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Abstract

Background: MicroRNAs (miRNAs) are small RNA molecules that play important regulatory roles in plant
development and stress responses. Identification of stress-regulated miRNAs is crucial for understanding how
plants respond to environmental stimuli. Abiotic stresses are one of the major factors that limit crop growth
and yield. Whereas abiotic stress-regulated miRNAs have been identified in vegetative tissues in several plants,
they are not well studied in reproductive tissues such as inflorescences.

Results: We used Illumina deep sequencing technology to sequence four small RNA libraries that were constructed
from the inflorescences of rice plants that were grown under control condition and drought, cold, or salt stress.
We identified 227 miRNAs that belong to 127 families, including 70 miRNAs that are not present in the miRBase.
We validated 62 miRNAs (including 10 novel miRNAs) using published small RNA expression data in DCL1, DCL3,
and RDR2 RNAi lines and confirmed 210 targets from 86 miRNAs using published degradome data. By comparing
the expression levels of miRNAs, we identified 18, 15, and 10 miRNAs that were regulated by drought, cold and salt
stress conditions, respectively. In addition, we identified 80 candidate miRNAs that originated from transposable
elements or repeats, especially miniature inverted-repeat elements (MITEs).

Conclusion: We discovered novel miRNAs and stress-regulated miRNAs that may play critical roles in stress
response in rice inflorescences. Transposable elements or repeats, especially MITEs, are rich sources for miRNA
origination.
Background
Endogenous small RNAs (sRNAs) are 20–30 nt RNA
molecules that modulate gene expression at the tran-
scriptional and posttranscriptional levels and have roles
in developmental and physiological processes in euka-
ryotic organisms [1-3]. In plants, sRNAs are classified
into microRNAs (miRNAs) and small interfering RNAs
(siRNAs), according to their biogenesis and precursor
structures [4-9]. siRNAs are derived from double
stranded RNA precursors and can be further divided
into heterochromatic siRNAs (hc-siRNAs), trans-acting
siRNAs (ta-siRNAs), long siRNAs (lsiRNAs), and natural
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antisense transcripts-derived siRNAs (nat-siRNAs). hc-siRNAs
are involved in DNA methylation and histone modi-
fications that lead to silencing of target genes at the
transcriptional level [10]. ta-siRNAs, lsiRNAs, and nat-
siRNAs act at the posttranscriptional level, guiding
mRNA cleavage, degradation, or translational repression
of target genes. Arabidopsis ta-siRNAs are phased sRNAs
generated from a primary transcript that is targeted by a
miRNA. The product of this cleavage is then converted
to double stranded RNA by RNA-dependent RNA poly-
merase 6 (RDR6) and processed by Dicer like protein 4
(DCL4) to produce ta-siRNAs [11]. Arabidopsis lsiRNAs
are DCL1-dependent sRNAs of 30–40 nt in length,
which mediate mRNA decapping and degradation [12].
nat-siRNAs are generated from co-expressed cis-antisense
overlapping genes. The transcripts of overlapping genes
may hybridize to form double-stranded RNAs and be
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processed by DCL proteins into sRNAs that target the
antisense gene for regulation [13-15].
miRNAs are distinguished from siRNAs since they are

transcribed into a single-stranded pri-miRNA by RNA
polymerase II, which folds into a stable, usually imper-
fect, hairpin structure [16]. This structure is then pro-
cessed by DCL1 to produce ~21 nt, double-stranded
RNA duplex. The duplex is exported into the cytoplasm
by HASTY and methylated at the 3’ end by HEN1 [17].
One strand functions as the mature miRNA and is
incorporated into the RNA-Induced Silencing Complex
(RISC) to target mRNAs for cleavage in a sequence-
specific manner. The other strand, called miRNA*, is
usually degraded, although some miRNA*s were found
to be functional under certain conditions [18]. Plant
miRNAs recognize their targets through near-perfect
complementarity to direct RISC-mediated cleavage, although
in some cases translational inhibition and DNA methyla-
tion can be the mode of action of miRNA-mediated gene
silencing [19-21].
Several studies have demonstrated that miRNAs play

important roles in the responses to biotic and abiotic
stimuli [22-24]. Abiotic stress-regulated miRNAs were
first investigated in Arabidopsis. Sunkar and Zhu [25]
showed that miR393, miR402, miR397b, and miR319c
were induced by at least one of the treatments including
drought, cold, salt and ABA, whereas miR398 was down-
regulated. Further study showed that miR398 mediates
the post-transcriptional induction of two superoxide
dismutase genes involved in the first line of defense
against toxic superoxide radicals and is also downregu-
lated by oxidative stress in Arabidopsis [26]. Also in
Arabidopsis, miR169 is downregulated by drought through
an ABA-dependent pathway to control the expression of
the NFYA5 transcription factor, which mediates tolerance
to drought [27].
To discover stress-regulated miRNAs, it is necessary

to compare the expression of miRNAs in plants grown
under normal and stress-treated conditions. This was
achieved by Northern blot analyses when digital expres-
sion analysis was not effective because traditional
sequencing technology provided only very low coverage
[25]. With the application of next-generation sequencing
and microarrays, it became much easier and cost-
effective to perform genome-wide expression profiling to
identify stress-regulated miRNAs. As a result, discovery
of stress-regulated miRNAs has expanded from the
model dicot Arabidopsis to model monocot rice and
other non-model plants, and many more stress-regulated
miRNAs were found [28-35].
Rice (Oryza sativa) is a staple crop that is cultivated

