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Abstract

Background: In plants, sucrose synthase (Sus) is widely considered as a key enzyme involved in sucrose
metabolism. Several paralogous genes encoding different isozymes of Sus have been identified and characterized in
multiple plant genomes, while limited information of Sus genes is available to date for cotton.

Results: Here, we report the molecular cloning, structural organization, phylogenetic evolution and expression
profiles of seven Sus genes (GaSusT to 7) identified from diploid fiber cotton (Gossypium arboreum). Comparisons
between cDNA and genomic sequences revealed that the cotton GaSus genes were interrupted by multiple
introns. Comparative screening of introns in homologous genes demonstrated that the number and position of Sus
introns are highly conserved among Sus genes in cotton and other more distantly related plant species.
Phylogenetic analysis showed that GaSus!, GaSus2, GaSus3, GaSus4 and GaSus5 could be clustered together into a
dicot Sus group, while GaSus6 and GaSus/ were separated evenly into other two groups, with members from both
dicot and monocot species. Expression profiles analyses of the seven Sus genes indicated that except GaSus2, of
which the transcripts was undetectable in all tissues examined, and GaSus7, which was only expressed in stem and
petal, the other five paralogues were differentially expressed in a wide ranges of tissues, and showed development-

dependent expression profiles in cotton fiber cells.

Conclusions: This is a comprehensive study of the Sus gene family in cotton plant. The results presented in this
work provide new insights into the evolutionary conservation and sub-functional divergence of the cotton Sus
gene family in response to cotton fiber growth and development.
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Background

Sucrose is the major form of photosynthate for export
from the source leaves into cellular metabolism of most
plants [1]. The transfer of sucrose to the sink organs
often requires its cleavage by two key enzymes: invertase
(Inv), which hydrolyzes sucrose into glucose and fruc-
tose, and sucrose synthase (Sus), which is capable of
catalyzing a reversible reaction but preferring to convert
sucrose and UDP into fructose and UDP-glucose [2-4].
Both of the two enzymes have been demonstrated to be
tightly linked with the processes of phloem unloading
[5,6], and the Sus has also been well characterized in
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various plants as playing crucial roles in regulation of
carbon partitioning into various pathways that important
for storage functions and metabolic structure of the
plant cell [7,8]. For instance, Sus cleavage activity has
been documented repeatedly to be highly correlated with
sink strength of various starch storing organs including
potato tubers, carrot roots, maize kernels and pea
embryos [9-13]. Sus activity is also proposed to be re-
sponsible for cellulose synthesis, by supplying UDP-
glucose as substrates, which has been shown to be es-
sential for cell wall thickening and cotton fiber cell de-
velopment [14-16]. In addition, Sus activity is also
considered to be associated with other important meta-
bolic processes such as sugar import [17,18], environ-
mental stresses response [19,20], and nitrogen fixation
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as well as arbuscule maturation and maintenance in
mycorrhizal roots of legumes [21,22].

The identification and subsequent characterization of
the genes encoding plant sucrose synthase is the first
step towards understanding their physiological roles and
metabolic mechanism involved in different growth pro-
cesses. Recent studies have revealed that Sus isozymes
are encoded by a small, multigene family that comprises
at least three Sus genes in the most plant species. With
the completion of the genome sequence analysis, recent
studies showed that model plant species, Arabidopsis
and rice, both contain an Sus gene family with six dis-
tinct active Sus genes, suggesting gene expansion in
higher plants during evolution [23,24]. Similarly in the
model legume Lotus japonicus, at least six Sus genes are
known to exist in the Sus gene family [25]. Studies on
these Sus sequences and phylogenetic relatedness
revealed that structural conservation and functional di-
vergence occurred within the gene family during evolu-
tion. Members of the Sus gene family in many plant
species are divergent in function and differentially
expressed during plant development. For example, maize
harbors a Sus family containing at least three distinct
genes, Shl, Susl and Sus3. Shl is most abundantly
expressed in developing endosperm, and has the domin-
ant role in cell wall synthesis. SusI is expressed in a wide
range of tissues, but plays a major role in starch synthe-
sis [26,27]. The pea Sus gene family also includes at least
three divergent members, Susl, Sus2 and Sus3. Susl is
ubiquitously and highly expressed in the developing
seed. Sus2 is mainly expressed in older testas and leaves,
while Sus3 is weakly expressed only in flowers and
young testas. Furthermore, the lack of Susi activity in
mutant seeds and root nodules could not be compensated
by Sus2 and Sus3 [13]. Arabidopsis contains three major
Sus gene classes with distinct but partially overlapping ex-
pression profiles, and the specific roles have been assigned
for each gene by extensive studies of corresponding knock-
out mutants [20]. In other plant species, such as rice, Lotus
japonicus and citrus, Sus genes have also been demon-
strated to be expressed in tissue-specific and development-
dependent patterns [24,25,28,29]. In all cases, the differen-
tial expression of Sus genes implies that each Sus isoform
may have evolved into specialized functions in different
tissues. Although Sus genes in a few plant species such as
Arabidopsis, have been well studied, our knowledge of cot-
ton Sus genes, especially their evolutionary mechanisms
and potential functions in fiber growth and development,
needs to be well explored.

Cotton fiber is not only the world's most important tex-
tile material, but also the ideal experimental system for
studying the mechanism of cell development based on its
single-celled profile [30]. Cotton fiber is originated from
epidermal cells of ovules, and its growth and development
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is a highly gene-regulated process involving four distinct,
but overlapping stages: initiation, elongation, secondary
wall synthesis, and maturation [31]. Many genes, including
the Sus genes, have been proposed to be involved in con-
trolling cotton fiber development [32]. Previous studies
based on southern blot analysis suggested the existence of
a small gene family encoding different Sus isoforms within
the tetraploid upland cotton genome [33], but to date
limited works to characterize these particular Sus
genes have been reported, except for SS3 (GhSus3, ac-
cession no. U73588), which was isolated previously
from an upland cotton fiber cDNA library and has been
demonstrated to play an important role in ovule develop-
ment and fiber cell initiation [34]. For the purpose of gain-
ing a comprehensive understanding of the molecular and
evolutionary characterization as well as the possible func-
tions of cotton Sus family, it is of great necessity and sig-
nificance to identify and subsequently determine the
expression patterns of any members belonging to this
gene family.

In the current work, we reported the identification and
characterization of seven Sus genes in cotton species and
investigated their expression patterns at the transcrip-
tional level. The analysis in this study mainly focused on
the gene identification, evolutionary relationship, exon/in-
tron organization and tissue-specific expression patterns
of each member of the cotton Sus gene family. Therefore,
our results obtained from this study will provide a founda-
tion and framework for the further studies to gain a com-
prehensive understanding of the physiological roles of
each cotton Sus gene in regulating the cotton plant
growth, especially for the growth and development of cot-
ton fiber.

