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Abstract

Background: NAC domain transcription factors initiate secondary cell wall biosynthesis in Arabidopsis fibres and
vessels by activating numerous transcriptional regulators and biosynthetic genes. NAC family member SND2 is an
indirect target of a principal regulator of fibre secondary cell wall formation, SND1. A previous study showed that
overexpression of SND2 produced a fibre cell-specific increase in secondary cell wall thickness in Arabidopsis stems,
and that the protein was able to transactivate the cellulose synthase8 (CesA8) promoter. However, the full repertoire
of genes regulated by SND2 is unknown, and the effect of its overexpression on cell wall chemistry remains
unexplored.

Results: We overexpressed SND2 in Arabidopsis and analyzed homozygous lines with regards to stem chemistry,
biomass and fibre secondary cell wall thickness. A line showing upregulation of CesA8 was selected for
transcriptome-wide gene expression profiling. We found evidence for upregulation of biosynthetic genes
associated with cellulose, xylan, mannan and lignin polymerization in this line, in agreement with significant co-
expression of these genes with native SND2 transcripts according to public microarray repositories. Only minor
alterations in cell wall chemistry were detected. Transcription factor MYB103, in addition to SND1, was
upregulated in SND2-overexpressing plants, and we detected upregulation of genes encoding components of a
signal transduction machinery recently proposed to initiate secondary cell wall formation. Several homozygous
T4 and hemizygous T1 transgenic lines with pronounced SND2 overexpression levels revealed a negative impact
on fibre wall deposition, which may be indirectly attributable to excessive overexpression rather than co-
suppression. Conversely, overexpression of SND2 in Eucalyptus stems led to increased fibre cross-sectional cell
area.

Conclusions: This study supports a function for SND2 in the regulation of cellulose and hemicellulose biosynthetic
genes in addition of those involved in lignin polymerization and signalling. SND2 seems to occupy a subordinate
but central tier in the secondary cell wall transcriptional network. Our results reveal phenotypic differences in the
effect of SND2 overexpression between woody and herbaceous stems and emphasize the importance of
expression thresholds in transcription factor studies.
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Background

Plant fibres constitute a valuable renewable resource for
pulp, paper and bioenergy production [1]. In angios-
perms, the two principle sclerenchyma cell types that
comprise secondary xylem are xylem vessels, which
facilitate the transport of water, and xylary fibres, which
provide mechanical strength and which make up the
bulk of woody biomass [2]. Wood density and chemical
composition, fibre and vessel length, diameter and wall
thickness, and even the proportion of axial and radial
parenchyma heavily influence pulp yield, digestibility
and quality, although the relative importance of each
varies from species to species [3,4].

During xylogenesis in angiosperms, fibres differentiate
from the vascular cambium, elongate, and deposit a ligni-
fied secondary cell wall (SCW). SCW formation is asso-
ciated with a distinct form of programmed cell death
[5,6]. Much research has been devoted to the biosynth-
esis of SCW biopolymers, namely (in decreasing order of
abundance) cellulose [7,8], hemicellulose [9] and lignin
[10,11]. Complementing this, in the past six years much
of the transcriptional network underlying SCW biosynth-
esis has been deciphered, mainly exploiting Arabidopsis
thaliana and the Zinnia elegans mesophyll-to-tracheary
element in vitro transdifferentiation system [12,13].
Genes involved in secondary xylem formation are regu-
lated principally at the transcriptional level, accentuating
the central significance of the SCW transcriptional net-
work [14]. Manipulation of transcription factors (TFs)
associated with the network presents the potential to
enhance fibre properties through altering the regulation
of a large number of biosynthetic genes.

Kubo et al. [15] first identified NAC domain TFs
VASCULAR-RELATED NAC-DOMAIN7 (VND7) and
VND6 as “master activators” of SCW formation in
proto- and metaxylem vessels, respectively. It was later
shown that VND6 and VND7 are functionally redun-
dant, being sufficient for all vessel SCW formation
[16,17]. In xylem fibres, a similar transcriptional master
switch was identified. NAC family proteins SECOND-
ARY WALL-ASSOCIATED NAC DOMAIN1 (SND1)
and NAC SECONDARY WALL THICKENING PRO-
MOTING FACTORI (NST1) redundantly activate Ara-
bidopsis fibre (and, to some extent, silique valve) SCW
formation [18-22]. In other cell types with secondary
walls, such as the endothecium of anthers, NST1 was
also found to activate SCW development, in this case
redundantly with NST2 [23]. Together, these studies
support a role for NAC TFs as principal activators of
SCW formation in fibres and vessels, acting in distinct
combinations in each case.

Several studies suggest that SND1, NST1, VND6 and
VND?7 activate a conserved, cascading transcriptional
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network featuring, but by no means limited to, various
NAC, MYB and homeodomain TFs (reviewed in
[13,24]). SND1, NST1, NST2, VND6 and VND?7 regulate
an overlapping set of targets [21,25], supported by the
ability of NST2, VND6 and VND7 to complement the
sndl nstl double mutant when ectopically expressed in
fibre cells [26,27]. For this reason, they have been collec-
tively referred to as secondary wall NACs (SWNs) [26].
Amongst the downstream targets of SWNs, SND3 and
MYBI103 are directly activated by SND1/NST1 and
VND6/VND7 [21,25-27], although SND3 has not consis-
tently been detected as a VND6/VND?7 direct target.
SND?2 is indirectly regulated by SND1/NST1 [21,28], but
there exists no evidence for regulation by VND6/VND?7.
Loss- and gain-of-function mutagenesis of SND2, but
interestingly also that of SND3 and MYBI103, produced
a fibre-specific phenotype [21]. Whilst dominant repres-
sion [29] drastically reduced fibre-specific SCW thick-
ness, individual overexpression of MYB103, SND2 and
SND3 increased SCW thickness in interfascicular and
xylary fibres, with no apparent impact on vessels. In
stems a reduction in glucose, xylose and mannose cell
wall sugars occurred during dominant repression of
MYB103, SND2 or SND3. Conversely, all three TFs
could transactivate the SCW cellulose-associated CesA8
gene promoter, but not representatives of hemicellulose
(IRX9) or lignin (4CL1I) biosynthesis [21].