worldwide and constitutes a primary source of human
food. Besides its high agricultural importance, rice is
a model monocot with a small genome and excellent
genomic resources. Recently extensive efforts have been
devoted to the discovery of novel miRNAs, as well as
the analysis of miRNAs in stress responses in rice
[28,29,36-44]. miRNAs that are regulated by various
stresses were identified. For example, a genome-wide
study conducted across different developmental stages of
rice revealed that 16 miRNAs, including miR156,
miR159 and miR168, were downregulated by drought
stress, while 14 miRNAs, such as miR169, miR319 and
miR395, were upregulated [42].
Most of previous studies on miRNAs that are regu-

lated by abiotic stresses in rice have been focused on
early growth stages [36,41,44-46]. However, the onset
of abiotic stresses during reproductive stages of rice
can dramatically compromise seed production. Seed
development requires a series of molecular events that
are finely regulated at the transcriptional and post-
transcriptional levels [47] and it has been recently
demonstrated that miRNAs are involved in those pro-
cesses [39]. Therefore, there is a need to expand our
knowledge on miRNA expression in reproductive tis-
sues under abiotic stresses. In this study we set to
identify miRNAs that were involved in the responses
to abiotic stresses in rice inflorescences. We applied
high-throughput sequencing and bioinformatic analysis
to small RNA populations derived from rice inflores-
cences under control, as well as drought, cold, and
salt stresses. We identified 227 miRNAs, including 70
candidate miRNAs that are not in the miRBase. Using
stringent criteria, we identified 18, 15, and 10 miRNAs
that were differentially regulated by drought, cold, and
salt stress, respectively. We validated 62 miRNAs using
published small RNA data from DCL1, DCL3, RDR2
RNAi knockdown lines and confirmed 210 miRNA tar-
gets using published degradome data. We also identified
80 miRNAs that appear to have originated from trans-
posable elements and repeats.

Results and discussion
Identification of miRNAs
We constructed and sequenced four small RNA libraries
using the inflorescences of rice plants that grew under
control (untreated) and three abiotic stress treatments.
After quality control and adaptor removal, we obtained
5328145, 4186380, 3524691 and 3992166 high quality
clean reads from control, drought, cold and salt libraries,
respectively (Additional file 1). We removed around 27%
of clean reads from each library that matched rice
repeats and known rRNAs, tRNAs, snoRNAs, snRNAs,
and then mapped the rest of small RNA reads to the rice
whole genome sequence. Using an in-house miRNA pre-
diction pipeline that was built according to the updated
annotation criteria for plant miRNAs [48,49], we pre-
dicted 227 miRNAs that were classified into 127 families
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(details of predicted miRNAs are included in Additional
file 2).
Because rice is an important crop and is the model

species for monocotyledons, it has been subject to sub-
stantial effort for miRNA discovery. As a result, rice has
491 registered miRNAs in the miRBase [50] (release 17),
which is the most for any plant species. We compared
the genomic locations and mature miRNAs of our pre-
dicted miRNAs to those of known rice miRNAs in the
miRBase and found that 145 predicted miRNAs (64 fam-
ilies) had already been included in the database, 12 pre-
dicted miRNAs were new homologs of 7 known miRNA
families (allowing mature miRNAs to have up to 2 mis-
matches), and 70 miRNAs (62 families) were new
miRNA candidates (Additional file 2; Predicted second-
ary structures of new miRNA candidates are provided
in Additional file 3 and distributions and abundances of
all sRNAs that are mapped to each precursor are pro-
vided in Additional file 4). Among these new miRNA
candidates, osa-cand006, osa-cand021, osa-cand027, osa-
cand032, and osa-cand036 were included in release 18
of the miRBase as osa-miR5159, osa-miR2863c, osa-
miR5485, osa-5150-3p, and osa-miR5337, respectively.
Among 145 miRNA precursors that match registered

rice miRNAs in the miRBase, 81 precursors have identi-
cal predicted mature miRNAs to those in the miRBase,
40 have predicted mature miRNAs that are highly simi-
lar but not identical, and 24 have a mature miRNA
that is different from the registered mature miRNA
(Additional file 5). For each predicted miRNA precursor,
a small RNA is usually chosen as the mature miRNA if
it has the highest abundance among all reads that are
mapped to the precursor. In some cases, small RNA
with highest expression was not chosen because it did
not reside in a hairpin structure that meets the stringent
structural requirements for miRNA annotation [48,49].
Because the cleavage of miRNA precursor into miRNA/
miRNA* duplex is imprecise at some level [51], generat-
ing overlapping but not identical small RNAs with differ-
ent abundances over the hairpin region, the choice for
mature miRNAs may not be clear cut, especially when
number of mapped reads is low. Low coverage can be
caused by low sequencing depth from early sequencing
technologies such as 454 pyrosequencing, comparing to
Illumina sequencing that was used in this study. Low
coverage can also be caused by the low expression level
of some miRNAs in the chosen tissue and under the
chosen growth condition. In addition, a miRNA* might
have higher abundance than the miRNA in some cases
[18,39].

