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Abstract

Background: Non-host resistance (NHR) confers plant species immunity against the majority of microbial
pathogens and represents the most robust and durable form of plant resistance in nature. As one of the main
genera of rust fungi with economic and biological importance, Puccinia infects almost all cereals but is unable to
cause diseases on legumes. Little is known about the mechanism of this kind of effective defense in legumes to
these non-host pathogens.

Results: In this study, the basis of NHR in broad bean (Vicia faba L.) against the wheat stripe rust pathogen,
Puccinia striiformis f. sp. tritici (Pst), was characterized. No visible symptoms were observed on broad bean leaves
inoculated with Pst. Microscopic observations showed that successful location of stomata and haustoria formation
were significantly reduced in Pst infection of broad bean. Attempted infection induced the formation of papillae,
cell wall thickening, production of reactive oxygen species, callose deposition and accumulation of phenolic
compounds in plant cell walls. The few Pst haustoria that did form in broad bean cells were encased in reactive
oxygen and callose materials and those cells elicited cell death. Furthermore, a total of seven defense-related genes
were identified and found to be up-regulated during the Pst infection.

Conclusions: The results indicate that NHR in broad bean against Pst results from a continuum of layered defenses,
including basic incompatibility, structural and chemical strengthening of cell wall, posthaustorial hypersensitive
response and induction of several defense-related genes, demonstrating the multi-layered feature of NHR. This work
also provides useful information for further determination of resistance mechanisms in broad bean to rust fungi,
especially the adapted important broad bean rust pathogen, Uromyces viciae-fabae, because of strong similarity
and association between NHR of plants to unadapted pathogens and basal resistance of plants to adapted
pathogens.
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Background
Non-host resistance (NHR) is resistance exhibited by an
entire plant species to all genetic variants of a non-
adapted pathogen species (or bacterial pathovar [pv]
or fungal forma specialis [f. sp.]) and represents the
most robust and durable form of plant resistance in
nature [1]. The presence of this defense system
explains why plants are immune to the vast majority
of potential pathogens and normally healthy. Molecular
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reproduction in any medium, provided the or
mechanisms underpinning NHR remain relatively unex-
plored compared with the well-studied host resistance
mediated by the products of plant resistance (R) genes,
which establish pathogen race- or plant cultivar-specific
resistance [2,3].
NHR against bacteria, fungi and oomycetes can be

divided into two types [4]. Type I NHR does not produce
visible symptoms whereas type II NHR results in a rapid
hypersensitive response with cell death [4]. Type I NHR is
much more common than type II NHR, and NHR of
plants against the majority of unadapted pathogens
belongs to Type I. Plants have evolved sophisticated
mechanisms to exclude unadapted pathogens. An obvious
initial requirement for plant disease is basic compatibility
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where appropriate physical and chemical signals from the
plant are required for inducing cell differentiation and
expressing essential pathogenicity genes [5,6]. Presence of
preformed plant physical and chemical barriers, including
plant cell wall and plant surface antimicrobial enzymes
and secondary metabolites, are often considered the first
line of defense in plants against a pathogen before pene-
tration [6]. Constitutive barriers are more likely to con-
tribute to NHR to pathogens of other plant families than
to pathogens of related plant species [7]. After these con-
stitutive barriers are breached, plants have evolved indu-
cible defense mechanisms against invading pathogens. An
example of an inducible structural barrier is the formation
of papillae. This local cell wall fortification is formed on
the inner side of plant cell walls at the penetration site. All
microbes possess a suite of conserved molecules, called
MAMPs/PAMPs (microbe/pathogen associated molecular
patterns) that can be recognized by plants, often via recep-
tor kinase located in the plant plasma membrane [8]. The
plant primary innate immune responses are mediated by
transmembrane pattern PAMP-triggered immunity (PTI)
that can halt further colonization of the pathogen [9].
However, effector triggered immunity (ETI) is not just
confined to adapted pathogen recognition and may
also play a role in NHR, particularly against patho-
gens that colonize plant species closely related to
non-host species [10].
Obligate biotrophic pathogens, with a specific lifestyle

that keeps plant cells alive and minimizes tissue damage
in susceptible hosts, are suitable for NHR studies [11].
Arabidopsis NHR to non-adapted biotrophic powdery
mildews is based upon two successive, multicomponent
and independently effective defense systems: PEN gene-
mediated pre-invasion resistance and EDS1/PAD4/SAG101-
controlled post-invasion immunity [1,12-14]. Compared
to powdery mildew fungi, the understanding of NHR
mechanisms to rust fungi has lagged behind. Puccinia
and Uromyces represent two large and important genera
of rust fungi, which have damaged cereals and legumes,
respectively, around the globe throughout history [15].
The emergence of Ug99, a new pathotype of the wheat
stem rust pathogen that threatens global wheat produc-
tion, is a reminder of the need for durable rust resistance
in cereals [16,17]. Much effort has been taken to study
NHR to rust with non-host pathosystems of Puccinia-
Gramineae and Uromyces-dicotyledons at histological
and cytological levels, demonstrating that the majority
of rust pathogens are arrested immediately after the
formation of the first haustorium mother cell (HMC) in
most non-host plant species [18-23]. Several recent
studies have investigated the interaction of rust patho-
gens on non-host plants mainly at molecular levels, in-
cluding growth of U. vignae, P. triticina, Hemileia
vastatrix on Arabidopsis [11,24,25], P. hordei and U.
fabae on wheat [26,27], P. triticina, P. hordei-murini, P.
hordei-secalini and P. persistens on barley [28], and P.
graminis, P. triticina, P. striiformis, P. hordei and Mel-
ampsora lini on rice [5,29]. These studies demonstrated
that NHR to rust fungi is polygenically inherited and is an
active response involving salicylic acid (SA) signaling.
Broad bean (Vicia faba L.) is one of the oldest crops

cultivated by humans and an important temperate leg-
ume crop used as a source of protein in human diets, as
fodder and as forage crop for animals, and for available
nitrogen in the biosphere [30]. However, broad bean can
be seriously damaged by the broad bean rust, caused by
U. viciae-fabae. Due to the enormous size (13,000 Mbp)
and complexity of the broad bean genome [31], research
into the functional genomics and cloning of interesting
genes has been hampered.
To date, little is known about the nature of effective

defense mechanisms in legumes to pathogens of remotely
related plant species, especially wheat rust pathogens with
economic and biological importance. In this study, NHR in
broad bean to the wheat stripe rust pathogen, P. striiformis
f. sp. tritici (Pst), was systematically investigated at the
histological and molecular levels. The results indicate that
NHR in broad bean to Pst results from a continuum of
layered defenses and provide useful information for further
determination of resistance mechanisms of broad bean to
rust fungi.