The regulation and function of SND2 may differ in
herbaceous and woody plants, especially in woody tis-
sues which possess greater proportions of fibre cells
than stems of herbaceous plants. This may be facilitated
by gene family expansion and specialization in woody
plants [30]. As many as four putative SND2 orthologs
exist in poplar due to significant expansion of the NAC
family [31], some paralogs of which may have under-
gone subfunctionalization in Populus [32]. All four puta-
tive orthologs were found to be preferentially expressed
in developing xylem and phloem fibres [31]. Overex-
pression of one of the putative orthologs, PopNAC154,
resulted in a decrease in height and an increase in the
proportion of bark to xylem in poplar trees, with no
perceptible effect on SCW thickness [31]. This apparent
conflict with the SND2 overexpression phenotype in
Arabidopsis [21] illustrates that the regulatory function
of SND2 homologs may differ between herbaceous and
woody plants.

The observation that SND2 overexpression led to
enhanced SCW formation in Arabidopsis fibres and that
it potentially regulates cellulosic genes are important
findings, because evidence supports the existence of a
similar transcriptional network regulating fibre SCW
development in angiosperm trees [13,33,34]. However,
several aspects of the biological function of SND2
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remain to be resolved before the biotechnological poten-
tial of the gene can be determined. The global targets of
SND2 have not been identified and its position in the
transcriptional network has not been established. The
finding that SND2 regulates cellulose, but not xylan and
lignin biosynthetic genes, was based on a single repre-
sentative gene from each pathway [21]. A greater knowl-
edge of SND2 targets is required to confidently negate
its regulation of hemicellulose and lignin biosynthesis. It
is also unclear from the analysis by Zhong et al. [21]
whether SND2 overexpression invariably leads to
increased fibre SCW thickness, both in Arabidopsis and
in woody taxa. Finally, the effect of SND2 overexpres-
sion on cell wall chemistry has not yet been reported.

We aimed to further characterize the position and
regulatory role of SND2 in the fibre SCW transcriptional
network, and confirm the phenotypic effects of SND2
overexpression in Arabidopsis and Eucalyptus plants.
Our objectives were to identify genes that are differen-
tially expressed in SND2-overexpressing plants, and
determine the overall effect on Arabidopsis development
and biomass production, as well as fibre SCW formation
in Arabidopsis and Eucalyptus. We describe novel regu-
latory roles for SND2 in fibre SCW development, and
propose a model for the role of SND2 in the transcrip-
tional network regulating SCW formation.

Results

Whole-transcriptome expression profiling of SND2-
overexpressing Arabidopsis plants

SND2 was previously shown to transactivate the CesA8
gene promoter in Arabidopsis protoplasts [21]. In order
to identify other genes regulated by SND2 in planta, we
overexpressed SND2 in Arabidopsis plants by cloning
the SND2 coding sequence into the overexpression vec-
tor pMDC32 [35]. We introduced the construct into A.
thaliana Col-0 plants and randomly selected three
homozygous T4 lines (A, B, and C), from a pool of T1
transgenic plants herein denoted “SND2-OV”. We con-
firmed that SND2 was strongly upregulated in the T4
SND2-OV lines using RT-qPCR analysis (Additional file
1, Figure S1). We then tested the T4 SND2-OV lines for
preliminary evidence of CesA8 upregulation in lower
inflorescence stems using RT-qPCR analysis. Interest-
ingly, line A ("SND2-OV(A)”) exclusively showed evi-
dence for CesA8 upregulation (not shown), and was
therefore selected for transcriptome analysis.

In order to determine which genes were differentially
expressed as a result of SND2 overexpression in Arabi-
dopsis stems, the transcriptome of SND2-OV(A) plants
was compared to that of the wild type with respect to
the bottom 100 mm of primary inflorescence stems.
High quality total RNA (RQI > 9.3) was isolated from
three biological replicates of eight-week-old wild type
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and SND2-OV(A) plant stems, and labelled cDNA
hybridized to Agilent 4 x 44k Arabidopsis transcriptome
arrays. Significantly differentially expressed genes (DEG)
were identified as those with an experiment-wise false
discovery rate below 0.05 and fold change > |+1.5|. This
analysis identified a total of 155 upregulated and 68
downregulated genes in SND2-OV(A) relative to the
wild type (Additional file 2).

In order to identify overrepresented gene ontology
(GO) classes amongst the DEGs, the GOToolBox
resource [36] was interrogated with a hypergeometric
test (Benjamini and Hochberg correction) using The
Arabidopsis Information Resource [37] annotation set.
Significantly enriched biological processes (P < 0.01)
revealed a predominant role of the DEGs in (secondary)
cell wall organization and biogenesis, carbohydrate
metabolism, signalling and response to stimulus (Addi-
tional file 3, Table S1).

Identification of putative SND2 targets

SND?2 is preferentially expressed in xylem [21,38]. We
hypothesized that targets of SND2 would be co-
expressed with endogenous SND2 transcripts. The tis-
sue-specific expression of DEGs identified in SND2-OV
(A) (fold change > |+1.5|) was explored by observing the
expression patterns across selected Arabidopsis tissues
using the Genevestigator V3 [39] anatomy clustering
tool. At the time of analysis, the Genevestigator database
totalled 374 publicly available microarray studies for
Arabidopsis, encompassing 6290 samples. Of 223 genes
in our SND2-OV(A) dataset, 190 were represented by
unique probe sets on high quality ATH1 22k arrays. We
examined the endogenous expression of these genes
across 26 tissues based on results from 4422 arrays, and
subjected the genes to hierarchical clustering according
to their absolute expression profiles. The majority of
genes did not conform to a single expression pattern,
with only ~9% of the genes displaying expression pro-
files clearly resembling that of native SND2 transcript, i.
e. with preferential expression in SCW-containing tis-
sues (Additional file 1, Figure S2). Thus, the majority of
genes differentially expressed as a result of SND2 over-
expression were not generally associated with SCW-con-
taining tissues.