Validation of predicted miRNAs
Based on their biogenesis pathway, rice miRNAs can be
grouped into two classes. The first class is canonical
miRNAs (cmiRNAs), which are usually 21nt in length,
cleaved by DCL1, and sorted into Argonaut 1 (AGO1)
family proteins [21,52]. The other class is long miRNAs
(lmiRNAs), which are usually 24nt in length, cleaved by
DCL3, and sorted into AGO4 family proteins [21]. Both
classes of miRNAs do not require RDR2, which is a crit-
ical component in the siRNA biogenesis pathway. There-
fore, the expression of authentic miRNAs would be
significantly reduced in either dcl1 or dcl3 knockdown
lines, but not in the rdr2 knockdown line.
In order to validate our 227 predicted miRNAs, we

compared the abundances of their mature miRNAs in
the published small RNA sequencing data from the wild
type (WT) and three RNAi knockdown lines (dcl3a-17,
rdr2-2, and DCL1IR-2) [21], as well as small RNAs
that were pulled down with Argonaut proteins AGO1a,
AGO1b, AGO1c, AGO4a, AGO4b, and AGO16 [21,53].
Using the criteria described in the Methods, we were
able to confirm 46 canonical miRNAs that had signifi-
cantly reduced expression in DCL1IR-2, including six
novel miRNAs (osa-cand001, osa-cand039, osa-cand053,
osa-cand056, osa-cand059, and osa-cand060). We also
confirmed 16 long miRNAs that had significantly
reduced expression in dcl3a-17, including four novel
miRNAs (osa-cand020, osa-cand021, osa-cand032, and
osa-cand054). Five more miRNAs (osa-cand017, osa-
cand058, osa-miR1862, osa-miR1862d, and osa-miR440)
narrowly missed the list of confirmed lmiRNAs because
their expression level in rdr2-2 was slightly less than 50%
of that in WT (Additional file 6). As expected, whereas
confirmed cmiRNAs have a typical length of 21nt
and are predominantly associated with AGO1 proteins,
lmiRNAs have a typical length of 24nt and are
exclusively associated with AGO4 or AGO16 proteins
(Additional file 6).

Prediction and confirmation of miRNA targets
Because plant miRNAs have near perfect complementar-
ity to their targets, computational prediction has been
an effective way to identifying miRNA targets. Using the
procedure described in the Methods, we searched
rice annotated cDNAs and were able to predict targets
for 170 (75%) miRNAs (Additional file 2). Deep sequen-
cing of mRNA cleavage products (degradome sequen-
cing) provides a means for confirmation of miRNA
targets [54,55]. To confirm miRNA targets that were pre-
dicted in this study, we searched the two published degra-
dome datasets from Oryza sativa ssp. japonica using the
CleaveLand software [56]. We were able to confirm 210
targets for 86 miRNAs (Additional file 7), including 154
targets that were previously verified [46,53], mostly for
known miRNAs. We also confirmed 20 targets for 12
novel miRNAs. For instance, osa-cand041 targets a puta-
tive inorganic phosphate transporter, osa-cand046 targets
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a putative amino acid transporter, and osa-cand026
targets a putative ATP-dependent RNA helicase. We
were also able to confirm some targets for new miRNA
homologs and for known miRNAs for the first time
(Additional file 7).
Because many miRNAs and target genes show tissue-

or growth condition-specific expression patterns, our
ability to verify predicted targets depends highly on the
treatments and tissues used to construct the degradome
libraries. As more degradome data from a variety of
tissues and treatments become available, it will be pos-
sible to verify targets for more miRNAs.

Abiotic stress-regulated miRNAs
The deep coverage of mature miRNAs provided by Illu-
mina sequencing allowed us to compare the normalized
count of each miRNA in a stressed library to that in the
control library to find miRNAs that were induced or
downregulated by the stress. Normalized expression
level was calculated as the number of mature miRNAs
per ten million clean small RNA reads (transcripts per
ten million, TPTM). A miRNA was identified as regu-
lated by a particular stress only if the following three
conditions were met: (1) normalized expression was
at least 100 TPTM in either control or stress library;
(2) log2 ratio of normalized expression under stress or
control was greater than 1 or less than −1; (3) test for
differential expression in stress versus control library
according to the Audic and Claverie (1997) [57,58]
method was significant (p ≤ 0.01). Applying this stringent
set of criteria, we identified 18, 15, and 10 miRNAs that
were regulated by drought, cold, and salt stress, respect-
ively (Table 1).
We observed an apparent difference in how a stress

would change the expression of miRNAs. Whereas the
majority of stress-regulated miRNAs were upregulated
by drought (12 out of 18) or cold stress (12 out of 15),
most salt-regulated miRNAs were downregulated (9 out
of 10). Whereas 16 miRNAs were regulated with only
one of the three abiotic stresses examined, 12 miRNAs
were regulated by two or three stresses (Table 1), indi-
cating that they might be involved in a pathway that is
shared in the response to different stresses. For example,
miR2871b was induced by all three abiotic stresses
examined in this study.
Among the miRNAs that were identified as stress-