Results
Type I NHR to Pst on broad bean
To determine if different broad bean genotypes show differ-
ent infection responses to genetically distinct Pst races, two
broad bean cultivars, Yuxidabaidou and Linxiadacaidou,
were inoculated with three Chinese Pst races CYR23,
CYR31 and CYR32, respectively. No visible symptoms
were observed 14 days post-inoculation on broad bean
leaves (Figure 1), and similar macroscopic responses
were obtained from these different combinations. Thus
broad bean displayed type I NHR against Pst infection.
Additionally, microscopic observations show that no
significant differences in fungal growth among these
two broad bean cultivars in regard to their interactions
with the different Pst races (Table 1).
In regard to economic importance, the pathosystem

between Yuxidabaidou that is one main broad bean cul-
tivar grown in Yunnan, China, and CYR32, one of two
predominant Pst races in China, can be taken as a repre-
sentative of the broad bean-Pst non-host interaction and
was therefore used for further experiments in the study.

Growth and development of Pst on broad bean
Approximately, 88% of Pst urediniospores germinated to
produce germ tubes that grew randomly on leaves of the
non-host broad bean (Figure 2A, Figure 3A). In a similar
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Figure 1 Leaves of wheat and broad bean inoculated with Puccinia striiformis f. sp. tritici were checked 14 days post-inoculation. (A)
Massive uredia formed on wheat cultivar Mingxian169. (B) No visible symptoms on broad bean cultivar Yuxidabaidou. (C) A broad bean leaf
mock-inoculated with water.
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fashion, 91% of urediniospores produced germ tubes on
wheat (Figure 3A). However, only 1.3% of germ tubes
successfully located a broad bean stomate compared to
25% on wheat (Figure 2B, Figure 3A). Of those germ
tubes successfully locating a stomate on broad bean,
96% subsequently penetrated it and formed an infection
hypha (representing an infection unit) compared with
98% on wheat (Figure 3A). However, of the infection
units on broad bean, 28% contained an aberrant substo-
matal vesicle (SSV) with an irregular oval shape, which
did not coincide with stomata (Figure 2D), 22% did not
have a SSV structure (Figure 2E), and only 50% con-
tained a normal SSV that formed within the substomatal
chamber, which was adjacent to stomata and had a nor-
mal oval shape typical of Pst on wheat (Figure 2C). A
haustorial mother cell (HMC) was formed at the tip of
the infection hypha in close contact with mesophyll cells
(Figure 2F). However, only 2% of infection hyphae
formed haustoria within penetrated mesophyll cells
(Figure 2F, Figure 3A). In contrast, 88% of Pst infection
Table 1 No significant differences in fungal growth
among two broad bean cultivars in regard to their
interactions with three different races of P. striiformis
f. sp. tritici

Broad bean Linear length of infection hyphae (μm)

CYR23 CYR31 CYR32

Yuxidabaidou (1) 55.47 ± 1.40 54.73 ± 1.21 54.95 ± 1.12

Linxiadacaidou (2) 54.97 ± 0.98 55.07 ± 0.85 54.29 ± 1.23
(1) one main broad bean cultivar grown in Yunnan, China.
(2) one broad bean cultivar grown in Gansu, China.
The linear length of infection hyphae (from the substomatal vesicle to the
apex of the longest infection hypha) were measured by microscopy at nine
days post-inoculation. Data are mean ± standard deviation, and there is no
statistical difference (P > 0.05) compared by Student t tests.
hyphae produced a haustorium on wheat (Figure 3A).
Therefore, successful location of stomata and develop-
ment of haustoria were greatly reduced in Pst infection
of broad bean.
The linear length of infection hyphae, and numbers of

hyphal branching, haustorial mother cells and haustoria
per infection unit at a serial time points post-inoculation
were also measured, and they were maintained at ap-
proximately 55 μm, 1.5, 1.0 and 0.2, respectively, from
24 hours post-inoculation (hpi) (Figure 3B). Only one or
two primary hyphae were produced and the vast majority
of the Pst infection hyphae were blocked at haustorium
mother cell formation in broad bean leaves compared with
extensive colonization and formation of secondary hyphae
in wheat leaves at 168 hpi (Figure 2G, H). Thus Pst devel-
opment was completely arrested from 24 hpi.

Histochemical evaluation of broad bean NHR response
to Pst
An active NHR response was shown to be involved in
the suppression of Pst growth on broad bean. A dome-
shaped papilla was formed on the inner side of broad
bean cell walls at the penetration site adjacent to the
HMC (Figure 4A, D). Thickened cell walls were also
present in broad bean mesophyll cells in contact with
HMC (Figure 4B). The production of H2O2 and O2

- in
broad bean against Pst was analyzed by staining with
3,30-diaminobenzidine (DAB) and nitroblue tetrazolium
(NBT), respectively. Accumulation of H2O2 was detected
at the sites in direct contact with SSV or HMC, and in
papilla (Figure 4A, B). In infection units with haustorium
formation, DAB staining was detected at deposits respon-
sible for haustorium encasement (Figure 4C). DAB stain-
ing was occasionally observed in the HMC (Figure 4A).