Results

Cloning and sequence analysis of Sus cDNAs in diploid
fiber cotton

In order to identify the potential Sus homologues in cot-
ton, comparisons between coding sequences of plant
known Sus genes were performed and regions exhibiting
somewhat similarities were picked out and used to design
multiple pairs of degenerate primers for PCR amplification.
The genomic DNA of diploid fiber cotton (G. arboreum),
rather than the allotetraploid cotton species, was used as a
template, to avoid the laborious analysis of allelic sequence
variation within the At and Dy sub-genomes. Eventually,
five distinct non-allelic genomic fragments exhibiting sub-
stantial homology to plant Sus genes were identified by
massive sequencing of the PCR-generated clones. In
addition, using the mRNA sequences of Arabidopsis Sus
genes as queries, the cotton EST database was extensively
searched, leading to the assembly of other two additional
contigs as putative Sus genes. The seven newly isolated
gene fragments were named as GaSusI to 7, respectively,
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according to the naming convention for Sus genes in other
plant species. 5" and 3' RACE subsequently resulted in the
cloning of the full-length ¢cDNAs of these genes, except
GaSus2, of which the mRNA could not be detectable in all
tissues of cotton (described later).

Molecular analysis of the full-length deduced polypep-
tides indicated that the putative proteins of these cotton
Sus genes contain 796—824 amino acids (predicted 90.26-
93.14 kDa in molecular weight) with their isoelectric point
calculated to lie between 6.26 and 7.27 (Additional File 1),
similar to the molecular feature of Sus isozymes from
other plant species. Additionally, all the GaSus amino acid
sequences, except GaSus2, share the conserved Ser resi-
due in the N-terminal regions (Figure 1), which has been
documented to be phosphorylated by the Ser/Thr protein
kinase in maize [35,36]. Furthermore, using the Interpros-
can algorithm (http://www.ebi.ac.uk/interpro/), two con-
served, sucrose synthase and the glucosyl-transferase
domains, which have been suggested to be typical signa-
tures of Sus proteins were also identified in all the cotton
GaSus genes (Figure 1). These findings led to the sugges-
tion that these newly isolated genes encode different iso-
zymes of sucrose synthase in cotton.

Multiple sequence alignment using the DNAMAN al-
gorithm revealed high levels of similarities between the
coding sequences (CDSs) of GaSusl to 5, within which
GaSusl, GaSus3 and GaSus4 were found to be the more
closely related genes, sharing much higher sequence
identities (85.4-87.8% at the nucleotide level, and 94.3-
94.9% at the amino acid level), compared to the other
paralogues (Table 1). Moreover, except GaSus3 had a
Val/Glu deletion at the third last position of the C ter-
mini, there is only 3% substitution rate at amino acid
level between the three proteins compared with each
other (Additional File 2). The other two paralogues,
GaSus6 and GaSus7, had relatively lower levels of iden-
tities when compared to GaSusI to 5, or compared with
each another (Table 1).

