response of the entire gene set under test. The figure is
based on gene expression ratio data for relevant pair-wise treatment comparisons. Treatment groups are identified using two-letter abbreviations,

where the first letter indicates the pre-treatment (W; water, A; Alethea) and the second letter the main treatment (W; water, S; salt). Coloured
boxes indicate statistically-significant groups (Benjamini & Hochberg-corrected P-value below 0.05). The colour scale represents z-transformed
P-values, with red shades indicating a trend within the group for up-regulation of expression relative to the control, and blue shades, down-
regulation. Text alongside each row provides MapMan annotation of differentially regulated gene classes.

components of the Alethea compound (Figure 7), no
clear synergistic response of combining PD]J, SB and Arg
compounds was evident, and there was no significant
difference between the differing treatments in this elem-
ent of our study. At the same time, the current study
has not explored all possible interactions between the

three components of Alethea. It remains unclear
whether the effect of Alethea is a simple combination of
the effects of the individual constituents, or a more com-
plex interaction between them.

Nevertheless, our microarray analysis identifies pos-
sible mechanisms underlying the protective effect of
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Figure 5 Summary of biological pathways affected at the transcriptional level by Alethea and salinity. Custom MapMan diagram showing

changes in gene expression in key biological processes significantly altered by salt and Alethea treatments. The figure is based on gene

expression ratio data for relevant pair-wise treatment comparisons. Treatment groups are identified using two-letter abbreviations, where the first
letter indicates the pre-treatment (W; water, A; Alethea) and the second letter the main treatment (W; water, S; salt). Squares show changes in
expression of individual genes within a pathway via a heat map scheme, with red indicating up-regulation and blue, down-regulation of
expression. Heat map scales to the right of each image indicate log2 fold-change expression values.
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Con + MV
28.40 +4.64

AL + MV
1.80 +0.39

Con + H,0
0.07 £ 0.07

AL + H,O
0.07 £0.07

Figure 6 Alethea protects plants against the photosynthetic
inhibitor, methyl viologen. Images of representative plants treated
with either a water control, or 500 uM MV 24 h following water
(Con) or Alethea (AL) pre-treatment. Figures adjacent to each plant
show mean % visual damage +/— S.E, assessed as necrosis of plant
foliage 3 d after MV treatment. Con + MV treated plants exhibit
significantly higher % visual damage than all other treatments
according to ANOVA (P < 0.001), and means presented are averaged
from four individual experiments consisting of a minimum of five
plants per treatment on each occasion (ANOVA for inter-
experimental difference =P > 0.05).

Alethea. Firstly, it is clear that rather than acting simply
to enhance the existing transcriptional response to salin-
ity, Alethea treatment generated significant changes in
transcription prior to the application of salt stress, and
some of these may impact on the subsequent ability of
the plant to tolerate salinity. Notably, MapMan and GO
term enrichment analysis both identified various de-
fence/stress associated processes as being regulated by
Alethea, which may contribute to increased tolerance.
These include up-regulation of ethylene signalling and
stress-associated transcription factors. Ethylene is im-
portant in a range of responses to abiotic stress, includ-
ing salinity [49]. Secondly, it is also clear from the
microarray data that the response to salinity is substan-
tially affected by Alethea pre-treatment. For a number of
individual genes (Figure 2; clusters 3, 5 and 8), the re-
sponse to salinity is attenuated by Alethea pre-treatment,
whereas for other genes (Figure 2; clusters 2 and 9),
there are additive affects of salinity and Alethea which
could contribute to enhanced stress tolerance. At the
biological process level, as revealed by MapMan analysis,
Alethea appears to augment the overall response of cell
wall proteins to salt, with a number of arabinogalactan
proteins (AGPs), xyloglucan endotransglycosylases (XETSs)
and expansins being down-regulated, consistent with a re-
duction in cell expansion and growth. Curiously though,
Alethea treatment alone up-regulates expression of several
XETs and expansins (Figure 5; cell wall modification). Pre-
vious studies have also highlighted the importance of
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modifications to cell wall structure in the response to sal-
inity [50,51] and cell wall-related genes were strongly reg-
ulated by salt stress in tomato roots [27]. Since some of
these classes of cell-wall genes were already altered by
Alethea pre-treatment, this along with the enhanced affect
upon subsequent salinity treatment may contribute to en-
hanced tolerance.