Novel targets arising from ectopic overexpression of
cell wall-associated NAC TFs have been reported pre-
viously [40]. It is possible that a similar phenomenon
occurred in our study, since the bulk of the sampled
transgenic stems comprised tissues where SND?2 is not
naturally expressed. This may explain the small propor-
tion of DEGs that were co-expressed with SND2 in
Additional file 1, Figure S2. To avoid this possibility, we
stringently defined the putative authentic targets of
SND2 as those that were also a subset of SNDI1-
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regulated genes, the latter identified by microarray ana-
lysis of SNDI1-overexpressing Arabidopsis plants by Ko
et al. [28]. The age of the plants in the cited study (~8.5
weeks) and the tissue sampled (lower 50 mm of the
inflorescence stem) was similar to our experiment.
SND2, a known indirect target of SND1 [21], was the
most strongly upregulated TF in the SND1-overexpres-
sing plant stems [28], further justifying our approach.

We extracted genes common to the Ko et al. [28] data
and our significant SND2-OV(A) microarray data, with-
out fold-change filtering. Seventy five genes were shared
between the two datasets, herein denoted “SND2nKo”,
~79% of which were regulated in a consistent direction
(Table 1). Amongst them, genes involved in transcrip-
tion, (secondary) cell wall biosynthesis, cell wall expan-
sion and modification, carbohydrate metabolism, stress
response and proteins of unknown function were promi-
nent (Table 1). There was notably no differential expres-
sion of monolignol biosynthetic genes.

We independently assessed the possible function of
SND2 by identifying genes co-expressed with native
SND?2 transcript from the AtGenExpress Plus Extended
Tissue Set public microarray data using Expression
Angler [41], employing a stringent Pearson correlation
coefficient threshold (R > 0.90). Genes associated with
SCW biosynthesis (e.g. secondary wall CesAs, IRX genes)
as well as TFs previously implicated in SCW regulation
(MYB103, SND1I), were amongst the 31 genes found to
be co-expressed with SND2 (Table 2), supporting a role
of SND2 in SCW regulation. 22 of the genes were differ-
entially expressed in the SND2nKo data (Table 2).

The seventy five SND2nKo genes represented on the
ATHI 22k array were subjected to hierarchical cluster-
ing across the Genevestigator V3 Arabidopsis anatomy
database [39] as before to analyze their tissue specificity.
Unique probe sets were found for all but one gene
(AT5G24780). One cluster (a) contained 31 genes pre-
ferentially expressed in a similar fashion to SND2,
namely in inflorescence nodes and stem, rosette stem
and xylem, and silique (Figure 1). Another cluster of 13
genes (b) appeared to exhibit preferential expression in
inflorescence stems and nodes, rosette stems, and occa-
sionally seedling hypocotyls, root steles and anther-con-
taining stamens, all of which contain SCWs to some
degree. Thus, compared to the original SND2-OV(A)
dataset, a much higher percentage (59%) of genes in the
SND2nKo dataset displayed preferential expression in
tissues containing SCWs. Combined with the AtGenEx-
press co-expression analysis, these data support the role
of SND2 in SCW regulation and the validity of the
SND2nKo dataset as the most likely direct or indirect
targets of SND2.

The microarray results were validated by RT-qPCR
analysis. We profiled fifteen genes based on the
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microarray RNA isolated from stems of eight-week-old
SND2-OV(A) and wild type plants (Figure 2). All RT-
qPCR profiles agreed with the microarray data, and
seven genes were significantly (P < 0.05) upregulated
(including CesA4, EXPA15, FLAI2 and MYB103). We
also confirmed that the endogenous SND2 transcript
showed no significant change in SND2-OV(A) stems,
whereas total SND2 transcript abundance (the sum of
transgenic and endogenous transcripts) in SND2-OV(A)
stems was ~180-fold that of the wild type (not shown).
We obtained similar results for selected genes from
plants grown in an independent trial (Additional file 1,
Figure S3).

We were interested in the temporal effect of inflores-
cence stem development on the putative targets of
SND2 when constitutively expressed. We therefore per-
formed a second microarray analysis of SND2-OV(A)
and wild type plants at four weeks of age, sampling
inflorescence stems that were ~120 mm tall. Of the 21
upregulated and 24 downregulated DEGs, no SND2nKo
candidates were present, nor were any SCW biosynth-
esis-associated genes (Additional file 4). This result sug-
gests that an additional co-regulator(s), only expressed
after four weeks, is required for SND2 to function in
fibre SCW regulation.

Effect of SND2 overexpression on Arabidopsis SCW
thickness, biomass and SCW composition

Zhong et al. [21] previously reported that SND2 overex-
pression significantly increased SCW thickness in inter-
fascicular fibres (IFs) of Arabidopsis inflorescence stems.
However, amongst our homozygous SND2-OV lines,
scanning electron microscopy (SEM) revealed no signifi-
cant changes in fibre wall thickness for lines A and B,
whilst line C had significantly thinner SCWs than the
wild type (Figure 3). These results were reproduced in
an independent trial using light microscopy (Additional
file 1, Figure S4).

Fibre SCW thickness was additionally assessed in
lower inflorescence stems of seven T1 SND2-OV and
eight wild type plants using light microscopy. Represen-
tative micrographs are shown in Additional file 1, Figure
S5. The T1 lines manifested a significant (21%, P < 0.02)
decrease in mean [F SCW thickness (Figure 4A) that
resembled SND2-OV line C and the SND2 dominant
repression phenotype reported previously [21]. Com-
bined endogenous and transgenic SND2 transcript abun-
dance from T1 plants exceeded that of the wild type
plants by ~435-fold, ruling out co-suppression as an
explanation for the phenotype (Figure 4B). Although no
significant correlation could be found between SND2
transcript abundance and SCW thickness, our data con-
firm that strong SND2 overexpression reduces IF SCW
thickness.
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Table 1 Subset of SND1-regulated genes [28] also significantly differentially expressed in stems of eight-week-old
SND2-OV(A) plants relative to wild type (SND2nKo).