Exon/Intron organization of the cotton Sus gene family

Comparative analysis of the exon/intron gene structure may
provide some clues for the understanding of the evolution-
ary mechanisms underlying the genesis of family genes. In
order to investigate the exon/intron structure of the cotton
GaSus genes, seven genomic DNA sequences, encompass-
ing putative overall coding regions of GaSusl to 7, were
cloned from the G. arboreum genome. A comparison be-
tween the cDNA (except GaSus2) and genomic sequences,
revealed that these GaSus genes are interrupted by multiple
introns. As shown in Figure 2a (to highlight the exon struc-
tures, the size of exons, introns and non-coding regions
were not actually presented), GaSusl, GaSus3 and GaSus7
all contain 11 introns in their coding regions (between the
start and stop codons), while GaSus4 and GaSus6 are
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characterized by one and three more introns (12 and 14
introns, respectively) than the three paralogues. However,
GaSus5 is characterized by having only 9 introns. As the ab-
sence of the cDNA sequence, the exon/intron structure of
GaSus2 was predicted online using the FGENESH algorithm
(http://linux1.softberry.com/berry.phtml?topic=fgenesh&
group=programs&subgroup=gfind), which resulted in
the definition of 10 putative introns within its putative cod-
ing regions. The last intron, with a length more than one kb,
was predicted to be the largest intron located in the cotton
Sus gene family. Comparative analysis of these introns indi-
cated a marked greater difference in sequence similarities
compared to that shown by the exons in GaSus genes (data
not shown). In addition, most of the intron sizes of the
seven GaSus genes range within 70—110 bp in length, except
GaSus6, within which 57% (8 of 14) introns are larger than
120 bp in length (Figure 2a). Interestingly, the third largest
intron (648 bp) was found to locate in the 5' untranslated
regions (UTR) of GaSus3, and was very close (9 bases) to
the ATG start codon. In addition, all the introns confer the
GT-AG splicing rule, except for the sixth intron of GaSus?,
which was spliced at the unusual GC-AG splicing sites.
Similar to the high identities shown by the alignment
of amino acid sequence, high conservation of exon/in-
tron structures could also been observed from the sche-
matic representation of cotton Sus genes. As observed in
Figure 2b, most of the introns are shared (located in the
same position related to the position of exons) between
the Sus homologues not only in cotton, and also in the
phylogenetically distant species Arabidopsis and rice.
Moreover, GaSus7 exhibited an extension of the last
exon compared to the other GaSus genes, such feature
are also observed, but more conspicuous in the Arabi-
dopsis AtSus6 and the rice OsSus6 orthologues. Align-
ments of both the cDNA sequences and their predicted
amino acid sequences between GaSus7, AtSus6 and
OsSus6 revealed poor identities in the extended regions
of the last exons, but much high identities in the other
coding sequence (data not shown). Moreover, similarity
searches with the BLAST algorithm against the NCBI
database using the extended regions of the three ortho-
logues failed to hit any sequence, except themselves, that
showed significant similarities. In addition, careful scru-
tiny of the exon/intron structure in coding regions of
Sus genes from two dicots (cotton and Arabidopsis) and
two monocots (rice and maize) revealed that among
these 21 sequences, introns were present at a total of 16
positions, in which 14 introns, in conserved positions,
were observed to be contained in most of the Sus
sequences from the four distantly related species, sug-
gesting that ancestral Sus genes common to monocots
and dicots contained 14 introns in these positions. The
presence of an intron in the 5' untranslated region of
cotton GaSus3 sequence and introns 15 and 16 at novel
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GaSusl MAERALTRVHSLRERLDSIMTAHRNEILALLSRIEG ELHECIILEFEAIF. .EENRKKLADGAFFEILKASWSIVL LAVRE 116
GaSus2 MA....cov0inus ERFDEIMTSHRNEILFFLLRIEG ECHHCIALLIE...... CNRRKLADGAFYEILRAL TN S LA IZE! 101
GaSus3 MADRVITRVHSLRERLDETMLAHRNEILALLSRIEG! ILGHHQITILEFEAIF. . EENRKKLANGAEFEVLKAS IVL] LAVEE 116
GaSus4 MAERVITRVHSLRERLDDTIM IAHRNEVLALLTRIEG LGHHGIILEFEAIF. .EETRKKLADGREFSEILRAY IVL LAVEE! 116
GaSus5 | e SISVCERLGESMATHPCCARSIESRIES HESCRLLSVLD..... REAGNGALDEMVVEVERS' VNS LATES. 107
GaSusé MANPKLGRSPSMRDRVEDTM SAHRNELVALESRYVA ECPHTLIDELENVVGDCKAREKLSDEFESEVEKS. IIL] IAVEE 118
GaSus7 MISTSIGRLSDSIACNIRNAMRCSCSYMRRCESKYME! EKABELRDEEE. ...... KVMLODENETLGIMESSH VTR Y IF 13 113
Consensus 1 gk i qea PV r
Gasusl  REEBELVEG.SSNANE E ENRALSAKEEED . KESMHERTERVECHKER. . . ... NMMIBERIGNLNSIG EVAEAETEYAEFE 228
GaSus2 H CEVEG . SANGNF' E JLNRHLSATLFEDCNENMHPMIEFWK LECLFRLRMPCLNMMLIR EKICNL! R| EYWDTWPSEILYAEFK 220
GaSus3  HERSELVIG.SSNGNE E LNRHLSAKLEEL . KESMHEMLERMRVECHKER NMMIRERICNLNAICHMRNSEMCTMEPETECAEFE 228
GaSus4¢  HERELVIEG.SANGNE E LNRHLSAKLEHD . KESMHEWLEEWKVHCHKEK . . . . . . DRIGNLNSHG EYWGIMEAETEYTELE 228
GaSusS  RIESELVBG.SSNGEE G LNRHLSAKLEGD . KENLSIMLERMCIHCGKEE. . . . . . GMLIRDRIGCVNSHCHANMRHASE M TCMTSCTEYSVEE 219
GaSusé R ALMsY . GECNHE 14 [ENRHLSSNMERN . KDSLEPMINEMRABRYKGH . . .ALMIRERICSIERMCE. CHMAKMSPCABYSEFE 230
GaSus?7 R TTASENWSKDEN, E [VSKYITSRESGS . VCNACEWVDYMLSLEYCEE. .. ... RIMIREILNTAAKMCLAWT VSWSIWERCTEXCSIE 226
Consensus ke d le df 1 1 n 1 1l ae 1 1
GaSusl G 348
GaSus2 S 340
GaSus3 G 348
GaSus4 G 348
GaSusS G 339
GaSusé N 350
GaSus?7 YILDGVE PLA GTi O 346
Consensus pdtggqvvyildqur rl pda gt ¢
GaSusl 468
GaSus2 460
GaSus3 468
GaSus4 468
GaSuss 459
GaSusé 470
GaSus7 T IAHAL 466
Consensus tq tiahalektky
GaSus1 ExBIKEEE S ¥ seV el eBHuC I 588
GaSus2 TNEXC(RLEHEE P YGRVERERYIC =T 580
GaSus3 TEEK! KHEE P! 'Y SKV! HLC I see
GaSus4 EXKRELKHEEP Y SKVERERHLC I 588
GaSusS TEEK! KKEE P! SEV HLC \{ 579
GaSusé SEKE! TALEG. FLFR HIG L 590
GaSus?7 TETGHRFTSEE P YSKEV HIG I 586
Consensusann r h ie 11 ne l dr kp £ marld vkn tgl
GaSusl 707
GaSus2 699
GaSus3 707
GaSus4 E‘ 707
GaSusS Ty 698
GaSusé % 710
GaSus7 1 V K < (g 3 CI o T GEA VMERN LETFATR] 706
Consensus e y kn 1lr 1 nlv v skd ee ae km 1 Yy 1lgqrwi g r rngelyr d kg fvgpa yeafgltv eam cglptfat ggpaeii g sg
GaSusl Y crRE I LviERE R ToE S v T R cfserririref igavsnoor e s L ENE YK vRKLAE VEE 806
GasSus2 Y CERKAREL IVGRIERSR KD SHE NE KIMSEGLLTL TGV IR EV SKLCRRK SREM LEMEY AN YRKLVE QM 1 GEE 798
GaSus3 YHESCAADILY KOjESHIDK KIMSERLLTLT LEMEYMMXYRELAE EE 805
GaSus4¢ YHANCARE T LV CHER KEfE SHEND A8 CINSERLLTLT LEMEY MR YRKLAE EEE 806
GaSusS SY¥NGS LAAETLA E! IADSS YR CE 4 GINMSEXLLTLT IEML MYNNRVE VE 796
GaSusé HLBCTAELLA' EDSSHR TK KIMSERLMILA LEMEY IMKFRELVK. SCD 809
GaSus? F TNESESSNKIA E TNSAYENG RIMANKVLINMGC ICAEYNMMFRNLVE! SCETCCPDSKPAARPCFTPRE 823
Consensusf i p d ff ck p w s glkri e ytw y h 3 vpl -
Figure 1 Predicted amino acid sequences of the seven cotton Sus genes GaSus1-7 (accession no. GaSus1, JQ995522; GaSus2,
JQ995523; GaSus3, JQ995524; GaSus4, JQ995525; GaSus5, JQ995526; GaSus6, JQ995527; GaSus7, JQ995528). Sequence alignment
analysis was performed using Multiple alignment program wrapped within the DNAMAN 6.0 software (http://www.lynnon.com/). Identical amino
acids are shaded and gaps are indicated by dots. The conserved serine residue for phosphorylation by Ser/Thr protein kinase is showed by an
arrowhead. The characteristic sucrose synthase domain (broken underline) and a glycosy! transferases domain (single underline) were identified
by the Interproscan algorithm (http://www.ebi.ac.uk/Tools/pfa/iprscan/). The extended C-terminal region of GaSus/ is shown by double
underlines.

positions in the Arabidopsis AtSus5 and rice OsSus5
sequences may represent derived characters during evo-
lution. Several of the Sus genes lack one or more introns
(Figure 2a, b and Figure 3), led to the suggestion that
this occurred by intron loss. Interestingly, intron loss
events occurred mainly associated with the fifth, sixth
and 12th introns of dicots Sus genes, resulting in the
formation of relatively larger exons, such as 336, 432

and 564(567) bp- length exons in some cotton and Ara-
bidopsis homologues.

To further investigate evolutionary conservation and se-
quence divergence of Sus genes among different cotton
species, we also cloned the orthologues of the seven GaSus
genes from other three wild diploid cotton genomes: G.
anomalum (B,), G. sturtianum (C,) and G. raimondii (Ds),
as well as from an outgroup species Gossyploides kirkii (K).
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Table 1 Identity matrix for the seven GaSus coding sequences and their predicted amino acid sequences
Amino acid identity
GaSus1 GaSus2 GaSus3 GaSus4 GaSus5 GaSus6 GaSus7
Nucleotide identity GaSus - 86.1 949 944 774 712 557
GaSus2 83.1 - 86.2 86.7 770 683 570
GaSus3 87.1 834 - 943 77.1 716 550
GaSus4 854 839 87.8 - 766 708 552
GaSus5 74.8 750 75.2 74.5 - 64.3 55.1
GaSusé 67.7 66.9 68.5 68.5 64.7 - 56.0
GaSus7 585 59.8 59.2 587 59.0 595 -

Sequence comparison and gene structure prediction of the
orthologous genes from the other four diploid cotton rela-
tives revealed identical amino acid sizes (Additional File 1),
consistent exon/intron structures and very high simialities
not only in coding sequences, but also in noncoding
regions to the corresponding orthologs in G. arboreum
(Additional File 3). Moreover, comparisons between the
Sus gene sequences in the five cotton diploid species per-
mitted the identification of several SSRs (simple sequence
repeats; microsatellites) located within different introns of
the orthologues of seven Sus genes (Additional File 3),
which might be further used to develop SSR or intronic
polymorphism markers in cotton lineages.