One of the key impacts of abiotic stress in plants is
oxidative stress, resulting from over-reduction of the
photosynthetic electron transport system by reduced
CO, availability associated with stomatal closure.
Stomatal conductance was reduced by salinity in both
control and Alethea-treated plants in our experiments
(Figure 1). Under such conditions, photo-oxidative stress
is minimised by the utilisation of alternative electron
transport systems in chloroplasts. One such mechanism
is the reduction of NAD(P)H by the plastidial NDH
complex [30-32]. Statistical analysis in MapMan revealed
that genes of the light reactions of photosynthesis were
significantly affected by Alethea, and close inspection of
these genes revealed four NDH subunit genes that were
up-regulated by Alethea. NDH activity is increased
under a range of stress conditions [30,32] and Horvath
et al,, [31] found that a loss-of-function NDH mutation
in tobacco caused increased photosynthetic depression
when CO, supply was limited by stomatal closure.
Hence, increased NDH expression following Alethea
treatment may contribute to the protection of photosyn-
thesis upon subsequent salt stress.

This mechanism would be expected to provide protec-
tion of photosynthesis under a range of abiotic stresses.
This was confirmed using methyl viologen to generate
chloroplast oxidative stress (Figure 6). Consistent with
this, the ability of SA and JA to protect plants against
salinity and other abiotic stresses has been suggested to
result at least in part, from an up-regulation of
antioxidative biochemistry [34,52-54]. Arginine (Arg),

Table 2 Alethea provides protection to the
photosynthetic apparatus of a range of cultivated species

Foliar damage (% necrosis)

Treatment Z. mays T. aestivum B. napus P. vulgaris
Con+H,O 042+015 000+000° 008+007° 0.17+0.11°
AL+ H,O 058+0.15%  000+000° 000+000° 042+0.15°
Con+MV  6208+638° 7500+320° 7033+790° 74.75+395°
AL+MV  2375+205° 1233+179° 3400+4.16° 450+081°
n 12 (2) 12 (2) 14 (2) 12 (2)

Values indicate visually assessed necrosis as a percentage of foliar canopy
cover in four species, 3 d following treatment with either a water control, or
500 uM methyl viologen (MV) 24 h after a water (Con) or Alethea (AL) pre-
treatment, + S.E. Letters indicate significant differences between treatments
according to one-way ANOVA and Tukey (P < 0.05), and lower row indicates
number of plants assessed in total, with number of replicate experiments in
brackets; replicate plants were pooled following ANOVA confirmation of non-
significance between replicate experiments.
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O A J S JSA

Figure 7 Effects of Alethea components upon photosynthetic
performance in salinity-stressed tomato plants. Values show net
photosynthesis in salt-stressed tomato seedlings as a percentage of
non-salt treated plants 8 d following salinity treatment (100 mM),
with a pre-treatment of Alethea components 24 h prior to salt
application. Potassium dihydrojasmonate (J), sodium benzoate ('S),
and the a-amino acid L-arginine ('A") were applied at the same
concentrations as found in the Alethea compound and in exactly
the same manner as all other experiments, either singly, or in
combination with all other components (JSA’). Means shown are of
5 replicate plants per treatment+ 1 SE.
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the third active ingredient in Alethea, has also been
shown to activate antioxidant enzyme activity in tomato
fruit, and exogenous application of Arg provided protec-
tion against chilling stress [55]. One explanation for the
effect of Arg on antioxidant activity is its role in
polyamine metabolism, where both Arg and its deriva-
tive, ornithine, are substrates for polyamine synthesis
(Figure 8) [56]. Polyamines have been proposed to play

Acetylornithine

Argi 2
rginase deacetylase

l

Arginine — > Ornithine «----- Glutamate

\
\
\
\
\
<4

Polyamines Proline ——

Figure 8 Effects of Alethea and salinity on proline and
polyamine biosynthesis. Pathway diagram illustrating conversion
of arginine and glutamate to ornithine and thence proline.
Significant transcriptional effects of Alethea and salinity on genes
encoding relevant enzymes (italics) are shown as red arrows for up-
regulation and blue bars for down-regulation.

Pyrroline-5-
carboxylate

Proline oxidase/
dehydrogenase
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important roles in abiotic stress tolerance, including via
direct and indirect effects on antioxidants [57]. Orni-
thine also acts as a precursor for proline biosynthesis,
which is also a component of drought and salinity
tolerance. Our microarray analysis identified several
changes in gene expression which point to a role for
Alethea in the up-regulation of proline and perhaps
also polyamine biosynthesis. Genes encoding arginase
and acetylornithine deacetylase, enzymes for ornithine
biosynthesis, were up-regulated by Alethea and salt re-
spectively, implying increased ornithine biosynthesis,
whilst proline oxidase was strongly down-regulated by
salinity, consistent with an increase in proline accumula-
tion; these events are summarised in Figure 8. Moreover,
arginase gene expression has previously been shown to
be responsive to both application of exogenous Arg and
JA [54,56].