Locus Description Fold P-
change value?
Transcriptionb
AT4G28500 ANACO073/SND2 (Arabidopsis NAC domain containing protein 73); transcription factor > 100.00° 0.00E
+00
AT1G63910 MYB103 (MYB DOMAIN PROTEIN 103); DNA binding/transcription factor 1.83 1.13E-11
AT1G52890 ANACO19 (Arabidopsis NAC domain containing protein 19); transcription factor 144 3.07E-04
AT1G32770 ANACO12/NST3/SND1 (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 12); transcription factor 142 6.93E-04
AT4G17245  Zinc finger (C3HC4-type RING finger) family protein 136 4.97E-03
AT5G13330 RAP2.6L (related to AP2 6L); DNA binding/transcription factor 1.36 4.87E-03
Secondary cell wall biosynthesis and cell wall modification
AT2G03090 EXPA15 (EXPANSIN A15) 203 3.60E-16
AT5G44030 CESA4 (CELLULOSE SYNTHASE 4); transferase, transferring glycosyl groups 1.84 791E-12
AT5G60490 FLA12 (fasciclin-like arabinogalactan-protein 12) 1.83 1.37E-11
AT2G38080 IRX12/LAC4 (laccase 4); copper ion binding/oxidoreductase 177 2.51E-10
AT5G17420 CesA7/IRX3 (IRREGULAR XYLEM 3, MURUS 10); cellulose synthase 173 1.25E-09
AT5G03170 FLAT1 (fasciclin-like arabinogalactan-protein 11) 172 2.80E-09
AT5G03760 CSLAQY (RESISTANT TO AGROBACTERIUM TRANSFORMATION 4); transferase, transferring glycosyl groups 1.66 4.33E-08
AT4G18780 CESA8 (CELLULOSE SYNTHASE 8); cellulose synthase/transferase, transferring glycosyl groups 1.63 1.33E-07
AT5G15630 COBL4/IRX6 (COBRA-LIKE4) 1.62 2.12E-07
AT5G60020 LACT7 (laccase 17); copper ion binding/oxidoreductase 1.59 744E-07
AT3G18660 PGSIPT (PLANT GLYCOGENIN-LIKE STARCH INITIATION PROTEIN 1); transferase, transferring glycosyl groups ~ 1.58 1.21E-06
AT3G50220 IRX15; domain of unknown function 579 (DUF579)-containing protein 1.55 3.97E-06
AT5G54690 GAUT12/IRX8/LGT6 (GALACTURONOSYLTRANSFERASE 12); polygalacturonate 4-alpha- 1.39 1.81E-03
galacturonosyltransferase
AT5G59290 UXS3 (UDP-GLUCURONIC ACID DECARBOXYLASE) 1.38 2.66E-03
AT1G19300 GATLI1/GLZ1/PARVUS (GALACTURONOSYLTRANSFERASE-LIKE 1); polygalacturonate 4-alpha- 133 1.08E-02
galacturonosyltransferase
AT5G01360 TBL3; domain of unknown function 231 (DUF231)-containing protein 1.31 2.08E-02
AT1G27440 GUT2/IRX10 (glucuronoxylan glucuronosyltransferase) 1.30 2.57E-02
Signal transduction
AT3G16920 CTL2 (Chitinase -like protein 2) 1.71 4.23E-09
AT1G09440 Protein kinase family protein 147 1.21E-04
AT3G15050 1QD10 (IQ-domain 10); calmodulin binding 146 1.68E-04
AT1G27380 RIC2 (ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN 2) 143 4.07E-04
AT1G56720 Protein kinase family protein 141 9.28E-04
AT1G08340 Rho GTPase activating protein, putative 1.38 2.29E-03
AT2G36570 Leucine-rich repeat transmembrane protein kinase, putative 1.32 147E-02
Carbohydrate metabolism
AT5G35740 Glycosyl hydrolase family protein 17 1.57 2.54E-06
AT1G04680 Pectate lyase family protein 1.57 2.11E-06
AT4G36360 BGAL3 (beta-galactosidase 3); beta-galactosidase 145 2.66E-04
AT1G19940 GH9B5 (GLYCOSYL HYDROLASE 9B5); hydrolase, hydrolyzing O-glycosyl compounds 141 1.09E-03
Abiotic and biotic stress response
AT5G42180 Peroxidase 64 (PER64) (P64) (PRXR4) 1.66 4.29E-08
AT1G72060 Serine-type endopeptidase inhibitor 1.52 1.59E-05
AT4G27410 RD26 (RESPONSIVE TO DESSICATION 26) 137 3.20E-03
AT2G37130 Peroxidase 21 (PER21) (P21) (PRXR5) 1.29 347E-02
AT4G23690 Disease resistance-responsive family protein/dirigent family protein -1.34 7.80E-03
AT1G68850 Peroxidase, putative -141 1.08E-03
AT4G11650 OSM34 (OSMOTIN 34) -1.69 8.89E-09
AT5G24780 VSP1 (VEGETATIVE STORAGE PROTEIN 1); acid phosphatase -238 3.08E-24
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Table 1 Subset of SND1-regulated genes [28] also significantly differentially expressed in stems of eight-week-old
SND2-OV(A) plants relative to wild type (SND2n?X?Ko). (Continued)