Phylogenetic analysis of cotton Sus genes and other
plant Sus homologs
In order to carry out a comprehensive analysis of evolu-
tionary relationships among Sus gene families between
cotton and other plant species, including the seven iso-
forms of cotton Sus, a total of 59 plant Sus amino acid
sequences, representing 17 species, were aligned with the
ClustalX program and used to construct an unrooted tree
for phylogenetic analysis using Neighbour-Joining method.
We also performed a bootstrap analysis (1000 replicates)
to determine the robustness of the phylogram's topology.
The phylogenetic tree analysis revealed both relatively
deep evolutionary root and the existence of more recent
duplications for the Sus genes. As shown in Figure 4, three
major groups of Sus proteins are inferred (for simplicity in
this paper, the three groups were named as Sus I, II and
III, respectively), as they are supported by high bootstrap
values >95%. Genes from dicot- and monocotyledonous
plants are found in all the three groups, suggesting their
evolutionary divergence before the common ancestor of
dicots and monocots. In addition, Sus proteins in Sus I
group can be well classified into two distinct subclades,
consisting of one dicot-specific Sus I group and one
monocot-specific Sus I group.

The dicot Sus I group contains the proteins solely from the
dicotyledonous plant species, in which they are subgrouped
by phylogeny. For example, one group of solanaceous Sus

proteins, including members from tomato and potato species,
forms a cluster together with the two Daucus carrot proteins,
DcSusl and DcSus2. These proteins are part of the largest
group that includes brassicaceous, daucus, solanaceous, legu-
minous, populus and citrus proteins but not a single cotton
proteins. For cotton, five of the seven GaSus genes (GaSusl
to 5) fallen into this dicot group, and cluster together by
forming an independent cotton clade to the exclusion of cit-
rus, Arabidopsis, as well as other dicots genes, suggesting that
a single Sus gene has expanded through independent duplica-
tion within the cotton lineages occurred after cotton separ-
ation with citrus and Arabidopsis species. Within the cotton
clade, three paralogues, GaSusl, GaSus3 and GaSus4, which
share a very high degree of sequence similarities, grouped
more closely in the phylogenetic tree. The short branches
separating the three genes suggesting that duplications that
gave rise to them occurred relatively recently. In addition,
GaSus5 was found to be unambiguously distant from the
other four paralogues within this group. In contrast to dicot
Sus I group, the monocot Sus I group thus includes members
exclusively from monocot species, in which the proteins can
be divided into two subclasses. Both of the subclasses contain
Sus genes from rice, maize, wheat, barley and bamboo, sug-
gesting that some ancestor Sus genes had diverged before gra-
mineous species evolved into different plant lineages, and
then underwent independent evolution within each lineage.

Unlike cotton Sus genes expanded in dicot Sus I
group, the other two paralogues, GaSus6 and GaSus7,
were evenly separated into the other two groups, Sus II
and III, with members from both dicot and monocot
species. Additionally, in these two groups, genes from
dicots and monocots were not found in distinct sub-
groups, suggesting that the significant duplications that
gave rise to Sus II and III groups should be no younger
than the monocots/dicots split.

Expression analysis of the cotton Sus genes at different
developmental stages

Systematic analysis of the expression patterns of Sus
family genes can help to reveal their possible physio-
logical functions involved in different growth processes
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Figure 2 Exon/Intron structural organization of plant Sus genes. (A) Exon/intron structures of the seven sucrose synthase genes, GasSus! to
7, from diploid fiber cotton (G. Arboreum, A2). Black boxes denote exons within coding regions, and the lines connecting them represent introns.
Numbers in boxes or above lines represent the sizes (bp) of corresponding exons or introns, respectively. The 5' and 3' untranslated regions
(UTRs) are represented by blank boxes. For highlighting the conservation of exon structures, the sizes of exons, introns and non-coding UTRs are
not actually presented. (B) Exon/intron structures of the sucrose synthase genes, AtSusi-6 and OsSusi-6, from Arabidopsis and rice, respectively.

78 80 81 88 100
13

N 101 33I

167 225 567 139

in plant. In order to better learn the potential functions
of specific isoforms of Sus in cotton, the tissue-specific
expression of GaSus genes were firstly examined in vari-
ous cotton tissues, including roots, stems, petals and
young leaves, as well as fibers at different developmental
stages using semi-quantitative RT-PCR. It is worth to
point out that there is a very high sequence similarity
within the encoding sequence of some GaSus genes, and

their reverse primers were therefore designed within
their 3' untranslated regions to guarantee the primer
specificity. As shown in Figure 5, except GaSus2, of
which the transcripts was undetectable in all tissues
examined, and GaSus7, of which the transcripts could
only be detected in stem and petal, the other GaSus
transcripts were detected in a wide range of tissues and
showed distinct but partially overlapping expression
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Figure 3 Schematic presentation of the conservation of intron numbers and positions of Sus genes from four phylogenetically distant
plant species: cotton, Arabidopsis, rice and maize. Sequences are ordered according to the phylogenetic relationship of the corresponding
coding regions, as shown on the left. Intron positions are indicated in relation to amino acid sequence of the position of exons. Dashes indicate
the loss of introns in corresponding positions.

patterns, suggesting that Sus genes might be implicated
in a range of physiological processes in cotton plant.
Real-time RT-PCR was further performed to quantita-
tively determine the relative expression level of specific
GaSus gene in different tissues and in fibers at different
developmental stages (Figure 6a). The quantitative results
showed a similar expression profiles to those observed
from semi-quantitative RT-RCR. In detail, GaSusI was
expressed highly in petal and fiber at 15 dpa, and also to
some extent in stem, ovules and fibers at other develop-
mental stages, while very slightly in roots and leaves.
GaSus3 was ubiquitously expressed in all tissues, and the
transcription levels were highly detected in petal, ovule at
0 dpa and fiber at 15 dpa. In addition, the transcripts of
GaSus3 in fiber were decreased as the fiber development
from 0 to 10 dpa. GaSus4 was expressed very slightly in
stem, leaf and petal, and had a similar, but significant
lower expression tendency in fibers at different develop-
mental stages compared to GaSus3. The highest transcript
levels for GaSus5 was also detected in fiber at 15 dpa,

while very low expression levels for this gene was
observed in fibers around at 0 and 5 dpa, as well as in
root, leaf and petal In addition, transcripts in fibers were
continuously increasing with cotton fiber development
from 5 to 15 dpa, but declining observably at 20 dpa. The
expression pattern of the other two paralogues, GaSus6
and GaSus7, were highly divergent. GaSus6 was expressed
in all tissues examined, but with relatively low levels in
fibers. In contrast, GaSus7 showed distinct tissue-specific
patterns with its transcripts were only detectable in two
tissues: very weak in stems and much abundant in petals.
As it has been documented repeatedly that the activity
of Sus was highly correlated to cotton seed and fiber
growth and development, the relative transcription level
of five fiber-related GaSus genes were therefore quanti-
tatively compared in fiber cells at different developmen-
tal stages. As shown in Figure 6b, at fiber initiation and
early elongation stages (0-10 dpa), GaSus3 was the gene
that had significantly higher expression levels than other
paralogues in cotton Sus family. As the fiber develops
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(See figure on previous page.)