Figure 2 Infection features of P. striiformis f. sp. tritici (Pst) on broad bean. (A) Germinated Pst urediniospores (SP) producing germ tubes
(GT) growing in random directions at 6 hpi. (B) Germ tube (GT) that has successfully located and entered a stomate (S) at 12 hpi. (C) A normal
oval substomatal vesicle (SSV) formed within the substomatal chamber and adjacent to the stomate (S) at 24 hpi. (D) An irregularly shaped SSV
formed far from the stomate (S) at 24 hpi. (E) Some infection units did not contain a SSV structure and directly produced infection hyphae (IH) at
24 hpi. (F) A Pst haustorium (H) within a mesophyll cell after penetration by a haustorial mother cell (HMC) at 24 hpi. (G, H) Broad bean and
wheat inoculated with Pst, respectively, at 168 hpi. Only one or two primary hyphae (PH) were produced and the vast majority of the Pst
infection hyphae were blocked at HMC formation in broad bean leaves compared with extensive colonization and formation of secondary
hyphae (SH) in wheat leaves. Leaves were examined under a scanning electron microscope (A, B) and under an epifluorescence microscope after
staining with Calcofluor (C–E), or with WGA-alexa staining (F–H). Bar = 20 μm.
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The percentage of infection units with DAB staining
increased rapidly from 12 to 24 hpi and then gradually
declined (Figure 5). NBT staining was not detected in
plant cells of any sample (Figure 5).
Aniline blue staining indicated that callose deposition

was associated with the rust infection units and staining at
24 hpi showed the same distribution as H2O2 in the plant
cell walls at the sites in direct contact with SSV or HMC,
in papilla, and at encasement of haustoria (Figure 4D-F).
Therefore, attempted Pst infection of broad bean resulted
in rapid production and accumulation of H2O2 (but not
O2

-) and callose deposition, presumably related to the
generation of subcellular, localized physical barriers.
The cell walls of mesophyll cells in contact with infection

hyphae and neighboring mesophyll cells showed intense
bright fluorescence (Figure 4G, H), which is likely related to
the accumulation of antimicrobial phenolic compounds.
Hypersensitive response (HR) with cell death occurred in
infection units with haustoria formation as evidenced by
plant cell autofluorescence at 24 hpi (Figure 4I). Penetrated
mesophyll cells began to collapse from 48 hpi (Figure 4J).
Collectively, attempted infection induced the forma-
tion of papillae, cell wall thickening, production of react-
ive oxygen species, callose deposition, and accumulation
of phenolic compounds in non-host plant cells. The few
haustoria that were formed by Pst in broad bean cells
were encased in reactive oxygen and callose materials
and elicited a posthaustorial hypersensitive response.

Quantitative real-time PCR (qRT-PCR) of seven candidate
defense-related genes
Seven defense-related genes that may be involved in
basal resistance, oxidative stress responses and cal-
lose formation were selected for qRT-PCR assays.
They are putative pathogenesis-related gene 1 (PR1),
pathogenesis-related gene 2 (PR2), pathogenesis-related
gene 5 (PR5), pathogenesis-related gene 10 (PR10), super-
oxide dismutase (SOD), catalase (CAT), glucan synthase-
like 5 (GSL5). These genes on broad bean were identified
using homologous sequences deposited in GenBank of
species closely related to broad bean (Table 2) for design-
ing a set of primers (see Additional file 1). These genes



Figure 3 Limited growth and development of P. striiformis f. sp.
tritici (Pst). (A) Frequencies of each stage of Pst development on
broad bean compared with wheat at 48 hpi. SP, urediniospore; GT,
germ tube; LS-GT, germ tube locating a stomate; IH, infection hypha;
H, haustorium. GT/SP, percentage of the urediniospores producing
germ tubes (GT) among total urediniospores (SP); LS-GT/GT,
percentage of germ tubes locating stomata (LS-GT) among all germ
tubes (GT); IH/LS-GT, percentage of germ tubes locating stomata
(LS-GT), successfully penetrating them and forming infection hypha
(IH); H/IH, percentage of haustoria (H) formation among all infection
hyphae (IH). (B) Linear length of infection hyphae (syn. colony
length) (from the substomatal vesicle to the apex of the longest
infection hypha), and numbers of hyphal branches, haustorium
mother cells (HMC) and haustoria (H) formed per infection units
measured at continuous time points after inoculation. Linear length
of infection hyphae is the left Y-axis; numbers of hyphal branching,
haustorium mother cells (HMC) and haustoria (H) are indicated by
the right Y-axis. Mean values from three independent replications.
Vertical bars represent the standard deviations.
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[GenBank: JQ043345-JQ043351] showed 75–97% iden-
tities to those used to design primers, and were used for
assessments of expression by qRT-PCR, although their full
lengths were not available.
A set of primers based on the cloned sequences of the

seven defense-related genes were designed (see Additional
file 2), and qRT-PCR was performed to test their expres-
sion profiles during Pst infection across a series of time
points post-inoculation on broad bean. As shown in
Figure 6, accumulations of VfPR1, VfPR2, VfPR5, and
VfPR10 transcripts were up-regulated as early as 12 hpi,
peaked at 24 hpi, and declined to original expression levels
except for VfPR2 that remained at a high level at 72 hpi
(Figure 6A-6D). Accumulations of transcripts of VfSOD
and VfCAT, which are involved in oxidative stress peaked
at 12 hpi, but the induction of VfCAT expression was as
early as 6 hpi (Figure 6E, F). Transcription of VfGSL5, a
callose formation gene, was up-regulated from 12 hpi to
24 hpi and then sharply declined (Figure 6G). These
results indicated that Pst infection triggered the induction
of a set of defense-related genes in broad bean peaking at
12 and 24 hpi.

Discussion
Non-host resistance (NHR) with obvious durability has
been studied as a source of resistance traits that might
help in improving crop performance in the glasshouse
and the field [6,32]. In the present study, a continuum of
layered defenses led to NHR in broad bean. No visible
symptoms were observed on broad bean leaves inocu-
lated with Pst, indicating type I NHR. However, a hyper-
sensitive response (HR) with cell death in infection units
with haustorium formation was also observed in broad
bean leaves by microscopic examination. Similar results
were observed in the interactions between other rust
fungi and non-host plants [20,22,23]. In NHR analysis of
Arabidopsis to Phytophthora infestans infection, pene-
trated epidermal cells also displayed a rapid hypersensitive
response, although no symptoms could be detected [33].
Therefore, HR that cannot be detected on visual symp-
toms, may be observed at the single cell level in Type I
NHR, which is probably related to low infection probabil-
ity and an extremely rapid HR on non-host plants.
On non-host broad bean leaves, urediniospores of Pst