regulated miRNAs here, some miRNA families have
been previously found to be regulated by certain stress,
either in rice or in other plants. For example, miR167,
miR393, miR396, miR529 have been shown to be regu-
lated by drought stress [25,42,59], miR393 and miR396
were shown to be regulated by cold stress [25,42,59],
and miR159, miR160, miR319, miR394, miR528, and
miR530 were shown to be regulated by salt stress
[25,29,59-61]. To the best of our knowledge, some miR-
NAs were found to be regulated by certain stress for the
first time in this study. This list includes miR1428,
miR160, miR1866, miR2275, miR2871, and miR530 that
were regulated by drought stress, miR1866, miR2275,
miR2871, miR394, and miR529 that were regulated by
cold stress, and miR1866 by salt stress. In addition, we
identified five novel miRNA candidates (osa-cand027, osa-
cand032, osa-cand042, osa-cand-052, and osa-cand056)
that were regulated by at least one of the three abiotic
stresses in rice inflorescences (Table 1). Among these
stress-regulated miRNAs, we randomly chose five miR-
NAs to confirm their expression patterns with Northern
blot assays. In general, the differential expression pat-
terns of miRNAs based on cloning frequencies in small
RNA sequencing libraries (Figure 1) were consistent
with Northern blot results (Figure 2), although the
strong upregulation of miRNA396 was only partially
reflected in Northern blots.
Targets for stress-regulated miRNAs were predicted

and confirmed based on degradome data analysis. As
shown in Table 1, targets of stress-regulated miRNAs
have diverse functions, mainly as transcriptional factors
such as MYB, auxin responsive factors and proteins with
F-box domains. Since miR2871 was upregulated in all
stress conditions tested, it is very likely that its target,
a glycosyltransferase family protein, is downregulated.
Therefore, negative regulation of glycosylation processes
may be a common mechanism to respond to a variety of
abiotic stresses. On the other hand, miR396 regulates
a family of growth factors in rice [42]. Its upregulation
in our drought and cold stress libraries suggests the
downregulation of growth factors, perhaps to redirect
resources to other parts of the plant in response to
drought. This confirms that growth regulation is a
mechanism highly sensitive to abiotic stresses.
Three miRNAs, miR394, miR530-3p and miR2275d

were upregulated by cold stress (Figure 1). The predicted
targets of miR394 are F-Box proteins of diverse func-
tions [46,62]. Interestingly, miR530-3p was strongly
accumulated in cold treated plants, while it was downre-
gulated by drought and salt stresses as predicted by
quantitative analysis and confirmed in Northern blots
(Table 1, Figure 2). This suggests a high level of speciali-
zation of miRNAs to respond to different abiotic stresses.
The expression patterns suggest that some elements need
to be regulated by drought and salt treatments, while the
same elements are regulated in an opposite way under cold
stress to regulate a cold specific mechanism.
We used very stringent criteria for determining stress-

regulated miRNAs. While it helps us reduce false posi-
tives, some true stress-regulated miRNAs may be missed.
For example, miR169 has been previously found to be
downregulated in drought-stressed Arabidopsis [27] and



Table 1 Abiotic stress-regulated miRNAs identified in rice inflorescences

MiRNA Family *Log2
(Drought/Ctrl)

*Log2
(Cold/Ctrl)

*Log2
(Salt/Ctrl)

Putative target

AAUUCACAGGCCCUAUCUUGUG miR1428 −2.71 # −0.82 −0.15 Cytochrome c

CUUGGAUUGAAGGGAGCUCU miR159 0.03 0.99 −1.57 # MYB family transcription factor

UGCCUGGCUCCCUGUAUGCCA miR160 0.28 0.29 −1.07 # Auxin response factor

UGCCUGGCUCCCUGAAUGCCA miR160 1.40 " 0.60 −0.37 Auxin response factor

GGAAUGUUGUCUGGCUCGGGG miR166 −1.69 # −0.65 −0.96 START domain containing protein

GGAAUGUUGUCUGGUCCGAGA miR166 −2.68 # 0.08 −0.63 START domain containing protein

UGAAGCUGCCAGCAUGAUCUA miR167 1.02 " 0.81 −0.79 Auxin response factor

UAUGCGUAAGACGGAUUCGUA miR1856 0.72 1.29 " 0.95

GAGGGAUUUUGCGGGAAUUUCACG miR1866 −4.67 # −7.00 # −1.49 # Hypotethical protein

UUCAGUUUCCUCUAAUAUCUCG miR2275d 1.46 " 1.62 " 0.09

CUUGUUUUUCUCCAAUAUCUCA miR2275e 1.37 " 1.83 " 0.15

AUUGUUUUUCUCCAAUAUCUCA miR2275c 1.32 " 1.32 " −0.02

UAUUUUAGUUUCUAUGGUCAC miR2871 1.12 " 1.96 " 1.56 " Glycosyltransferase family protein

UUGGACUGAAGGGUGCUCCC miR319 −0.46 −0.09 −1.46 # TCP family transcription factor

UCCAAAGGGAUCGCAUUGAUC miR393 1.26 " 0.98 0.55 F-box domain and LRR containing protein