Figure 4 Phylogenetic analysis of cotton Sus genes and other plant Sus homologs. Unrooted phylogenetic tree of plant Sus proteins
constructed using the neighbor-joining method with MEGA 5.0 program. Isozymes and corresponding plant species are: cotton, GaSus1 to 7 (this
study); Potato, StSus1 to 4 [9]; Pea, PeaSus1 to 3 [13]; Wheat, TaSus1 and TaSus2 [15]; Arabidopsis thaliana, AtSus1 to 6 [23]; Rice, OsSus1 to 6 [24];
Lotus japonicus, LjSus1 to 6 [25]; Citrus, CitSus1, CitSus2 and CitSusA [29]; Bamboo, BoSus1 to 4 [37]; Tomato, LeSus1 and LeSus2 [38]; Carrot,
DcSus1 and DcSus2 [39]; Maize, ZmSh1, ZmSus1 and ZmSus3 [40]; Barley, HvSus1 and HvSus2 [41]; Sugarbeet, SbSS1 [42]; Sorghum, SbSus2
(accession no. FJ513325); Sugarcane, SoSus2 (accession no. AY118266); Populus, PtSusT to 7 [43].

further from 10 to 15 dpa, GaSus5 and GaSusl were be-
coming the predominant forms, contributing approxi-
mately 70% of the total amount of Sus transcripts in
fiber cells. However, with the fiber develop further from
15 to 20 dpa, the dominant position of GaSus5 was lost
and replaced by GaSusI and GaSus3.

Discussion

Recently, benefiting from the whole genome sequencing of
model plants, dozens of genes encoding Sus isozymes have
been identified from various plant species using the com-
parative genome approaches. Typically, the complete gen-
omic sequence of the model species Arabidopsis and rice
allows revealing a total of six Sus genes in each of the two
plants, representing the entire Sus gene members of two
groups of flowering plants, dicots and monocots. Although
the exact number of Sus genes in most of other plants
could not be reliably evaluated due to the incomplete
coverage of genome sequencing, cotton, however, appears
to have more distinct Sus genes than Arabidopsis and rice.
Previously four distinct genes encoding different types of
cotton Sus isoforms, SusA (GhSus3, accession no.
U73588), SusB, SusC and SusD, had been identified in the

tetraploid upland cotton species [44]. Our present work
through molecular cloning and database searching brings
the number of presently known members of cotton Sus
gene family to at least seven, comprising one of the largest
Sus gene families described thus far. Given the limited
knowledge of cotton Sus gene family for us to data, further
investigation of their evolutionary relationships, molecular
structures, as well as their expression patterns therefore
becomes an important step towards comprehensive under-
standing their molecular mechanism and possible func-
tions involved in different growth processes in cotton.

Evolutionary conservation and divergence of cotton Sus
genes

Although the evolution of multigene families involves
multiple mechanisms, comprehensive analysis of phylo-
genetic tree and exon/intron gene structures, to a certain
extent, allow us to make some generalizations and pre-
dictions about the possible origin of and relationships
between different isoforms of Sus, as well as their pos-
sible function. Plant Sus proteins have been historically
divided into at least three major groups (Susl, SusA and
New Group/NG) on the basis of phylogenetic tree and

-
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Figure 5 Semiquantitative RT-PCR analysis of the seven GaSus genes in cotton plants (G. arboreum, A2). The RNA were prepared from
different tissues and over fiber development: root (R), stem (S), young leaf (L), petal (P), ovule at O dpa (day post anthesis) and fiber samples from
bolls at 5, 10, 15, and 20 dpa. Primers specific to the seven GaSus were used, and the PCR products amplified from genomic DNA (g) containing
at least one introns were taken as controls to exclude any DNA contamination. A constitutive ubiquitin gene (UBQ7, accession no. DQ116441)
was used as an internal control to normalize differences in template concentrations.
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molecular structures analysis of their sequences [24,29].
Phylogenetic analysis of cotton GaSus genes and other
plant homologues in our work corroborated this classifi-
cation (for unification and simplification, in this study,
we renamed them as Sus I, II and III, respectively), and
further support the idea that higher plant species may
have at least one gene for each of the three groups [24].

The presence of five cotton Sus genes, GaSusl to 5, in
the Sus I group that cluster together with other dicot
genes and separately from multiple monocot Sus genes
is the direct evidence of that multiple gene duplication
events occurred after the monocot/dicot divergence both
within dicots and monocots, giving rise to two sub-
clades: dicot-specific Sus I group and the monocot-
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specific Sus I group. As the five cotton genes group to-
gether to the exclusion of citrus, Arabidopsis and other
dicot homologues in our phylogenetic tree, it is suggest-
ive of that gene duplication events that gave rise to the
five cotton Sus genes occurred after the separation of
cotton/citrus/Arabidopsis from a common ancestor. The
presence of one cotton Sus gene in each of the other
two groups, Sus II and III, with members from both
dicot and monocot species, indicating that Sus II and III
groups containing GaSus6 and GaSus7 are evolutionarily
older than dicot Sus I group containing GaSuslI to 5.