germinated at a similar frequency to those on wheat
leaves. However, the germ tubes grew randomly without
directional growth on broad bean leaves. There was an
approximate twenty fold difference in successful location
of stomata on broad bean compared to wheat. It
appeared that urediniospores germinated well but had
difficulty in locating and recognizing stomata on non-
host plants [20]. This difference may be due to inappro-
priate thigmotrophic or biochemical signals arising from
the broad bean leaves. This basic incompatibility there-
fore reduced Pst infection efficiency on broad bean by
reducing the probability of germ tubes locating stomata
(25% on wheat compared with 1.3% on broad bean). This
was somewhat comparable to 85% and 12% reported for P.
triticina (Pt) on its wheat host compared to a non-host,
Arabidopsis thaliana [24]. Moreover, in a graminaceous
comparison similar inefficiencies by Pst, Pt, and P. grami-
nis f. sp tritici (Pgt) in locating stomata in rice compared
to wheat were observed (unpublished results). Again Pst
was more inefficient than the other two species. The
major difference in the infection process between Pst and
other rust fungi is that it does not form obvious appres-
soria, and germ tubes directly penetrate the stomata. This



Figure 4 Broad bean responses to attempted P. striiformis f. sp. tritici (Pst) infection. (A–C) Inoculated broad bean leaves were stained with
3,3-diaminobenzidine (DAB) to detect production of H2O2 (reddish brown) at 24 hpi. A dome-shaped papilla (P) (A) and thickened cell walls (CW)
(B) were formed in the broad bean cell walls in contact with the fungal haustorial mother cells (HMC). DAB staining was visible in the mesophyll
cell wall adjacent to a HMC (A), the mesophyll and epidermal cell in contact with a substomatal vesicle (SSV) (B), the papilla (A), the encasement
surrounding the haustorium (H) (C), and an HMC of Pst (A). (D–F) Callose deposition (intensive green fluorescent) coinciding with H2O2

distribution (A–C) was detected by aniline blue staining at 24 hpi. (G) A mesophyll cell in contanct with an infection hypha (IH) at 24 hpi. (H)
Bright fluorescence was observed in the cell walls of the mesophyll cell and a neighboring mesophyll cell at the same infection unit shown in
(G). (I) In some infection units with formation of haustoria (H), plant cell autofluorescence, indicative of HR was detected at 24 hpi. (J) Collapsed
mesophyll cell (arrow) at 72 hpi. Bar = 20 μm.
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possibly increases the difficulty in locating and recognizing
stomata.
Among Pst infection units, some contained an aber-

rant substomatal vesicle (SSV), and some did not. This
difference may be related to different leaf structures be-
tween legume and cereal plants, especially the structure
and size of the substomatal chambers. The vast majority
of Pst infection hyphae were blocked at haustorium
mother cell formation, which is likely due to plant resist-
ance responses, including papilla formation and cell wall
thickening. In other incompatible leguminous-rust or
powdery mildew interactions, papilla were frequently
observed on plant cell walls [34-36]. It is possible that
papilla formation is one of general defense responses
effective against biotrophic pathogens in legumes.
Attempted Pst infection also induced the production of
reactive oxygen species, callose deposition, and the accu-
mulation of phenolic compounds in plant cells. We also
observed that the haustoria were encased in reactive
oxygen and callose materials and elicited plant cell



Figure 5 Percentage of infection units exhibiting H2O2 (DAB staining) and O2
- (NBT staining) accumulation on broad bean after

inoculation with P. striiformis f. sp. tritici. Each point represents at least 50 infection units from eight to ten inoculated broad bean leaves.
These experiments were repeated three times with similar results. Bars represent standard deviation.
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death. Hydrogen peroxide (H2O2) and callose deposition
with the same distribution were detected at 24 hpi, coin-
ciding with the fact that the activation of CAT, SOD and
GSL5 genes at 12 to 24 hpi. The balance between SOD
and APX or CAT activities in cells is crucial for deter-
mining a steady-state balance of superoxide radicals and
hydrogen peroxide [37]. U. fabae infection also triggered
the induction SOD and CAT genes in wheat [26]. GSL5
encodes a glucan synthase involved in papillary callose
formation and callose encasement of haustorial complexes
in response to the powdery mildew pathogen [38]. GSL5
gene was also activated in Arabidopsis thaliana against
the coffee leaf rust fungus Hemileia vastatrix [25]. GSL5
may therefore be also involved in papillary callose
Table 2 Descriptions of candidate defense-related genes

Name Annotation Related species Accession n

Basal resistance

PR1 Pathogenesis-related gene 1 Pisum sativum CAE51954.1

PR2 Beta-1, 3-endoglucanase Pisum sativum AAB24398.1

PR5 Thaumatin-like protein Medicago truncatula TC100682 (4)

PR10 Pathogenesis-related gene 10 Pisum sativum U31669.1

Oxidative stress responses

SOD Superoxide dismutase Pisum sativum CAA39819.1

CAT Catalase Pisum sativum BAH37035.1

Papillary callose formation

GSL5 Glucan synthase-Like 5 Medicago truncatula ABN09771.1
(1) GenBank accession number: www. ncbi.nlm.nih.gov.
(2) Closest Arabidopsis homolog identified using TAIR BLAST.
(3) score/E value between Arabidopsis homolog locus and legume species by BLAST
(4)Medicago truncatula Gene Index tentative consensus (TC) numbers for cDNAs on
species=medicago).
(5) No sequence of PR10 in Arabidopsis using TAIR BLAST.
formation and callose encasement of haustorial complexes
in response to the rust fungi. H2O2 can facilitate cross-
linking of cell walls [39], and callose (β-1,3-glucan) depos-
ition may reinforce cell walls at contact sites with fungal
structures. Phenolic compounds, as one of chemical bar-
rier in inducible defense mechanisms in Type I NHR [4],
have been reported to have antimicrobial activity [40].
Therefore, prehaustorial NHR with basic incompatibility

and structural and chemical strengthening of cell walls
against the majority of penetrating fungal units, and post-
haustorial NHR with a hypersensitive response against the
few successful penetrations, collectively contribute to the
NHR of broad bean to Pst. These features also demon-
strate the multi-layered feature of NHR.
umber (1) Arabidopsis homolog locus(2) BLASTX score/E Value(3)