Conclusion

While there is a growing body of evidence to indicate
the dynamic and complex nature of plant phytohormone
interactions in planta, fewer studies to date have pro-
vided a feasible application for incorporation of novel
fundamental knowledge regarding plant activation for
stress tolerance into a likely agronomic solution.
Although the ‘Alethea’ technology is composed of several
biologically active constituents, the end result mediates
positive recovery of abiotic stress-induced photosyn-
thetic and foliar loss of performance, based on an addi-
tive and complementary breadth of responses at the
transcriptome level. Building fundamental understanding
of the interactions between component compounds will
be a valuable future step forward, and will further
empower the buffering of food crop cultivation against
intolerable losses in yield.

Methods

Plant propagation and growing conditions

Tomato seed (cv. Ailsa Craig, Moles Seeds Ltd,
Colchester, UK) were sown and germinated in Levington
M3 compost (Henry Alty Ltd., Preston, UK), prior to in-
dividual transplantation into 2 L pots. Seedlings were
maintained in glasshouse conditions supplemented with
high pressure sodium lighting, supplying a background
Photosynthetically Active Radiation (PAR) photon flux
density of approximately 500 pmol m™> s*, with a photo-
period of 14 h/10 h light/dark, and air temperatures of
22°C/18°C day/night. Plants were arranged randomly
according to treatment, and were grown for four weeks
prior to establishment of experimental treatments
(approximately 6™ true leaf stage). For the methyl
viologen assays, tomato was propagated as above;
wheat (Triticum aestivum L.cv Granary, Quantil Ltd.,
Lancashire, UK), dwarf French bean (Phaseolus vulgaris
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cv. Nassau, Moles Seeds Ltd. Essex, UK) and maize (Zea
mays cv. F1 Earligold, Moles Seeds Ltd. Essex, UK) seed
were pre-germinated in dishes lined with paper towel
which had been soaked in water, covered and then
placed into the glasshouse under the same conditions as
described above. After three days viable seeds were then
selected and sown into individual pots. Bean seeds were
sown into standard 13 x 14 cm pots whereas the maize
and wheat were sown into 11 x 13.5 cm pots all using
Levington M3 compost. For Brassica napus (L. cv
Expert, Limagrain Ltd., Lincolnshire, UK) several seeds
were sown into standard 13 cm pots as above, with seed-
lings thinned to single plants in each pot following
emergence. Wheat, bean, maize and brassica plants were
grown for 3.5 weeks before receiving any treatment.

Pre-treatment of tomato plants with Alethea compound
and salinity stress

An experimental formula of the ‘Alethea’ technology
(Plant Impact PLC, Harpenden, UK) was applied to
four-week old tomato seedlings at a concentration of
99:1 v/v (distilled HyO:Alethea) as per manufacturer’s in-
structions (see Additional file 1 for a detailed description
of the Alethea formulation), in addition to an equal
quantity of control plants, which were sprayed with
distilled H,O. Alethea solution was sprayed onto leaves
until run-off using a pressurized airbrush, plants were
air-dried and then returned to the glasshouse. 24 h
following Alethea application, a salinity treatment of
100 mM NaCl (Sigma-Aldrich Ltd., Dorset, UK) was
applied to plants via pot-watering until maximum soil
saturation was reached (~ 3 h), with control plants fed
with H,O only. Both Alethea and salinity treatments
were then repeated exactly as before 5 d following ori-
ginal treatment days (Day 4 = Alethea, Day 5 = salinity),
with plants watered with H,O only on all other days in
order to replace transpirational losses. For the methyl
viologen assays, due to the waxy composition of the
brassica leaves and vertical structure of the maize leaves,
a wetting agent (Silwet L-77; De Sangosse Ltd.,
Cambridge, UK), was added (0.025% concentration) to
the Alethea solution (and water control) when being
applied to the plants, allowing the treatment to be
applied evenly across the whole plant.

Measurement of gas exchange parameters

Net photosynthesis and related gas exchange variables
were measured using a portable infrared gas analysis
system (CIRAS-2; PP systems, Hitchin, UK) with cu-
vette conditions set to PAR: 500 mmol m™ s™', 60%
relative humidity and 380 ppm CO,, with leaves left to
equilibrate for 5 min prior to measurement. Measure-
ments were made using 3™ true leaves and were taken
daily prior to and during initial Alethea and salinity
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treatments, and every 48 h thereafter. Ten plants were
measured per treatment in a single experiment.