Cytoskeleton
AT1G50010 TUA2 (tubulin alpha-2 chain) 147 1.26E-04
AT5G23860 TUBS (tubulin beta-8) 1.36 4.58E-03
One-carbon metabolism
AT3G23810 SAHH2 (S-ADENOSYL-L-HOMOCYSTEINE (SAH) HYDROLASE 2); adenosylhomocysteinase 141 9.68E-04
Lipid metabolism
AT1G29670 GDSL-motif lipase/hydrolase family protein 1.28 4.39E-02
AT1G21360 GLTP2 (GLYCOLIPID TRANSFER PROTEIN 2) -1.77 1.99E-10
Wax biosynthesis
AT1G02205 CERT (ECERIFERUM 1) 1.35 2.04E-03
Unknown function
AT3G22540 Unknown protein 1.58 1.50E-06
AT1G33800 Unknown protein 1.55 4.24E-06
AT4G27435 Unknown protein 143 542E-04
AT5G64190 Unknown protein 142 6.86E-04
AT5G61340 Unknown protein 1.39 1.63E-03
AT1G07120 Unknown protein 1.32 147E-02
AT1G03820 Unknown protein 132 1.88E-02
AT1G24600 Unknown protein -1.33 1.29E-02
AT5G66170  Unknown protein -1.36 4.29E-03
Unassigned
AT1G55330 AGP21 (ARABINOGALACTAN PROTEIN 21) 1.71 4.63E-09
AT4G28050 TET7 (TETRASPANIN7) 1.64 1.16E-07
AT3G54040 Photoassimilate-responsive protein-related 1.62 2.52E-07
AT2G41250 Haloacid dehalogenase-like hydrolase superfamily protein 157 2.23E-06
AT5G44130 FLA13 (FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 13 PRECURSOR) 144 3.97E-04
AT2G05540 Glycine-rich protein 143 4.36E-04
AT3G62020 GLP10 (GERMIN-LIKE PROTEIN 10); manganese ion binding/metal ion binding/nutrient reservoir 140 1.46E-03
AT5G10430 AGP4 (ARABINOGALACTAN-PROTEIN 4) 138 2.29E-03
AT3G52370 FLA15 (FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 15 PRECURSOR) 137 4.03E-03
AT2G05380 GRP3S (GLYCINE-RICH PROTEIN 3 SHORT ISOFORM) 137 3.58E-03
AT2G22170 Lipid-associated family protein 135 7.62E-03
AT1G72230 Plastocyanin-like domain-containing protein 132 1.70E-02
AT4G04460 Aspartyl protease family protein -1.29 4.11E-02
AT1G76790 O-methyltransferase family 2 protein -1.39 1.94E-03
AT3G28220 Meprin and TRAF homology domain-containing protein/MATH domain-containing protein -1.60 5.82E-07
AT4G25010 Nodulin MtN3 family protein -1.64 1.00E-07
AT2G39030 GCN5-related N-acetyltransferase (GNAT) family protein -1.80 4.90E-11
AT5G09530 Hydroxyproline-rich glycoprotein family protein -3.09 1.31E-41

?Adjusted P-value according to False Discovery Rate (FDR) method

bGenes are categorized by Gene Ontology classification according to The Arabidopsis Information Resource www.arabidopsis.org, unless otherwise described in

the main text.

“Transgene. The fold change is likely an underestimate of the actual value because this target displayed a saturated hybridization signal

We hypothesized that SND2 overexpression could
influence overall inflorescence stem biomass, irrespective
of IF SCW thickness. The entire inflorescence stems of
eight-week-old T4 SND2-OV lines A, B and C were
weighed to determine total biomass yield. Only in the
most highly overexpressing line, SND2-OV line C, was
biomass significantly different from the wild type, where

fresh and dry biomass was decreased (Additional file 1,
Figure S6). This was despite the fact that all SND2-OV
lines appeared phenotypically normal and exhibited no
stunting or dwarfing (results not shown). Biomass pro-
files in Additional file 1, Figure S6 were in agreement
with the IF SCW thickness profile for each respective
line (Figure 3), suggesting a direct relationship between
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Table 2 Genes tightly co-expressed with endogenous SND2 transcript.

Co-expressed gene R-value Description SND2nKo
PGSIP1 (AT3G18660) 0.980 Plant glycogenin-like starch initiation protein 1 N
QD10 (AT3G15050) 0979 Calmodulin-binding protein N
MYB103 (AT1G63910) 0973 Secondary cell wall-associated transcription factor N
IRX8 (AT5G54690) 0.972 Galacturonosyltransferase 12 N
COBL4 (AT5G15630) 0.972 COBRA-like protein N
IRX15 (AT3G50220) 0.967 DUF579 protein required for normal xylan synthesis N
IRX15-L (AT5G67210) 0.963 DUF579 protein required for normal xylan synthesis

CesA7 (AT5G17420) 0.962 Secondary cell wall cellulose synthase protein N
GLP10 (AT3G62020) 0.959 Germin-like protein 10 N
FLA11 (AT5G03170) 0.958 Fasciclin-like arabinogalactan protein N
LAC4 (AT2G38080) 0.955 IRREGULAR XYLEM 12 V
LAC2 (AT2G29130) 0.953 Laccase

AT1G08340 0.952 Rho GTPase activating protein N
CTL2 (AT3G16920) 0.951 Chitinase-like protein 2 N
AT1G80170 0.950 Pectin lyase-like superfamily protein

AT2G41610 0.950 Unknown protein

SND1 (AT1G32770) 0.948 Secondary cell wall-associated transcription factor N
RIC2 (AT1G27380) 0.948 ROP-interactive CRIB motif-containing protein N
MAP65-8 (AT1G27920) 0.941 Microtubule-associated protein

AT1G07120 0.938 Unknown protein N
AT2G31930 0.936 Unknown protein

CesA4 (AT5G44030) 0.934 Secondary cell wall cellulose synthase protein N
AT4G27435 0.934 Protein of unknown function (DUF1218) N
AT1G22480 0933 Cupredoxin superfamily protein

IRX10 (AT1G27440) 0.929 Glucuronoxylan glucuronosyltransferase N
CesA8 (AT4G18780) 0.926 Secondary cell wall cellulose synthase protein N
RWA3 (AT2G34410) 0915 Polysaccharide O-acetyltransferase

AT4G28380 0915 Leucine-rich repeat (LRR) family protein

LAC17 (AT5G60020) 0914 Laccase V
PARVUS (AT1G19300) 0.904 Polygalacturonate 4-a-galacturonosyltransferase N
TBL3 (AT5G01360) 0.902 DUF231 protein involved in cellulose biosynthesis N

Expression Angler [41] was used to find co-expressed genes in the AtGenExpress Plus Extended Tissue Set microarray data. The R-value represents the Pearson
correlation coefficient of co-expression, set to a threshold of R > 0.90. Co-expressed genes that were also differentially expressed in the SND2nKo subset of SND2

overexpression data (Table 1) are indicated in the far right column.