AT2G14610.1 200/4e-52

AT3G57260.1 242/5e-80

— —

— (5) —

AT5G18100.1 181/5e-61

AT1G20620.1 828/0

AT4G03550.1 1110/0

X.
the microarray (http://www.tigr.org/tigr-scripts/tgi/T_index.cgi?

http://www.tigr.org/tigr-scripts/tgi/T_index.cgi?species=medicago
http://www.tigr.org/tigr-scripts/tgi/T_index.cgi?species=medicago


Figure 6 Relative transcript levels of seven defense-related genes assayed by qRT-PCR. Relative gene expression was quantified by the
comparative 2-55CT method. The mean expression value was calculated from three independent replications. Vertical bars represent the standard
deviations.
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Pathogen-related proteins encompass several different
groups of structurally and functionally unrelated pro-
teins with antimicrobial activities [41]. Four PR genes
observed were up-regulated in response to Pst infection
in broad bean leaves. The expression of all four PR genes
is SA responsive [42,43]. PR1 is widely thought to be a
molecular marker for the SA-dependent resistance sig-
naling pathway [41,44]. Thus, SA-mediated resistance
pathway is involved in the non-host broad bean-Pst
interaction. PR2 protein, which has β-1,3-glucanase ac-
tivity, can degrade fungal cell walls, together with PR3
protein, which has chitinolytic activity, cause the lysis of
fungal cell walls [45]. We failed to isolate the PR3 gene
from broad bean. Nevertheless, transcription of the PR2
gene occurred at a high level from 12 to 72 hpi, likely
playing a role in inhibiting the growth of Pst. Plasma
membrane- permeabilizing ability proper to PR5 contri-
butes to plasmolysis and damage of fungal and bacterial
pathogens, inhibiting their growth and development
[46]. PR10 involves in plant defense responses and has
antimicrobial activity and in vitro ribonuclease activity
[47,48].
In the non-host interaction between broad bean and

Pst, transcript accumulations of PR genes and the GSL5
gene involved in callose formation were up-regulated at
12–24 hpi with a peak at 24 hpi, whereas transcript
accumulations of SOD and CAT involved in oxidative
stress responses were up-regulated as early as 6–12 hpi
with peaks at 12 hpi. The accumulation of hydrogen
peroxide (H2O2) can lead to SA synthesis [49], and ele-
vated levels of SA along with H2O2 can activate local
PR gene expression [50]. H2O2 produced during early
plant-pathogen interactions also contributes to cell wall
strengthening processes, such as the formation of papilla
where callose is abundantly deposited [51]. Thus, H2O2 as
a singal substance may activate the expression of PR genes
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and contribute to callose formation in the non-host inter-
action. This could explain the earlier induction of SOD
and CAT compared to PR genes and GSL5.
Although limited by current genomic and transcrip-

tomic data for broad bean, several defense-related genes
were successfully identified using the homology cloning
approach. We failed to get specific amplification products
when using primers designed on the basis of soybean
(Glycine max) gene sequences. In contrast, positive ampli-
fication was obtained using primers designed from pea
(Pisum sativum) sequences. Similar results were obtained
with amplification of other genes [52]. Because of huge
genome in broad bean, it was necessary to rely on synteny
with related species in order to identify interesting genes
[52]. This approach allowed us to identify candidate genes
responsible for agronomically important traits in broad
bean.

Conclusions
In this study, we characterized the basis of NHR in
broad bean against Pst, a pathogen of remotely related
plant species, at the histological and molecular levels.
Our results indicate that the NHR involves a continuum
of layered defense processes, including basic incompati-
bility, structural and chemical strengthening of the cell
wall, posthaustorial hypersensitive response and induc-
tion of several defense-related genes, demonstrating the
multi-levels feature of NHR. NHR of plants to unadapted
pathogens exhibits strong similarity and association with
basal resistance of plants to adapted pathogens [7]. There-
fore, this study of NHR to Pst in broad bean provides
useful information for further determination of resist-
ance mechanisms in broad bean to rust fungi, especially
the adapted important broad bean rust pathogen, U.
viciae-fabae. Meanwhile, we confirm that HR can be
observed at the single cell level, although there are no
visible symptoms in Type I NHR.

Methods
Plants, pathogens and inoculation
Two broad bean cultivars used in this study are Yuxidabaidou
and Linxiadacaidou. Yuxidabaidou is one main cultivar
grown in Yunnan (the main growing area for broad
bean in China) and Linxiadacaidou is one cultivar
grown in Gansu, China. Wheat cultivar Mingxian169
and Pst races CYR23, CYR31, CYR32 used in this study
were obtained from the College of Plant Protection.
Plants were grown in a soil mixture in 10 cm diameter
pots in a growth chamber at 20°C with 60% relative hu-
midity and a 16 h photoperiod (60 μmol m−2 s−1 photon
flux density). Broad bean plants at the 5–6 leaf stage and
wheat at the 1–2 leaf stage were used for inoculation. Pst
was maintained and propagated on the susceptible wheat
cultivar Mingxian 169.
For inoculation, fresh urediniospore suspensions (50 mg
ml−1) were applied with a fine paintbrush onto the adaxial
surfaces of leaves of broad bean and wheat plants. Parallel
mock inoculations were performed with tap water. Inocu-
lated seedlings were put into a dark humidity chamber for
24 h at 16°C and then moved to the growth chamber. Leaf
samples were collected at specific time points for various
analyses and disease symptoms were recorded 14 dpi.

Light microscopy
Infected broad bean and wheat leaf pieces of 2–3 cm2

were harvested at set time points, fixed and decolorized
in ethanol/trichloromethane (3:1, v/v) containing 0.15%
(w/v) trichloroacetic acid for 3–5 days and then cleared
in saturated chloral hydrate until leaf tissues were trans-
lucent. For microscopic observations, leaf segments were
stored in 50% glycerol and examined under differential
interference contrast (DIC) optics.
To visualise the pathogen structures, the leaves were

stained with Calcofluor (Sigma-Aldrich, St. Louis, MO,
USA) [53]. For better visualisation of internal infection
structures, the staining procedure for wheat germ agglu-
tinin (WGA) conjugated to the fluorophore alexa 488
(Invitrogen, USA) was also used as described previously
[29]. All fluorescence stained tissues were examined
under a fluorescence microscope.
For each broad bean leaf sample, at least 50 infection

units from 8–10 leaf segments were examined for recording
linear length of infection hyphae, and numbers of hyphal
branching, haustorial mother cells and haustoria per infection
unit. The linear length of infection hyphae was measured
from the substomatal vesicle to the apex of the longest infec-
tion hypha. All microscopic examinations were done with an
Olympus BX-51 microscope (Olympus Corporation, Japan).