Transcriptomics experiments

24 h following salinity treatment (48 h following Alethea
treatment), 3™ true leaves of plants were snap frozen in
liquid N,. Leaves were sampled from three plants per
treatment, and the experiment was carried out on three
separate occasions. RNA was then extracted using a
scaled-up version of the method described by [58] and
purified using the Qiagen RNeasy kit, as per manufac-
turers’ instructions (Qiagen; www.qiagen.com). Labelling
and hybridization to the Affymetrix GeneChip® Tomato
Genome Array were performed at the Nottingham
Arabidopsis Stock Centre (University of Nottingham,
UK; http://www.arabidopsis.info).

Microarray data analysis and bioinformatics

Raw data were normalised using GCRMA [59] and the
data were filtered to eliminate probe sets for which the
mean signal from the three replicate arrays did not ex-
ceed a value of 10 (log2 = 3.2) for at least one treatment.
This resulted in the inclusion of 7,799 probe sets for fur-
ther analysis from the original 10,209 probe sets on the
array. Differentially-expressed genes were identified
using the Rank Product algorithm [26] implemented in
the Multiple Experiment Viewer package [60]. We used
2-class paired comparisons with P-values calculated
using 1000 random permutations of the data, and false
detection rate of 0.05 used as a cut-off. Hiercarchical
clustering [61] was performed in the D-Chip package
using the correlation distance metric and average linkage
[62]. For analysis using MapMan [29], mean log2 fold-
change values for all 7,799 probe sets included in our
original analysis were used for display and statistical test-
ing using the Wilcoxon rank sum test. The Benjamini
and Hochberg correction was applied to statistical tests
in MapMan to take account of multiple hypothesis
testing. Probe annotation and gene ontology (GO) term
enrichment analysis were performed using the tools
provided by the Tomato Functional Genomics Database
[63]. P-values were corrected using the permutation
algorithm within the analysis tool. Annotation files were
the January 2010 versions.

Gene expression analysis by RT-PCR

Following RNA extraction as outlined above and prior
to cDNA synthesis, 10 ug RNA was treated with DNasel
(Invitrogen; www.invitrogen.com). cDNA was synthesized
using SuperScript II reverse transcriptase (Invitrogen)
using the primer GGCCACGCGTCGACTAGTAC(T)
16VN. 30 cycles of PCR were carried out using Taqg DNA
polymerase (REDTagq; Sigma-Aldrich).
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Methyl viologen assay

Alethea pre-treatment was applied to tomato plants at
4.5 weeks, and wheat, maize, bean and brassica plants at
3.5 weeks (as detailed above) 24 h prior to the applica-
tion of 500 puM methyl viologen (Sigma-Aldrich Ltd.,
Dorset, UK). MV was applied using a pressurized air-
brush, and Silwet L-77 (De Sangosse Ltd., Cambridge,
UK), a wetting agent, was added when applying the
herbicide to maize and brassica plants to provide even
application across the leaves. Control plants were treated
with 0 pM MV (water) using the same method, and
brassica and maize control plants received 0 pM MV
(water) plus Silwet L-77 (0.025%). Once sprayed, plants
were returned to the glasshouse and supplementary
lighting switched off until the treatments had dried onto
the leaves. 3 d after MV application, necrosis on the leaf
surfaces was estimated visually as a percentage of the
whole plant. Each species was subject to a minimum of
two separate MV experiments, with the exception of
tomato, which was assayed in four separate experiments.

Additional files

Additional file 1: Details of the ‘Alethea’ composition. Breakdown
of the components of the Alethea plant activator, including citation
of relevant patent information as related to proprietary product
technology.

Additional file 2: Differentially-regulated gene lists derived from
‘Rank Products’ analysis of microarray data.

Additional file 3: Gene clusters derived from hierarchical cluster
analysis. Full list of genes present in each of the clusters identified
in Figure 2. Data provided for each gene include Affymetrix probe set
ID, the tomato UniGene ID corresponding to each probe ID and with
TrEMBL database best sequence matches and corresponding E-values
obtained from the Tomato Functional Genomics Database probe
annotation service (http://ted.bti.cornell.edu/). Adjacent to each gene list
are the outputs from GO term enrichment searches performed using the
genes present within each cluster.

Additional file 4: Functional gene classes identified by MapMan as
affected by Alethea and salinity. Values show Benjamini & Hochberg-
corrected P-values from the Wilcoxon rank sum test for MapMan gene
classes (bins) that show significantly altered distributions of expression
values (o= 0.05) for at least one relevant pair-wise comparison between
groups identified using two-letter abbreviations, where the first letter
indicates the pre-treatment (W; water, A; Alethea) and the second letter
the main treatment (W; water, S; salt). Colours represent the general
expression trend within the bin — tan; up-regulation, 10° < P < 0.05, red;
up-regulation, p < 107, pale blue; down-regulation, 10 < P <005, blue;
down-regulation, p < 107,
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