UCAGUGCAAUCCCUUUGGAAU miR393 0.99 1.08 " 0.21 MYB family transcription factor

UUGGCAUUCUGUCCACCUCC miR394 0.21 1.19 " −2.94 # F-box domain containing protein

UUCCACAGCUUUCUUGAACUG miR396 0.69 1.09 " 0.34 Growth regulating factor

UUCCACAGCUUUCUUGAACUU miR396 1.03 " 2.09 " −0.14 Growth regulating factor

UCCACAGGCUUUCUUGAACUG miR396 1.17 " 1.32 " 0.06 Growth-regulating factor

UGGAAGGGGCAUGCAGAGGAG miR528 −0.70 −0.46 −1.39 # Plastocyanin-like domain containing protein

AGAAGAGAGAGAGUACAGCCU miR529 1.41 " 1.35 " 0.79 SBP-box gene family

AGGUGCAGAGGCAGAUGCAAC miR530-3p −2.23 # 1.09 " −2.06 # Hairpin-induced protein 1 domain
containing protein

UUGCUCUGAUACCAAUUGUCGG osa-cand027 2.35 " 0.60 −0.72

GAAGCUGCAGCUGUCAGAAGCUCC osa-cand032 −0.01 −0.64 −1.18 #
AAUGGCUUGUCUUGUUUUGUGUGC osa-cand042 −0.62 −2.82 # −1.24 #
UACAACUUCUUGUUGAUGGAAACU osa-cand052 −3.66 # −7.49 # −0.92

UAAAUGGAGAGAACGAAAGAG osa-cand056 1.25 " 0.96 0.32

*Log2 ratio of normalized miRNA expression in stress and control libraries. Ctrl: control condition; " and #: up- and downregulated in stress, respectively.
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salt-stressed Nicotiana [60], but induced by drought in
Nicotiana [60] and rice [45], and by UV irradiation in
Populus tremula [63]. miR169b and miR169c were highly
expressed in rice inflorescences and were apparently
upregulated by drought and cold stresses (Additional
file 2). However, the change of expression was a little bit
less than 2-fold in both cases and miR169 was not iden-
tified as stress-regulated miRNA based on our criteria.
The results of this work confirm that some miRNAs

may be involved in response to several abiotic stresses,
while others seem to be specific to an individual stress.
Differences in expression patterns could also be an effect
of the nature and severity of individual stress and the
level of impact that it has on the tissue under study. For
example, we observed that salt treated plants showed
clear symptoms of stress on the leaves, e.g. the rolling of
old leaves, while inflorescences did not appear to be
affected since the plants were able to recover and pro-
duced normal amount of seeds after they were irrigated
with NaCl-free nutrient solution. In contrast, cold and
drought stress caused apparent damage to the inflores-
cences. Even though plants were able to recover and
continued growing after stress treatments were removed,
both development of new inflorescences and production
of seeds were reduced, most likely due to stress-induced
sterility or permanent damage to floral structures.
It is interesting that, in general, we did not find dra-

matic changes in expression of miRNAs in response to
abiotic stresses and only a small fraction of miRNAs
showed some level of regulation. Overall, the slight
changes observed in the expression of miRNAs points to
the existence of a fine-tuning mechanism rather than a



Figure 1 Relative expression level of selected stress-regulated miRNAs in rice inflorescences. Log2 was calculated for the ratio of
normalized miRNA counts in each library to that in the control library.
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dramatic control of expression exerted by miRNAs
under drought, cold and salt stress in rice inflorescences.
This fine-tuning mechanism may be important in plants
to regulate gene expression without impacting negatively
growth and development.

Other known miRNAs that were regulated by stresses
Because we used a stringent set of criteria on miRNA
structure and expression pattern [48] for miRNA predic-
tion and identification, it is possible that some real miR-
NAs were left behind, including some stress-regulated
miRNAs. In order to find additional known miRNAs
that are regulated by abiotic stresses, we used the
mature miRNAs from the miRBase to query our small
Figure 2 Northern blot analysis of selected stress-regulated
miRNAs in rice inflorescences. Each sample contains 40 μg of total
RNAs from inflorescences of plants that were treated with drought
(D), cold (C) and salt (S) stress, or control (CRL) conditions,
respectively. U6 was used as control of equal loading as shown at
the bottom of each hybridization set.
RNA reads from each library and compared their fre-
quencies. We indeed found a few known miRNAs that
appear to be regulated by abiotic stresses (Table 2). We
confirmed their expression using Northern blot assays
(Figure 2) and the hybridization signals were in general
consistent with log2 ratios of mature miRNA counts
(Figure 1).