It has been well demonstrated in many duplicated gene
families that exon structure in homologues genes may
even be conserved despite low sequence conservation [45].
Differences in exon/intron structures, created by intron
deletions, insertions or both events, between paralogues
therefore could be used, to some extent, to estimate the
evolutionary history of gene families [46]. In the present
work, comparative screening of introns in homologous
genes indeed revealed that the number and position of
introns are highly conserved among Sus genes in cotton
and other more distantly related monocot plant species
(Figure 2a, b and Figure 3). As the majority of Sus
sequences in the three Sus groups contain 14 introns, in
conserved positions, it is tempting to speculate that the
gene duplications to arise three progenitors of Sus genes,
each containing 14 introns in conserved positions, oc-
curred early in the evolution of angiosperms and predated
the divergence of monocots and dicots as many of the
other gene families [47]. Interestingly, although the evolu-
tion of intron is considered to be under a low selection
pressure compared to exon sequences, it seems that Sus
genes in monocots tend to retain more introns than in
dicots, such a case occurred particularly apparently in the
Sus I group, in which members from dicot cotton and
Arabidopsis, without exception, have lost introns 5 and 12.
Since that members from other dicots, such as Legumino-
sae Lotus japonicus and Rutaceae citrus, of this group also
have lost the two introns [24,29], it thus led to the infer-
ence that at least twice rounds of intron loss events have
occurred in the evolution of the dicot Sus genes related to
Sus I group including the five cotton Sus paralogues
(GaSusl to 5), one relatively earlier event of concerted in-
tron loss of introns 5 and 12 occurred immediately after
the dicot/monocot split but predated the separation of cot-
ton and most of the other dicots. After this event, inde-
pendent events of intron loss of introns 2, 4, 6, 11 and 13
occurred related to different dicots members in Sus I
group. A comparison of the number and density of introns
in the gene structures of the five cotton paralogues belong
to the Sus I group further demonstrated that GaSus5 was
produced from relatively more ancient duplications in
comparison with its three paralogues GaSusI, GaSus3 and
GaSus4. Intriguingly, although Sus II group is thought to
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be evolutionarily older than dicot Sus I group, members in
Sus II group appear to have underwent a relatively slower
evolutionary rate, since that exon/intron structures of
dicot genes (including cotton GaSus6) in this group have
greater similarity to those of monocot Sus genes and also
to the putative ancestral Sus genes (Figure 3). The most re-
markable feature of the Sus III group is that members,
whether from dicots or monocots, without exception, ex-
hibit a 3' extension resulting in either a longer (AtSus6,
OsSus6 and GaSus?7) or additional exons (AtSusS5, LjSus6
and OsSus5) in their 3' regions, it is tempting to speculate
that a sequence with at least two introns had been intro-
duced to the 3' region of the progenitor of Sus III group
probably by an ectopic recombination that occurred before
the monocots/dicots splits. The absence of commonalities
on sequence and exon/intron structure in the extended
regions among different members may be due to that the
extended region did not involve in the definition of the
protein activity of Sus (Figure 1) and thus suffered a low
selection pressure during evolution. As the cotton GaSus7
have an exon/intron structure similar to the Arabidopsis
AtSus5 (except AtSusS have an additional intron and exon
in its extended 3' region), confirming that AtSusS, but not
AtSus6, is the orthologuous gene of cotton GaSus?7. This is
also indicative of that the loss of intron 1, 6 and 12 from
cotton GaSus7 were the events that occurred before the
separation of cotton and Arabidopsis lineages.

Synthesizing what we have learned from the phylogenetic
tree analysis and exon/intron structure comparison, we
proposed the following sequence of events to account for
the evolution of the cotton Sus gene family. The first rela-
tively earlier event that occurred before the split of mono-
cots and dicots led to the duplication of an ancestral gene
containing 14 introns to progenitors of Sus6 and Sus7. A
second duplication that occurred also predated the mono-
cots/dicots split was associated with the arising of the pre-
cursor of Susl to 5. Following the divergence from a
common ancestor of citrus and Arabidopsis, a duplica-
tion occurred in cotton lineages and giving rise to
Sus5, which subsequently underwent independent evo-
lution and retained as a single gene, while its duplicate
has expanded into four paralogues (Susl to 4), among
which, GaSus3 and GaSus4 were produced from the
most recent duplication events and consequently be-
came the closest related genes in cotton Sus family,
their closeness is well reflected in the terminal sub-
groups of the phylogenetic tree (Figure 4). Therefore,
it might be unsurprising that GaSus4 would have a
tissue-expression pattern or physiological functions
similar to that of GaSus3 in cotton. GaSus2, however,
seemingly have underwent a more rapid evolutionary
rate and thus have a relatively longer separating branch
and lower degree of sequence identity compared with
the other three paralogues. It's interesting to note that
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there are only two Arabidopsis genes in the Sus I
group, although Arabidopsis lineage had underwent
one round of whole genome duplication since it split
from a common ancestor shared with cotton [48]. The
discrepancy of Sus gene numbers in related species
well supports the theory that genome duplication as
well as the following gene loss (diploidization) are
prevalent features of plant genomes [49].

It should be emphasized that, although our efforts in this
study, though molecular cloning, massive sequencing and
database hunting, have brought the cotton Sus gene family
to be one of the largest Sus family described to date, we
could not completely exclude other paralogues for each of
the three groups which might be present in the cotton spe-
cies. The presence of only one cotton Sus member, com-
pared with both Arabidopsis and Lotus japonicus having
two members, in each of the Sus II and III groups in our
phylogenetic tree also implies the possibility of additional,
unidentified cotton Sus paralogues existent within the two
groups. The topology of the phylogenetic tree in future
might have some deviation in the order of evolutionary
distances for different members of cotton Sus family.
Therefore, more information, especially the chromosomal
distribution of these cotton Sus genes, is needed to deter-
mine a more precise evolutionary relatedness among these
cotton Sus genes. Although this study focused mainly on
Sus genes in cotton species, the examined relative high
conservation of the orthologous genes of Sus family in dif-
ferent cotton interspecies may lend strong evidence to
support the further comparative genomics analysis across
the entire family of Malvaceae.

Functional divergence of the cotton GaSus gene family

It has been well recognized that gene duplication fol-
lowed by functional diversity (evolutionary changes in
expression patterns and/or protein property) has played
a crucial role in driving evolutionary novelty that allow
organisms to differentiate new organs or increase fitness
to new environments [50,51]. To data, although the
functions of a few individual isoforms of Sus have been
characterized in tetraploid cotton plants [52], there is no
systematic functional analysis of expression patterns for
different groups of diploid cotton Sus gene family.