Scanning electron microscopy
Leaf tissues were cut into small pieces (0.5–1 cm), fixed
in 4% (v/v) glutaraldehyde in phosphate buffer (0.1 M,
pH 6.8) for 8–10 h at 4°C, then rinsed with the same
buffer for 1–2 h. After dehydration in a graded ethanol
series, the samples were critical-point dried, coated with
gold in a sputter coater, and examined under a JEOL
JSM-6360 LV scanning electron microscope at 15 kV.

Histochemical analysis
H2O2 and O2

- production was detected in plant tissue
by staining with 3-30 diaminobe-nzidine (DAB) (Amresco,
Solon, OH, USA) and nitroblue tetrazolium (NBT)
(Amresco, Solon, OH, USA), respectively. Specimen prep-
aration and microscopic observations were performed
following procedures previously described [54,55].
Callose deposition was visualised under UV light after

modified aniline blue staining as described previously [56].
After DAB uptake, leaf segments were fixed and cleared,



Cheng et al. BMC Plant Biology 2012, 12:96 Page 10 of 12
http://www.biomedcentral.com/1471-2229/12/96
and washed twice with 50% (v/v) ethanol for 15 min, rinsed
with water, then incubated in 0.067 M K2HPO4 (pH 9.0)
for 30 min, and stained with 0.05% (w/v) aniline blue over-
night. Specimens were examined with an Olympus BX-51
microscope (Olympus Corporation). Autofluorescence of
attacked mesophyll cells was observed as necrotic cell
death by an epifluorescence microscopy (excitation filter,
485 nm; dichromic mirror, 510 nm; and barrier filter,
520 nm).
RNA extraction and cDNA synthesis
Total RNA of broad bean leaves was extracted using the
TrizolTM Reagent (Invitrogen, Carlsbad, CA, U.S.A.).
DNaseI treatment was applied to remove genomic DNA.
The integrity of total RNA was checked by formamide
denaturing gel electrophoresis, and the concentration was
determined with a NanoDropTM 1000 spectrophotom-
eter (Thermo Fisher Scientific, U.S.A.). About 3 ug total
RNA was used to generate the first-strand cDNA using
the Promega RT-PCR system (Promega, Madison, WI,
U.S.A.) with the Oligo (dT)18 primer and cDNA con-
structions were carried out according to the manufac-
turer’s instructions.
Identification of defense-related genes
Each gene were firsted identified from Arabidopsis and
used in BLASTX analysis to search for corresponding
orthologous sequences in legume species closely related to
broad bean (Table 2). Then, gene-specific primers at con-
servative positions were designed with Primer Premier 5.0
and used in RT-PCR for cloning the targeted broad bean
genes (see Additional file 1). PCR products were cloned
and sequenced, followed by analysis using the BLASTX
algorithm to confirm the gene specificity.
Quantitative real-time PCR analysis
Gene expression patterns of seven genes were analyzed by
qRT-PCR analysis. Based on the broad bean genes identi-
fied, primers were designed (Additional file 2). Eukaryotic
elongation factor 1-alpha (ELF1A) [GenBank: O24534] was
used as an internal reference for the qRT-PCR analysis
[52]. Quantification of gene expression was performed
using a 7500 Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA). To avoid variations caused by
experimental conditions, the expression level of each gene
in the mock-inoculated control was subtracted from that
in broad bean leaves inoculated with Pst. Dissociation
curves were generated for each reaction to ensure specific
amplification. Threshold values (CT) generated from the
ABI PRISM 7500 Software Tool (Applied Biosystems,
Foster City, CA, USA) were used to quantify relative gene
expression using the comparative 2-55CT method [57].
Statistical analyses
All experiments were repeated three times with similar
results. At least 50 infection sites from eight to ten leaf sec-
tions per time point were examined in histopathological
and histochemical sections. Means and standard deviation
were estimated from three independent experiments using
SAS software.

Additional files

Additional file 1: Primers used for cloning the seven defense-related
genes.

Additional file 2: Primers used in quantitative real-time PCR.

Abbreviations
DAB: 3,3-diaminobenzidine; DIC: Differential interference contrast; ETI: Effector
triggered immunity; HMC: Haustorial mother cell; hpi: Hours post-inoculation;
HR: Hypersensitive response; MAMPS or PAMPs: Microbial- or pathogen-
associated molecular patterns; NBT: Nitroblue tetrazolium; NHR: Non-host
resistance; Pst: Puccinia striiformis f. sp. tritici; PTI: PAMP-triggered immunity;
qRT-PCR: Quantitative realtime-PCR; SA: Salicylic acid; SSV: Substomatal
vesicle.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YLC designed experiments, performed the experiments and wrote
manuscript. HCZ designed experiments and provided assistance in some
experiments. JNY performed cytological experiments and provided assistance
in some experiments. XJW and JRX provided advice for experiments and
revised the manuscript. GRW prepared samples and collected data. LLH
coordinated the experiments and analyzed the data. ZSK conceived the
project, helped design the experiments and wrote the manuscript. All
authors read and approved the final manuscript.

Acknowledgments
This study was financially supported by Modern Agro-industry Technology
Research System in China, the National Natural Science Foundation of China
(No. 30930064), the Specialized Project of Transgenic Crops of Ministry of
Science and Technology of China (2009ZX08009-051B) and the 111 Project
from the Ministry of Education of China (B07049).

Author details
1State Key Laboratory of Crop Stress Biology for Arid Areas and College of
Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100,
People’s Republic of China. 2College of Life Sciences, Northwest A&F
University, Yangling, Shaanxi 712100, People’s Republic of China.
3Department of Botany and Plant Pathology, Purdue University, West
Lafayette, IN 47907, USA.