Transposon- and Repeat-derived miRNAs
In order to reduce false positives in miRNA discovery,
it is a general practice to remove small RNAs that are
highly similar to known transposable elements and
repetitive sequences from consideration. In our first
round of miRNA prediction, we did not consider small
RNA reads as potential mature miRNAs if they match
known transposons or repeats, or have a copy number
higher than 20 in the genome. However, recent studies
have shown that miRNAs could have originated from
transposons or repeats [64,65]. Rice genome is enriched
with miniature inverted-repeat transposable elements
(MITEs) [66] and other inverted repeats that once tran-
scribed, may form hairpin structures and be cleaved
into miRNAs by DCL1 or DCL3. To identify miRNAs
that may have been derived from transposons and
repeats, we relaxed the requirements in the first round
of miRNA prediction and used small RNA reads
that did have a match (alignment length ≥ 80% of
the length of the small RNA, and identity ≥ 80%) in the
rice repeats database (ftp://ftp.plantbiology.msu.edu/pub/
data/TIGR_Plant_Repeats) or Repbase [67] or have a copy
number (allowing up to 2 mismatches) higher than 20
in the genome, as anchor sequences for miRNA predic-
tion. We predicted 424 potential miRNA precursors
(Additional file 8). These precursors met all the criteria
for miRNA annotation, including precise cleavage and
strand bias in expression.

ftp://ftp.plantbiology.msu.edu/pub/data/TIGR_Plant_Repeats
ftp://ftp.plantbiology.msu.edu/pub/data/TIGR_Plant_Repeats


Table 2 Transposon- or repeat-derived miRNAs and other known miRNAs that were regulated with abiotic stresses

MiRNA Family *Log2
(Drought/Ctrl)

*Log2
(Cold/Ctrl)

*Log2
(Salt/Ctrl)

Putative target

UGGAUGUGACAUACUCUAGUA osa-cand066 0.72 1.27 " 0.42 LTPL8 - Protease inhibitor

UGGGAUACUGAUGUCGAGGUCGAG osa-cand084 −1.25 # −2.33 # −1.12 # Transposon protein

AUAAGACGGACAGUCAAAGUUGGA osa-cand085 −0.68 −0.71 −1.26 # Expressed protein

AAUGUAUGACGCUGUUGACUUUUA miR1884 −1.38 # −0.77 −0.15 AAA ATPase

AUGAAUGUGGGCAAUGCUAGAAAG miR809 −0.59 −1.54 # −0.77 Glutaredoxin 2, putative

AUGAAUGUGAGAAAUGCUAGAAUG miR809 −0.62 0.31 −2.08 # Glutaredoxin subgroup II

UAUGAAUGUGGGCAAUGCUAGAAA miR809 −1.35 # −0.88 −0.71 PPR repeat containing protein

TGAACACCGATATGCGTCATC miR810b.1 1.10 " 0.76 0.25 Unknown

AAGTGATTTAATTATGCCGTT miR810b.2 0.96 1.51 " 0.17 Unknown

TATGGATGGAGGTGTAACCCGATG miR1874-3p −3.20 # −3.40 # −0.62 Unknown

AGATGACATGTGAATGATGAGGGG miR1877 −3.61 # −8.34 # −0.83 Unknown

*Log2 ratio of normalized miRNA expression in stress and control libraries. Ctrl: control condition; " and #: up- and downregulated in stress, respectively.
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To further check the authenticity of these potential
miRNAs, we again examined their expression in the
DCL1IR-2, dcl3a-17, and rdr2-2 RNAi lines. Using the
same set of criteria for miRNA validation as stated earl-
ier, we found that 29 miRNAs were potentially generated
by DCL1 and 51 miRNAs that were generated by DCL3.
All these 80 miRNAs did not depend on RDR2 and were
sorted into AGO1 or AGO4 family proteins, respect-
ively, as expected. We inspected the types of transpos-
able elements or repeats from which these miRNAs have
originated and found that 53 (66%) miRNAs were
derived from MITEs, 11 from En/Spm DNA transposons,
7 from non LTR retrotransposon LINE1, and 9 from un-
classified repeats (Additional file 9). Compared to the
copy number abundance of different classes of TEs in
the genome, MITEs are apparently enriched in TEs
from which miRNAs were derived (Additional file 10).
Stowaway and adh were the two main types of MITEs
that contributed to miRNA origination, accounting for
37 and 11 miRNAs, respectively. Both 21nt cmiRNAs
and 24nt lmiRNAs originated from the same MITE
families such as Stowaway and adh, indicating that once
MITEs were transcribed, they could fold into hairpin
structures and be cleaved by either DCL1 or DCL3 pro-
teins. This list contains some known miRNAs in the
miRBase, including 7 miR166 family miRNAs derived
from a LINE element, two miR169 family miRNAs derived
from En/Spm transposons, and 19 miR809 family miRNAs
derived from MITEs (Additional file 9).
We were able to predict at least one target for 78

TE/repeat derived miRNAs, indicating these miRNAs
do have biological functions (Additional file 9).
Among the targets predicted with high confidence,
there are proteins such as 3-ketoacyl-CoA synthases
that are targeted by miR809 and are involved in the
biosynthesis of cuticular wax [68]. Other TE/repeat
derived miRNAs appear to target genes that encode
transcriptional activators (osa-cand064, osa-cand076,
osa-cand079, and miR809), proteins involved in sig-
naling cascades (osa-cand071 and osa-cand077), and
proteins that may be involved in regulation of transposon
and retrotransposon activity (miR166, osa-cand063, and
osa-cand084). These results suggest a potential role of
transposon- and repeat-derived miRNAs in important pro-
cesses in plant biology.
Using the same set of criteria for finding stress-

regulated miRNAs, we found that osa-cand066 was
upregulated by cold, osa-cand084 downregulated by all
three stresses, osa-cand085 downregulated by salt,
miR1884 downregulated by drought, some miR809 fam-
ily miRNAs downregulated by drought or cold (Table 2,
Additional file 9). It is remarkable that members of the
miR809 family are predicted to target F-box-containing
proteins and glutarredoxin. Many F-box proteins have
been found in the response to drought stress [69],
whereas glutarredoxins are proteins involved in the
defense against oxidative stress [70]. It is possible that
downregulation of miR809 triggers the accumulation
of these proteins in a mechanism to cope with the
abiotic stresses.