In this study, we demonstrated that differential expression
of the Sus genes occurs in cotton, as did the members of this
Sus family in several other plant species, such as Arabidopsis
[20,23], rice [24], Lotus japonicus [25], citrus [29], and Bam-
boo [37]. The differential expression profiles may suggest
that Sus is implicated in a range of physiological processes
in the cotton plant. The specialized expressions of Sus genes
may also reflect the divergent evolution of Sus gene regula-
tory elements that are required for controlling the develop-
ment of particular cells or tissue types during cotton plant
growth [53].
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Previous studies, based on the analysis of mutant and/
or transgenic plants with reduced Sus activity, have
demonstrated that cotton fiber and seed development
are significantly correlative to the changes of Sus activity
in ovule epidermis and endosperm [34,54]. The tran-
scription data presented here indeed provide direct evi-
dence for strong expression of some GaSus genes in
cotton ovules and fibers (Figures 5, 6a, b). The relatively
high expression level of Sus genes coincident with the
initiation and elongation of the fiber cell well supports
the standpoint that Sus in cotton plays a pivotal role in
cotton fiber growth and development. Apparently,
development-dependent regulation on Sus genes,
involved in cell initiation and elongation during cotton
ovule and fiber development had evolved. This is typic-
ally shown by the expression of GaSus3 and GaSusS.
Transcriptional analysis revealed that the GaSus3 had
significantly higher expression levels in 0 dpa ovules and
early developing fibers compared to the other paralogues
in cotton, and displayed gradually decreasing expression
levels in fibers from O to 10 dpa, suggesting that GaSus3
may play a major role in the early stages of fiber devel-
opment, particularly in fiber initiation and early elong-
ation. The hypothesis is indirectly supported by the
previous study that suppression of the expression of
GhSus3 (U73588), an orthologous gene of GaSus3, in
tetraploid upland cotton, repressed cotton early seed de-
velopment, fiber cell initiation and elongation. In con-
trast to GaSus3 expression, the transcripts of GaSus5
were very low at 0 and 5 dpa, but increased continuously
in abundance and reach its highest level in fibers around
at 15 dpa, and then a significant decrease as the fiber
cells developed further, suggesting that GaSus5 may pri-
marily participated in fiber cell elongation and primary
cell wall synthesis. The differential, complementary ex-
pression profiles of GaSus3 and GaSus5 is the direct evi-
dence of that specialized GaSus genes might have been
evolved to meet the requirement of the carbohydrates
for cellulose synthesis, fiber cell initiation and elongation
during cotton fiber development. Interestingly to note,
of the seven cotton Sus genes, GaSus7 is not only the
oldest duplicated gene, but also is the only one which is
transcriptionally active, but not expressed in ovule and
fiber cells. The strong transcription level of GaSus7 in
petal implies that GaSus7 may be primarily involved in
the regulation of floral organs, but not the ovules and
fibers development in cotton. As GaSus6, another old
duplicated gene, is also lowly activated in cotton fiber
cells compared to those relatively recent duplicated
paralogues, such as GaSusl and GaSus3 (Figures 6a, b),
it is tempting to speculate that the recent duplications of
Sus genes may be important or highly correlate to the
cotton fiber cell differentiate. 7This might also be one of
the reasonable explanations why cotton could retain more
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duplicated genes in the Sus I group than most of the other
phylogenetic related species, such as Arabidopsis.

Previous studies have demonstrated that Sus expression
was much heterogeneity among cotton ovule epidermal
cells [54,55]. Seemingly, only those with high levels of Sus
transcripts could actually differentiate into long fibers,
while cells with lower or undetectable levels exhibited smal-
ler or even no initiation out of the ovule epidermis. Tran-
scriptional analysis of a fiberless cotton mutant sma-4 [56]
in this study, however, did not show significant difference of
mRNA levels in ovules at 0 dpa for all the seven Sus genes
compared to the wild-type plants (Figure 7). This finding
was contradictory to the earlier study on another fiberless
cotton mutant fIs, which had no signal for Sus mRNA and
protein in the ovule epidermal cells at O dpa, while the wide
type showed strong Sus mRNA signals [54]. Such results
suggested that the regulatory network leading to cotton
fiber growth and development could well be more subtle
and complex, and multiple genes, upstream/downstream of
the Sus genes, might also have been evolved into strict con-
trolling of cotton fiber cell initiation and elongation [57].

It is worth noting that although GaSus3 was ubiquitously
expressed in the cotton plants, knock down of the Sus3

WT sma-4  gDNA
Figure 7 Transcriptional analysis of the seven GaSus genes in
ovule at 0 dpa in wide-type and fiberless mutant (sma-4)
cotton plants. PCR products amplified from genomic DNA (g)
containing at least one introns were taken as controls to exclude
any DNA contamination from the cDNA templates.
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expression in upland cotton virtually unaffected vegetative
growth and flowering in most of the transgenic cotton
plants [34], suggesting possible functional redundancies
within the cotton Sus gene family. This might be true as a
result of that similar or overlapping expression pattern to
the GaSus3 genes were also observed in the case of GaSus4,
as well as in other paralogues in cotton. Similar results and
conclusion were also obtained from the study on Arabidop-
sis Sus mutants that lacking individual isoforms of Sus failed
to cause obvious growth phenotypes compared to the wide
type of Arabidopsis plants [20], suggesting that redundancy
within Sus gene family would ensure that sucrose metabo-
lisms in particular cells or organs will be relatively insensitive
to mutations and evolutionary robust.

One of the most common fate of gene duplications is
thought to be elimination of one of the duplicate pair [58].
The undetectable expression of GaSus2 in all the tissues
examined and its relatively faster evolutionary rate com-
pared to the other paralogues led to the suggestion that
GaSus2 may be a pseudogene or is on the way to become
a pseudogene. The loss of some peptides including the
conserved, functional Ser phosphorylation site (Figure 1)
in the N-terminal region of the GaSus2 deduced polypep-
tides is also the indirect evidence that supports the hy-
pothesis. Similarly in rice, a putative Sus gene fragment
identified in the genome database searches, is also inactive
and probably as a consequence of the loss of some exons
and inclusion of multiple stop codons within its putative
coding region [24]. Such cases were also found in some
other multiple gene families, for example, the Arabidopsis
actin gene family contains 10 distinct members, of which
eight are functional genes and two are pseudogenes
[59,60].

Conclusions

This study provides the first comprehensive evaluation of
the evolutionary genesis, phylogenetic relationships, exon/
intron structure organization, and tissue-expression pattern
of each member of the Sus gene family in cotton species.
The results presented here could offer an useful foundation
and framework for future research work on understanding
the potential physiological roles for each cotton Sus gene
and the evolution of Sus gene family in response to sucrose
metabolism during cotton fiber development, as well as the
structure-function relatedness between the members of
cotton Sus gene family. We also realize that the different
Sus genes in cotton might play different roles in regulating
sucrose metabolism and fiber development, as well as pos-
sible functional interactions or even redundancies. Such
functional expectations need to be experimentally verified
by characterizing the spatio-temporal expression dissection,
Sus enzyme activity assay and knockout/knockdown
mutants of these Sus genes in the near future.
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Methods

Plant material and growth conditions

G. arboreum (acc. A,-47), which was obtained from USDA
collection through Dr. Peng Chee (University of Georgia,
UGA), was used in this study for cloning Sus genes and
gene expression analysis. The seeds were delinted, germi-
nated and maintained in pot culture under natural condi-
tions for three weeks, and then the plantlets were either
harvested for collecting the roots, stems and leaves samples
or transplanted to open field for continuing growing. For
analysis of Sus gene expression during cotton fiber develop-
ment, each flower was tagged on the day of flowering and
were taken as 0 dpa (days post anthesis). Developing ovules
were subsequently harvested at various developmental
stages from O to 20 days after flowering, and fibers were
carefully scraped from the epidermis of the ovules. The col-
lected samples were immediately frozen in liquid nitrogen
and stored at —80°C for subsequent RNA isolation.

Except G. arboreum, DNAs used for gene structure de-
duction and phylogenetic analysis were from G. anoma-
lum (Bl) and G. sturtianum (Cl) obtained from Dr
Xinlian Shen (Jiangsu Academy of Agricultural Sciences,
China), and G. raimondii (D5) and Gossyploides kirkii (K)
provided kindly by Dr. Andrew Paterson (UGA), here Gos-
sypioides kirkii was used as an our group species.