IF SCW thickness and biomass yield, and therefore a
negative effect of excessive SND2 overexpression on bio-
mass yield.

The chemical composition of the inflorescence stems
was investigated by Klason lignin analysis and quantifi-
cation of monosaccharides following complete acid
hydrolysis. SND2-OV(A) exhibited a nominal but statis-
tically significant 2.5% relative decrease in total lignin
(Table 3, P = 0.03). This was likely due to a reduction
in insoluble lignin (Table 3). No changes were apparent
in the relative abundance of glucose and xylose, and
only mannose and rhamnose were significantly increased
in line A (P < 0.05) by 7.4% and 5.4% respectively (Table
4). We also quantified the chemical composition of
SND2-OV line C to investigate SCW composition when
fibre wall thickness was reduced. However, no change in

lignin or monosaccharide content was detected against
the wild type (not shown).

Induced somatic overexpression of SND2 in Eucalyptus
stem sectors

Compared to herbaceous annuals such as Arabidopsis,
woody perennials devote a larger proportion of carbon
allocation to xylem formation. We therefore examined
the effect of Arabidopsis SND2 overexpression on xylem
fibre characteristics in Eucalyptus trees by Induced
Somatic Sector Analysis [42]. Stems were transformed
with a pCAMBIA1305.1 construct (containing the f-glu-
curonidase or ‘GUS’ reporter gene) overexpressing
SND2. Tree stems were harvested after 195-210 days,
transgenic sectors were identified in the cross-sections
via GUS reporter staining, and etched to delineate the
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transgenic sectors prior to SEM analysis (Additional file
1, Figure S7).

Fibre dimensions were measured from SEM micro-
graphs as a percentage change between eleven trans-
genic sectors and adjacent wild type sectors for the
SND2-overexpressing gene construct, as well as nine
empty vector control (EVC) sectors expressing only the
GUS reporter. Fibre cell area (i.e. average fibre cross-
section area) was significantly increased in SND2-OV
sectors compared to EVC sectors (Table 5, P = 0.042),
demonstrating that SND2 influences fibre development
in Eucalyptus. Fibre cell wall area and lumen area,
which comprise fibre cell area, were marginally
increased in SND2-overexpressing sectors relative to
EVC sectors, but the differences were not statistically
significant for these individual parameters. However,
since the increase in cell wall area in SND2-overexpres-
sing sectors was close to significant (P = 0.066), it is rea-
sonable to suggest that the increase in fibre cell area was
mainly due to a cell wall area increase rather than a
lumen area contribution. Measurement of fibre cell area
in the Arabidopsis T4 and T1 SND2-OV lines revealed

no significant differences relative to the wild type (not
shown).

Discussion

A role for SND2 in regulating Arabidopsis fibre SCW
formation was previously suggested by studies establish-
ing it as an indirect target of SND1, a master regulator
of fibre SCW development [18,20-22,28]. In promoter
transactivation experiments, SND2 was implicated in the
regulation of cellulose (CesA8), but a role in regulating
hemicellulose or lignin biosynthesis seemed unlikely
[21]. A particularly interesting finding was a fibre cell-
specific increase in SCW thickness when SND2 was
constitutively overexpressed, mirrored by decreased fibre
SCW thickness in dominant repression lines [21]. The
proposed role of SND2 in Arabidopsis fibre SCW for-
mation has not been independently validated and the
full suite of genes regulated by SND2 has not been elu-
cidated. To address this, we performed microarray ana-
lysis on a homozygous SND2 overexpressing line,
SND2-OV(A), which also exhibited significant upregula-
tion of the CesA8 gene.
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Figure 2 RT-qPCR analysis of selected genes differentially expressed in inflorescence stems of eight-week-old SND2-OV(A) and wild
type plants. SND2-OV(A) plants were grown alongside the wild type in three biological replicate pairs, with primary stems from six plants
pooled per sample. SND2-OV(A) transcript levels were normalized to the wild type in each replicate (assigned a value of 1, for each gene), hence
error bars indicate the standard error of the deviation from wild type across biological replicates. Significance was evaluated by a one-tailed
paired t-test, in accordance with the expected direction of response for each gene; *P < 0.05.

TFs have been shown to activate novel targets when
ectopically expressed. A striking example was
described by Bennett et al. [40] for NAC TFs regulat-
ing primary cell wall modification in the root cap.
Overexpression in stems caused ectopic lignification
and ectopic expression of SCW genes [40]. Our micro-
array results therefore likely include direct and indirect
targets of SND2, as well as genes misregulated due to
the ectopic overexpression of SND2. To discriminate
native targets of SND2, we defined a subset of genes
(SND2nKo) regulated by SND1 [28] that were also
found to be differentially expressed in this study
(Table 1). We reasoned that obtaining the SND1 sub-
set of targets would be a robust approach for reducing
ectopic noise, because SND2 is indirectly, but strongly
activated by SND1 [21,28] and native SND2 targets
should therefore be a subset of the SNDI1 targets.
Further support for defining these seventy five genes
as putative SND2 targets was provided by the finding
that a large proportion (71%) of genes co-regulated (R
> 0.9) with SND2 in a large compendium of AtGenEx-
press microarray experiments were included in the
SND2nKo set (Table 2). Recently, Zhong et al. [43]
demonstrated transactivation of poplar CesA4, CesAS,
GT43 and GT47 family gene promoters by a poplar
co-ortholog of SND2, providing a third line of evidence
that SND2 regulates SCW-associated genes.