Conclusions
High-throughput sequencing is a cost-effective approach
for identification of novel miRNAs in the inflorescences
of rice. Deep sequencing also allows for comparison
of miRNA expression in different growth conditions
and for identification of stress-regulated miRNAs. Our
results suggest that miRNAs play important roles in rice
in response to abiotic stresses not only in vegetative
tissues as shown in previous studies, but also in repro-
ductive tissues. Further functional analysis of stress-
regulated miRNAs and their targets will allow us to dissect
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the complex miRNA-mediated pathways and networks in
plant stress responses.

Methods
Plant materials and stress treatments
Rice (Oryza sativa spp. japonica cv. Nipponbare) plants
were grown in a greenhouse at 28°C, 13 h light until
90 day old and were then randomly divided into four
groups. One group was used as untreated control, and
other three groups were treated with drought (water
withholding for 3 days), cold (5°C for 24 hours) or salt
(400 mM NaCl for 24 hours) stresses, respectively. After
control and stress treatments were applied, mature
inflorescences of 14–17 cm in length, in stage In 9 were
collected and stored at −80°C until RNA extraction. In-
florescence tissues, composed by rachis, branches and
spikelets from 10 plants per treatment, were used for
total RNA extraction with Trizol (Invitrogen). There
were no seeds in the collected tissues. The treatments
used in this work were set to induce an intermediate
level of stress, based on the development of clear, typical
stress symptoms in rice, such as leaf rolling and wilting,
while plants were still able to recover and resume
growth if they were transferred from the stress treat-
ments to normal growth condition.

Small RNA library construction and deep sequencing
Small RNA libraries were constructed following a stand-
ard method [25] with some modifications [71]. In brief,
total RNA was run in 15% denaturing polyacrylamide
gel and the 18-30nt small RNA fraction was excised and
eluted. After an adaptor was added to the 3’ end and
another to the 5’ end, small RNA constructs were
reverse-transcribed and amplified by PCR for 15 cycles.
The products were sequenced with an Illumina Genome
Analyzer at the UC Riverside Core Facilities.

Prediction of miRNAs
Raw reads from four small RNA libraries were first
processed to obtain clean reads. Only raw reads that
contained clear adaptor sequence were considered.
After adaptor sequence was removed, clean reads of at
least 18nt long were clustered into unique reads. We
first removed reads that match known rice repeats (ftp://
ftp.plantbiology.msu.edu/pub/data/TIGR_Plant_Repeats),
rRNAs, tRNAs, snRNAs, and snoRNAs and then used
an in-house miRNA prediction pipeline to predict miR-
NAs [49]. We mapped unique reads to the rice genome
assembly (version 6.1, ftp://ftp.plantbiology.msu.edu)
with SOAP2 [72], requiring perfect matches. To ensure
that our miRNA candidates did not come from highly
repetitive sequences, we removed unique reads that had
more than 20 hits (allowing up to 2 mismatches) in the
rice genome. Mapped reads with a minimum count of
10 were used as anchor sequences to extract surround-
ing DNA segments. These segments had one end at
20nt away from the mapping location on one side and
extended across the anchor sequence for 100 to 300nt
with a step size of 20nt. Extracted DNA segments were
folded into secondary structures using UNAFold [73]. A
segment was considered a valid miRNA candidate if its
secondary structure met the following criteria according
to Meyers et al. [48]: (1) free energy is at most −35 kcal/
mol; (2) number of mismatches between putative
miRNA and miRNA* is 4 or less; (3) number of asym-
metrical bulges in the stem region is no more than 1
and if exist, its size is 2 or less; (4) strand bias - the ratio
of small RNA reads that map to the positive and nega-
tive strands of the DNA segment is 5:1 or more (5) pre-
cise cleavage - reads that map to the miRNA and
miRNA* regions (defined as miRNA or miRNA* plus
2nt on the 5’ and 3’ ends) account for at least 75% of
reads that map to the segment. If more than one seg-
ment from the same locus met the above criteria, we
chose the segment with highest putative miRNA counts,
lowest free energy, or shortest length as the candidate
miRNA precursor.
We classified predicted miRNAs into families by

first comparing mature miRNAs with themselves
using the ssearch35 program in the FASTA package
(version 3.5) [74]. We then used a single-linkage algo-
rithm to put homologous miRNAs (up to two mis-
matches were allowed) into clusters. miRNAs from each
cluster were then compared to the known plant mature
miRNAs in the miRBase (Release 17) [75] using
ssearch35. If a cluster had a homologous known miRNA
(allowing up to two mismatches in the alignment), the
family number of the known miRNA was assigned to
the cluster, otherwise the cluster was annotated as a
new family.