Received: 2 February 2012 Accepted: 7 June 2012
Published: 21 June 2012

References
1. Lipka U, Fuchs R, Kuhns C, Petutschnig E, Lipka V: Live and let die-

Arabidopsis nonhost resistance to powdery mildews. Eur J Cell Biol 2010,
89:194–199.

2. Dangl JL, Jones JDG: Plant pathogens and integrated defence responses
to infection. Nature 2001, 411:826–833.

3. Schulze-Lefert P, Bieri S: Recognition at a distance. Science 2005,
308:506–508.

4. Mysore KS, Ryu CM: Nonhost resistance: how much do we know? Trends
Plant Sci 2004, 9:97–104.

5. Ayliffe M, Jin Y, Kang Z, Persson M, Steffenson B, Wang S, Leung H:
Determining the basis of nonhost resistance in rice to cereal rusts.
Euphytica 2011, 179:33–40.

http://www.biomedcentral.com/content/supplementary/1471-2229-12-96-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2229-12-96-S2.doc


Cheng et al. BMC Plant Biology 2012, 12:96 Page 11 of 12
http://www.biomedcentral.com/1471-2229/12/96
6. Thordal-Christensen H: Fresh insights into processes of nonhost
resistance. Current Opinion in Plant Biology 2003, 6:351–357.

7. Niks RE, Marcel TC: Nonhost and basal resistance: how to explain
specificity? New Phytol 2009, 182:817–828.

8. Zipfel C: Pattern-recognition receptors in plant innate immunity.
Curr Opin Immunol 2008, 20:10–16.

9. Jones JDG, Dangl JL: The plant immune system. Nature 2006, 444:323–329.
10. Schulze-Lefert P, Panstruga R: A molecular evolutionary concept

connecting nonhost resistance, pathogen host range, and pathogen
speciation. Trends Plant Sci 2011, 16:117–125.

11. Mellersh DG, Heath MC: An investigation into the involvement of defense
signaling pathways in components of the nonhost resistance of
Arabidopsis thaliana to rust fungi also reveals a model system for
studying rust fungal compatibility. Molecular Plant-Microbe Interactions
2003, 16:398–404.

12. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL,
Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC: SNARE-protein-
mediated disease resistance at the plant cell wall. Nature 2003,
425:973–977.

13. Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J,
Brandt W, Rosahl S, Scheel D: Pre- and postinvasion defenses both
contribute to nonhost resistance in Arabidopsis. Science 2005,
310:1180–1183.

14. Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P,
Lipka V, Somerville S: Arabidopsis PEN3/PDR8, an ATP binding cassette
transporter, contributes to nonhost resistance to inappropriate
pathogens that enter by direct penetration. The Plant Cell 2006,
18:731–746.

15. Voegele RT: Uromyces fabae: development, metabolism, and interactions
with its host Vicia faba. FEMS Microbiol Lett 2006, 259:165–173.

16. Ayliffe M, Singh R, Lagudah E: Durable resistance to wheat stem rust
needed. Current Opinion in Plant Biology 2008, 11:187–192.

17. Stokstad E: Plant pathology. Deadly wheat fungus threatens world’s
breadbaskets. Science 2007, 315:1786–1787.

18. Heath MC: Light and electron microscope studies of the interactions of
host and non-host plants with cowpea rust-Uromyces phaseoli var.
vignae. Physiological Plant Pathology 1974, 4:403–408. IN401-IN404, 409–414.

19. Heath MC: Partial characterization of the electron-opaque deposits
formed in the non-host plant, French bean, after cowpea rust infection.
Physiological Plant Pathology 1979, 15:141–144. IN145-IN146, 145–148.

20. Heath MC: Resistance of plants to rust infection. Phytopathology 1981,
71:971–974.

21. Niks R: Comparative histology of partial resistance and the nonhost
reaction to leaf rust pathogens in barley and wheat seedlings.
Phytopathology 1983, 73:60–64.

22. Niks R: Haustorium formation by Puccinia hordei in leaves of
hypersensitive, partially resistant, and nonhost plant genotypes.
Phytopathology 1983, 73:64–66.

23. Hoogkamp T, Chen WQ, Niks R: Specificity of prehaustorial resistance to
Puccinia hordei and to two inappropriate rust fungi in barley.
Phytopathology 1998, 88:856–861.

24. Shafiei R, Hang C, Kang JGU, Loake GJ: Identification of loci controlling
non-host disease resistance in Arabidopsis against the leaf rust
pathogen Puccinia triticina. Molecular Plant Pathology 2007, 8:773–784.

25. Azinheira HGAHG, Silva MCSMC, Talhinhas PTP, Medeira CMC, Maia IMI,
Anne-Sophie Petitot ASP, Fernandez DFD: Non-host resistance responses
of Arabidopsis thaliana to the coffee leaf rust fungus (Hemileia vastatrix).
Botany 2010, 88:621–629.

26. Zhang H, Wang C, Cheng Y, Wang X, Li F, Han Q, Xu J, Chen X, Huang L,
Wei G: Histological and molecular studies of the non-host interaction
between wheat and Uromyces fabae. Planta 2011, 234:979–991.

27. Prats E, Martinez F, Rojas-Molina M, Rubiales D: Differential effects of
phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, and
energetic metabolism inhibition on resistance of appropriate host and
nonhost cereal-rust interactions. Phytopathology 2007, 97:1578–1583.

28. Jafary H, Albertazzi G, Marcel TC, Niks RE: High diversity of genes for
nonhost resistance of barley to heterologous rust fungi. Genetics 2008,
178:2327–2339.

29. Ayliffe M, Devilla R, Mago R, White R, Talbot M, Pryor A, Leung H: Nonhost
resistance of rice to rust pathogens. Molecular Plant-Microbe Interactions
2011, 24:1143–1155.
30. Diego R: Faba beans in sustainable agriculture. Field Crops Research 2010,
115:201–202.

31. Bennett MD, Leitch IJ: Nuclear DNA amounts in angiosperms. Ann Bot
1995, 76:113–176.

32. Ellis J: Insights into nonhost disease resistance: Can they assist disease
control in agriculture? The Plant Cell 2006, 18:523–528.