The SND2nKo set (Table 1) prominently included
genes involved in SCW biosynthesis, transcriptional reg-
ulation and signalling. Amongst the SCW-associated
genes, CesA4, CesA7 and CesA8 are involved in SCW
cellulose biosynthesis [44-46]. COBL4 and its orthologs
also appear to be involved in SCW cellulose formation
[47,48], and recently a homolog of TRICHOME BIRE-
FRINGENCE, TBL3 (AT5G01360), was shown to affect
secondary cellulose deposition and possibly SCW struc-
ture through alterations in pectin methylesterification
[49]. PARVUS, IRX8 and IRXI10 are required for xylan
biosynthesis in SCWs [50-53]. IRX15 and IRXIS5L,
encoding functionally redundant DUF579 proteins, were
recently shown to be essential for normal xylan bio-
synthesis [54,55], but only the former was upregulated
in SND2-OV(A) stems (Table 1). PGSIPI and UXS3 are
co-expressed with xylan synthases, with good evidence
supporting a xylan a-glucuronosyltransferase function
for PGSIP1 [56] and a UDP-xylose synthase function for
UXS3 [57,58]. As shown previously [21], SND2 did not
activate the xylan-associated IRX9 gene in this study,
nor did it activate lignin-associated 4CLI. LAC4 and
LACI7 encode laccases, an enzyme group that has been
linked to SCW lignin polymerization [59]. LAC4 and
LACI17 are regulated by lignin-specific TFs MYB58 and
MYB63 [60] and were also recently shown to affect lig-
nification in Arabidopsis xylem, with LACI17 specifically
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Figure 3 (i) SCW thickness in IFs of eight-week-old wild type and T4 homozygous SND2-OV lines A, B and C. Measurements are based
on scanning electron micrographs. Error bars indicate the standard error of the mean of three biological replicates (21-42 fibres were measured
per line). *Significantly different from wild type according to homoscedastic two-tailed Student's t-test (P < 0.02). Transmission micrographs of
representative IF regions of wild type and SND2-QV line C stems are shown in (ii) and (iii) respectively (scale bars = 20 um).

Line C

implicated in G-lignin polymerization in IFs [61]. Our
results (Table 1) thus suggest an additional role for
SND?2 in the regulation of lignification distinct from that
of monolignol biosynthesis.

Several TFs were upregulated in the SND2nKo set
(Table 1). ANACO019 regulates biotic and abiotic stress
responses [62,63]. AT4G17245 is a C3HC4 RING-type
zinc finger gene of unknown function. However, at least
one C3HC4 gene, AT1G72220, has been previously
implicated in SCW formation [47]. We observed upre-
gulation of RAP2.6L, an ethylene response factor
involved in shoot regeneration and abiotic stress
response [64,65]. The upregulation of SNDI and
MYB103 in SND2(OV) plants was unexpected. SND1, a
master activator of SCW biosynthesis in fibres
[18,20-22,28], is expected to be upstream of SND2 in
the transcriptional network. It also seems intuitive that
SND2 acts downstream of MYBI103, since SND2 is an
indirect target of SND1, whilst MYB103 is a direct tar-
get of SND1 [21]. A positive feedback loop may exist

through which upregulation of SND2, or another TF
(Table 1), promotes SNDI expression.

Recently, a signal transduction pathway based on a
mammalian signalling model was proposed for SCW
biosynthesis in Arabidopsis and rice (Figure 4 in [56]).
Differentially expressed genes in SND2nKo included
those encoding the principal proteins of this machinery
(Table 1), namely FLAI1/FLAI12, CTL2 (AT3G16920),
an LRR kinase (AT1G08340), Rac (AT2G36570), IQ
(IQD10, AT3G15050) and RIC (AT1G27380). CHITI-
NASE-LIKE 2 (CTL2), which lacks chitinase or chitin-
binding activity [66], might interact with FLAI1/12 in a
similar way to the interaction of mammalian chitinase-
like protein SI-CLP with a fasciclin domain-containing
transmembrane receptor, Stabilin-1 [56,67]. Two addi-
tional kinases (AT1G09440 and AT1G56720, Table 1)
could possibly be involved in this signalling cascade.
Based on these findings, we propose a revised model for
the role of SND2 in the transcriptional network underly-
ing fibre SCW deposition (Figure 5). Under this model,
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Figure 4 Effect of SND2 overexpression on IF wall thickness in T1 generation stems. (A) Mean SCW thickness in IFs of eight-week-old wild
type and T1 generation SND2-OV stems. Representative light microscopy images are shown in Additional file 1, Figure S5. Error bars indicate the
standard error of the mean of eight wild type and seven T1 plants (26-48 fibres were measured per plant). *Significantly different from wild type
based on homoscedastic two-tailed Student’s t-test (P < 0.02). (B) Corresponding transcript abundance of total SND2 transcript in lower stems of
six wild type and six SND2-OV T1 plants used for SCW measurements, as measured by RT-gPCR. The primer pair quantifies endogenous and
transgenic SND2 transcript. Total SND2 transcript is ~435-fold relative to the wild type, represented here on a log,q scale. Calibrated Normalized
Relative Quantity (CNRQ) values were obtained by normalization against three control genes. Error bars indicate the standard error of the mean
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SND2 directly or indirectly upregulates the genes asso-
ciated with this signalling machinery. The nature of this
regulatory relationship remains to be resolved.

Despite the upregulation of the associated biosynthetic
genes, we did not observe corresponding relative
increases in glucose (i.e. cellulose) or xylose (i.e. xylan)
content per unit mass (Table 4). There may not be a
direct relationship between CesA expression and cellu-
lose content, as evidenced when SND1 is overexpressed
[28]. However, we found that mannose and rhamnose

Table 3 Klason lignin content of SCW material of T4
SND2-OV(A) stems compared to the wild type control.

Sample Total lignin Insoluble lignin Soluble lignin
(%) (%) (%)

SND2-0OV 21.06 £ 0.18 15.74 + 0.20 532 + 0.03

(A

Wild type 2161 + 021 1625 £ 032 543 £0.18

P-value 0.033 0.074 0.623

Values are expressed as the mean of three biological replicates plus or minus
the standard error of the mean. P-values are based on paired two-tailed
Student’s t-tests between SND2-OV(A) and the wild type.

content of stems were significantly increased in SND2-
OV(A) by 7.4% and 5.4%, respectively (Table 4). The
increase in mannose could be explained by the upregu-
lation of CsIA9 (Table 1), since CSLA proteins encode
B-mannan synthases [68,69]. Rhamnose and mannose
were also reported to be increased due to SNDI overex-
pression [28].