Validation of predicted miRNAs
Mature miRNA sequences of predicted miRNAs were
searched in the published small RNA sequencing data
and their abundances were compared in the wild type
(WT) and three RNAi knockdown lines (dcl3a-17, rdr2-
2, and DCL1IR-2) [21], as well as small RNAs that were
pulled down with Argonaut proteins AGO1a, AGO1b,
AGO1c, AGO4a, AGO4b, and AGO16 [21,53]. A miRNA
was considered validated if it met four conditions: (1) its
normalized expression level (transcripts per ten million,
TPTM) was at least 50 in one of the four libraries (WT,
dcl3a-17, rdr2-2, and DCL1IR-2); (2) the ratio of normal-
ized expression in dcl3a-17 or DCL1IR-2 versus WT
was less than 0.5; (3) the ratio of normalized expression
in dcl3a-17 or DCL1IR-2 versus rdr2-2 was also less than
0.5; (4) the ratio of normalized expression in rdr2-2
versus WT was greater than 0.5.

ftp://ftp.plantbiology.msu.edu/pub/data/TIGR_Plant_Repeats
ftp://ftp.plantbiology.msu.edu/pub/data/TIGR_Plant_Repeats
ftp://ftp.plantbiology.msu.edu
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Prediction of miRNA targets
We used the predicted mature miRNAs as query to
search the annotated rice cDNAs with miRanda [76].
We scored the alignments between miRNAs and poten-
tial targets using a position-dependent, mispair penalty
system [11,50,77]. Each alignment was divided into two
regions: a core region that included positions 2–13 from
the 5’ end of the miRNA, and a general region that
contained other positions. In the general region, a pen-
alty score of 1 was given to a mismatch or a single-
nucleotide bulge or gap, and 0.5 to a G:U pair. Penalty
scores were doubled in the core region. A gene was con-
sidered a valid target if the alignment between miRNA
and target met two conditions: (1) the penalty score is
4 or less; (2) total number of bulges and gaps is less than
2. Predicted miRNA-targets were further validated by
searching two public degradome datasets from Oryza
sativa ssp. japonica [46,53] using the CleaveLand soft-
ware [56] with default parameters.

Northern blot assays
Northern blot assays were performed to confirm a
selected set of stress-regulated miRNAs. Briefly, 40 μg of
total RNA obtained from inflorescences were loaded in
15% denaturing polyacrylamide gels and transferred to a
nylon membrane (Hybond NX). The RNA was then
fixed to the membrane by chemical cross-linking [78].
Blots were hybridized to radioactive probes complemen-
tary to mature miRNAs at 38°C overnight (probe
sequences are provided in Additional file 11). Mem-
branes were then washed twice with 2X SSC, 0.1% SDS
solution for 5 minutes each, and exposed to X-ray films
for autoradiography.

Additional files

Additional file 1: Summary of small RNA sequencing data. Detailed
information of preprocessing of small RNA reads from four libraries
in rice inflorescences.

Additional file 2: miRNAs that were identified in rice inflorescences.
Detailed information of the predicted rice miRNAs and their targets.

Additional file 3: Predicted secondary structures of the precursors
of new miRNA candidates. Free energy and miRNA ID are on the
bottom of each structure. Nucleotides that constitute mature RNAs are
drawn in blue.

Additional file 4: Small RNA reads from four libraries that were
mapped to the precursors of new candidate miRNAs. On each map,
the first line contains the miRNA ID. The second line contains the miRNA
precursor sequence, with mature miRNA region in red. The third line
contains the notation of secondary structure with parentheses denoting
base-pairing and dots denoting mismatches or bulges. The number on
the right is the free energy. Every line starting from line 4 contains the
sequence, mapping position, and count of a mapped unique small
RNA read.

Additional file 5: Detailed information of known miRNAs that were
identified in rice inflorescences. For each miRNA gene that match a
known miRNA gene in the miRBase, precursor sequence is listed first,
followed by alignment of mature miRNA sequence identified in this
study, and then alignment of mature miRNA sequence that is listed in
the miRBase (if it is different). Length of miRNA and normalized
expression values in four small RNA libraries are listed on the right side of
each mature miRNA.

Additional file 6: Validation of predicted miRNAs with published
small RNA data from DCL1, DCL3, RDR2 RNAi lines and small RNAs
in Argonaut protein pulldown.

Additional file 7: Confirmation of some of the predicted targets
using two published degradome data in rice.

Additional file 8: Candidate miRNAs that are derived from
transposons or repeats. Candidate miRNAs that were predicted using
anchor sRNAs that match annotated transposons or repeats, or have high
copy number (>20) in the genome.

Additional file 9: Detailed information of 80 candidate miRNAs
that were derived from transposable elements or repeats and
were validated with expression data from DCL1, DCL3, and RDR2
RNAi lines.

Additional file 10: MITEs are rich sources for generating miRNAs.
Relative abundance of different classes of TEs in the genome is
compared to the proportion of miRNAs that were derived from different
classes of TEs. MITEs are apparently enriched in TEs from which miRNAs
were derived.

Additional file 11: List of oligos that were used as probes to detect
the expression of miRNAs in Northern blot assays. Probes are
complimentary to the predicted mature miRNA sequences.

Accession number
Deep sequencing data from the four small RNA libraries have been
deposited in the NCBI/GEO database with accession number GSE26357.
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