Cloning of Sus genes in diploid cotton of G. arboreum
Based on the sequences of plant sucrose synthase genes
accessioned in GenBank, we designed multiple pairs of de-
generate primers from the conserved regions for using to
amplify the homologs in diploid fiber cotton (G. arbor-
eum). The PCR products obtained from both cDNA and
genomic DNA amplification were cloned into the
pMD19-T cloning vector (TaKaRa Biotechnology, Dalian,
China), and then transformed into E.coli cells (DH5a) for
massive sequencing. The obtained sequences were submit-
ted to NCBI database for blast analysis. In addition, the
cotton EST database were also searched using Arabidopsis
Sus genes as queries to identify putative unidentified
members belong to the cotton Sus gene family.

The full-length ¢cDNAs of the cotton Sus genes were
obtained using the RLM-RACE approaches (FirstChoi-
ceRLM-RACE Kit, Ambion, USA). Approximately one
and 10 pg high-quality total RNA were used respectively
for the 3" and 5" RLM-RACE protocols, strictly follow-
ing the manufacturer’s instructions.

Phylogenetic and gene structure analysis

The sequence data used in this study were collected
using the keyword “sucrose synthase” and a query search
in the GenBank using the known Sus gene sequences
from cotton and Arabidopsis. Multiple alignment of the
nucleotide and deduced amino acid sequences were per-
formed using the programs ClustalX (version 1.8) [61],
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and DNAMAN (version 6.0)(http://www.lynnon.com/)
with default gap penalties. A phylogenetic tree was con-
structed from amino acid sequences of deduced Sus pro-
teins by neighbor-joining algorithms wrapped in the
MEGA 5.0 phylogeny program (www.megasoftware.net).

Exon/intron structures analysis of the target Sus genes
were either conducted by comparing the cDNA sequences
and their genomic DNA sequences or predicted online using
the FGENESH algorithm (http://linux1.softberry.com/berry.
phtml?topic=fgenesh&group=programs&subgroup=gfind).
Predicted conserved domains were screened within the
deduced amino acid sequences of corresponding Sus genes
using the interproscan algorithm web server (http://www.
ebi.ac.uk/Tools/pfa/iprscan/).

DNA and RNA extraction

Genomic DNA was isolated from young cotton leaves
using a CTAB method as described previously [62].
Total RNA was isolated from various tissue samples
using the CTAB-sour phenol extraction method as
described by Jiang et al., [63]. RNA samples were treated
with DNase I (TaKaRa) after the extraction to eliminate
the trace contaminants of genomic DNA.

cDNA preparation and semiquantitative RT-PCR analysis
For conducting reverse transcription (RT)-PCR analysis,
approximately two micrograms of DNA-free total RNA
from each sample was used to synthesize first-strand
¢DNA in a 20-pl reaction solution using a M-MLYV reverse
transcription kit (TaKaRa), and the synthesized cDNAs
were used as templates in the following RT-PCR reactions.

For each target Sus gene, PCR amplification was per-
formed using Takara Taq polymerase with specific primer
pairs listed in Additional File 4. The PCR was conducted
in a heated-lid thermalcycler (Eppendorf, Germany) by
following procedure: pre-denaturation at 95°C for 3 min,
followed by 28-30 cycles of 30 s at 94°C, 60 s at a specific
annealing temperature at 52-55°C for each gene, and 90 s
at 72°C. A cotton constitutive gene, L/BQ7, was used as an
internal standard to adjust the relative quantity of the
c¢DNA of each sample used in the RT-PCR analysis.

Table 2 Gene-specific primers used for real-time RT-PCR
amplification

Gene Forward primer Reverse primer

Gasus1 acgggttctggaagcatgtgtc ccccggcaacttcaatttcaat
Gasus3 cgccgtgagagtegtegttace CCaagaaaaaccggcccaatg
GasSus4 gccgecgttacctggagatgt cccgectettectttgttttac
Gasuss cggccaatacgagagtcacatc cggcttgttgcggtcttttag
GasSus6 ggctgatgacattggctggagta cgcaatcaaccagacccttaaat
Gasus7 cgcgtttcgacatttatccttatc tgcgcaatcgtagectgtgtt
uBQr gaaggcattccacctgaccaac cttgaccttcttcttcttgtgcttg
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To confirm the specificity of each primer and also to
exclude any genomic contamination in PCR amplifica-
tion, each of the target genes was also amplified with the
same PCR procedures from the genomic DNA, which
contains at least one intron in its amplified products.
The amplified fragments were examined by electrophor-
esis on a 1.5-2.0% (w/v) agarose gel and visualized by
ethidium bromide (EB) staining.

Quantitative real-time RT-PCR (qRT-PCR)

Real-time quantitative RT-PCR was performed to relatively
quantify the transcription levels of cotton Sus genes
expressed in fibers at different developmental stages. The
c¢DNAs used for detecting gene expression were the same
as those used for semiquantitative RT-PCR analysis. The
reaction was conducted on the Applied Biosystems 7300
Real-Time PCR System using the SYBER premix ExTaq kit
(TaKaRa) according to the Manufacturer's instructions.
The amplification of the target Sus genes was monitored
by SYBR-Green fluorescence signal every cycle. The Ct
(cycle threshold) value, which was defined as the PCR
cycle at which a significant increase of reporter florescence
signal is detected instantly, was used as a measure for the
starting copy numbers of the target Sus gene. Relative
quantitation for expression level of each GaSus gene was
standardized to the expression level of the cotton constitu-
tive L/BQ7 gene, calculated by the formula Y =104
(ACt is the differences of Ct between the target Sus and
the control UBQ7 products; ACt = Ctg,sus - Ctusg). The
specificity of primers designed for real-time RT-PCR
(Table 2) was confirmed by running products on agarose
gels and by sequencing after the PCR reaction. The
detailed protocol of the quantitative analyses was
described by Li et al., [60].

Additional files

Additional file 1: Amino acid sequences analysis of the cotton Sus
genes.

Additional file 2: Multiple alignment of the amino acid sequences
between three Sus genes GaSus1, GaSus3 and GaSus4.

Additional file 3: Multiple alignment of the DNA sequence between
five orthologs of Sus7 cloned from four diploid cotton species G.
arboreum (A2, GaSus7), G. anomalum (B1, GbSus?7), G. sturtianum
(C1, GcSus?) and G. raimondii (D5, GdSus7) and one outgroup
species, Gossypioides kirkii (K, GkSus7). Corresponding regions shaded
in colours represent sequence identities between these orthologous
genes. The exon sequence is shown by single underline, and the intron
sequences are shown by double underlines. The arrows upon the first
intron sequence indicate the unusual GC/AG splicing sites in the Sus/
genes. The SSRs (simple sequence repeats; microsatellites) in the five
orthologs are boxed and shaded.

Additional file 4: Gene-specific primers used for semi-quantitative
RT-PCR amplification. The numbers out and in parentheses represent
expected size of PCR products amplified from cDNA and genomic DNA,
respectively.
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