33. Huitema E, Vleeshouwers VGAA, Francis DM, Kamoun S: Active defence
responses associated with non-host resistance of Arabidopsis thaliana to
the oomycete pathogen Phytophthora infestans. Molecular Plant
Pathology 2003, 4:487–500.

34. Perumalla C: Effect of callose inhibition on haustorium formation by the
cowpea rust fungus in the non-host, bean plant. Physiol Mol Plant Pathol
1989, 35:375–382.

35. Škalamera D, Jibodh S, Heath MC: Callose deposition during the
interaction between cowpea (Vigna unguiculata) and the monokaryotic
stage of the cowpea rust fungus (Uromyces vignae). New Phytol 1997,
136:511–524.

36. Prats E, Llamas MJ, Rubiales D: Characterization of resistance mechanisms
to Erysiphe pisi in Medicago truncatula. Phytopathology 2007,
97:1049–1053.

37. Mittler R: Oxidative stress, antioxidants and stress tolerance. Trends Plant
Sci 2002, 7:405–410.

38. Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P,
Fincher GB: An Arabidopsis callose synthase, GSL5, is required for wound
and papillary callose formation. The Plant Cell 2003, 15:2503–2513.

39. Levine A, Tenhaken R, Dixon R, Lamb C: H2O2 from the oxidative burst
orchestrates the plant hypersensitive disease resistance response. Cell
1994, 79:583–593.

40. Osbourn AE: Preformed antimicrobial compounds and plant defense
against fungal attack. The Plant Cell 1996, 8:1821–1831.

41. Van Loon L, Rep M, Pieterse C: Significance of inducible defense-
related proteins in infected plants. Annu Rev Phytopathol 2006,
44:135–162.

42. Van Loon L, Van Strien E: The families of pathogenesis-related proteins,
their activities, and comparative analysis of PR-1 type proteins. Physiol
Mol Plant Pathol 1999, 55:85–97.

43. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC,
Manners JM: Coordinated plant defense responses in Arabidopsis
revealed by microarray analysis. Proc Natl Acad Sci 2000, 97:11655–11660.

44. Glazebrook J: Contrasting mechanisms of defense against biotrophic and
necrotrophic pathogens. Annu Rev Phytopathol 2005, 43:205–227.

45. Mauch F, Mauch-Mani B, Boller T: Antifungal hydrolases in pea tissue: II.
Inhibition of fungal growth by combinations of chitinase and β-1,
3-glucanase. Plant Physiol 1988, 88:936–942.

46. Edreva A: Pathogenesis-related proteins: research progress in the last
15 years. Plant Physiol 2005, 31:105–124.

47. Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH: Pathogenesis-related
protein 10 isolated from hot pepper functions as a ribonuclease in an
antiviral pathway. The Plant Journal 2004, 37:186–198.

48. Liu JJ, Ekramoddoullah AKM: The family 10 of plant pathogenesis-related
proteins: Their structure, regulation, and function in response to biotic
and abiotic stresses. Physiol Mol Plant Pathol 2006, 68:3–13.

49. Leon J, Lawton MA, Raskin I: Hydrogen peroxide stimulates salicylic acid
biosynthesis in tobacco. Plant Physiol 1995, 108:1673–1678.

50. Devadas SK, Enyedi A, Raina R: The Arabidopsis hrl1 mutation reveals
novel overlapping roles for salicylic acid, jasmonic acid and ethylene
signalling in cell death and defence against pathogens. The Plant Journal
2002, 30:467–480.

51. Kuźniak E, Urbanek H: The involvement of hydrogen peroxide in plant
responses to stresses. Acta Physiologiae Plantarum 2000, 22:195–203.

52. Gutierrez N, Giménez MJ, Palomino C, Avila CM: Assessment of candidate
reference genes for expression studies in Vicia faba L. by real-time
quantitative PCR. Mol Breed 2010, 28:13–24.

53. Kang Z, Shang H, Li Z: Fluorescence staining technique of wheat rust
tissue. Plant Protection 1993, 19:27 (in Chinese).

54. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB: Subcellular
localization of H2O2 in plants. H2O2 accumulation in papillae and
hypersensitive response during the barley-powdery mildew interaction.
The Plant Journal 1997, 11:1187–1194.

55. Wang CF, Huang LL, Buchenauer H, Han QM, Zhang HC, Kang ZS:
Histochemical studies on the accumulation of reactive oxygen species



Cheng et al. BMC Plant Biology 2012, 12:96 Page 12 of 12
http://www.biomedcentral.com/1471-2229/12/96
(O2
- and H2O2) in the incompatible and compatible interaction of wheat-

Puccinia striiformis f, sp, tritici. Physiol Mol Plant Pathol 2007, 71:230–239.
56. Hood M, Shew H: Applications of KOH-aniline blue fluorescence in the

study of plant-fungal interactions. Phytopathology 1996, 86:704–708.
57. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using

real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods
2001, 25:402–408.

doi:10.1186/1471-2229-12-96
Cite this article as: Cheng et al.: Characterization of non-host resistance
in broad bean to the wheat stripe rust pathogen. BMC Plant Biology 2012
12:96.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Type I NHR to Pst on broad bean
	Growth and development of Pst on broad bean
	Histochemical evaluation of broad bean NHR response to Pst

	link_Tab1
	link_Fig1
	Quantitative &b_k;real-&e_k;&b_k;time&e_k; PCR (qRT-PCR) of seven candidate &b_k;defense-&e_k;&b_k;related&e_k; genes

	link_Fig2
	Discussion
	link_Fig3
	link_Fig4
	link_Tab2
	link_Fig5
	link_Fig6
	Conclusions
	Methods
	Plants, pathogens and inoculation
	Light microscopy
	Scanning electron microscopy
	Histochemical analysis
	RNA extraction and cDNA synthesis
	Identification of &b_k;defense-&e_k;&b_k;related&e_k; genes
	Quantitative &b_k;real-&e_k;&b_k;time&e_k; PCR analysis
	Statistical analyses

	Additional files
	Competing interests
	Authors´ contributions
	Acknowledgments
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56
	link_CR57