Although we found no effect on fibre SCW thickness
in homozygous SND2-OV lines A and B, the fibre SCW
thickness of line C was significantly and reproducibly
decreased relative to wild type (Figure 3; Additional file
1, Figure S4). Because line C exhibited the highest
SND?2 transcript abundance amongst the homozygous
lines (Additional file 1, Figure S1), we confirmed using
several T1 SND2-overexpressing lines, with SND2 tran-
script far exceeding that of SND2-OV(A), that strong
SND?2 overexpression reduces fibre SCW thickness (Fig-
ure 4). This phenotype resembles the dominant repres-
sion phenotype of SND2, rather than the overexpression
phenotype, reported previously [21]. However, due to
the stable expression of SND2 transcript in all trans-
genic lines (Additional file 1, Figure S1; Figure 4), this



Hussey et al. BMC Plant Biology 2011, 11:173
http://www.biomedcentral.com/1471-2229/11/173

Page 12 of 17

Table 4 Monosaccharide composition of SCW material of T4 SND2-OV(A) stems compared to the wild type control.

Sample Glucose Xylose Mannose Galactose Arabinose Rhamnose Fucose
SND2-OV(A) 34336 + 142 109.85 + 0.16 1806 + 0.04 1859 + 0.08 813 £ 003 1283 £ 0.02 0.84 + 001
Wild Type 34494 + 292 10862 £ 2.71 16.82 £ 0.35 1825 £ 041 7.88 £ 0.09 1217 £0.18 0.88 £ 0.01
P-value 0.561 0.663 0.049 0.563 0.238 0.023 0.663

Values (mg/g dry weight) are expressed as the mean of three biological replicates plus or minus the standard error of the mean. P-values are based on paired

two-tailed Student’s t-tests between SND2-OV(A) and the wild type.

cannot be explained by co-suppression. Interestingly, a
similar paradox has been observed for SNDI overexpres-
sion [20,28], where excess levels of this transcriptional
activator were reported to have an indirect repressive
effect. We suggest that this phenomenon could be
attributed to gene dosage effects, where a stoichiometric
increase in one TF protein leads to a decreased molar
yield of a multi-protein complex, and greater yield of
incomplete intermediates (reviewed by Birchler et al.
[70]). Such a phenomenon could also explain the obser-
vation that CesA8 upregulation was restricted to the
most moderate SND2-overexpressing line, SND2-OV(A).
Notably, the transgenic lines in our study expressed
SND?2 at least an order of magnitude greater than the
~16-fold expression levels reported for lines with
increased fibre wall thickness by Zhong et al. [21]. This
is likely due to a double, rather than a single, CaMV
35S promoter in the pMDC32 vector driving SND2
overexpression in this study. Because we failed to iden-
tify SND2-OV lines with SND2 abundance near the
range of 16-fold, we cannot preclude that limited SND2
overexpression may increase fibre SCW thickness.
Interestingly, when we overexpressed Arabidopsis
SND2 in Eucalyptus xylem (Table 5), we observed a
phenotype in better agreement with that previously
reported for Arabidopsis [21]. SND2 overexpression in
Eucalyptus significantly increased fibre cell area, likely
due to increased cell wall area (Table 5). Because our
assessment of SND2 overexpression in multiple indepen-
dent events in both Arabidopsis and Eucalyptus contrast
not only with each other but also with that of Zhong et
al. [21], our results suggest that the phenotypic effects
of SND2 gain-of-function mutagenesis are intrinsically
variable. The positive effect of SND2 overexpression on
Eucalyptus fibre development could be the result of a
greater tolerance in Eucalyptus to high-abundance

SND2 and/or SND2 co-regulator levels in woody xylem,
since more carbon is allocated to SCW biosynthesis in
Eucalyptus than in Arabidopsis. Alternatively, SND2
transcript levels remained moderate in Eucalyptus, a
possibility that cannot be explored using the Induced
Somatic Sector Analysis technique.

In addition to the requirement of the appropriate level
of SND2 abundance in Arabidopsis, spatial and temporal
expression of a co-regulator(s) is a further requirement.
The fibre-restricted SCW phenotype of SND2 overex-
pression observed in Arabidopsis by Zhong et al. [21]
illustrates the requirement of a spatially regulated co-
regulator(s) for SND2 to activate its targets, which is
presumably also expressed in fibres. Our results support
this observation. Due to the fact that none of the genes
differentially expressed at eight weeks (Table 1) were
differentially expressed in four week stems (Additional
file 4), we further suggest that the co-regulator(s) is
temporally regulated, and that the temporal regulation
of the co-regulator(s) may be a limiting factor that con-
strains the ability of SND2 to activate its native target
genes at four weeks.

Conclusions

Our results suggest that SND2 regulates genes involved in
cellulose, mannan, and xylan biosynthesis, cell wall modifi-
cation, and lignin polymerization, but not monolignol bio-
synthesis. SND2 also promotes upregulation of a relatively
small number of TFs, amongst them MYB103 and SNDI.
We implicate SND2 in the unexpected regulation of the
machinery of a signal transduction pathway proposed for
SCW development [56] and propose a model in which
SND2 occupies a subordinate but central position in the
transcriptional regulatory network (Figure 5), with possible
indirect positive feedback to higher regulators and signal-
ling pathways. Our data support the role of SND2 in fibre

Table 5 Change in fibre SCW thickness, cell wall area, fibre cell area and lumen area of Eucalyptus sectors

overexpressing Arabidopsis SND2.

Sample Cell wall thickness (%) Cell wall area (%) Fibre cell area (%) Lumen area (%)
SND2-OV 9.99 + 2.34 1460 + 2.64 1441 £ 244 9.68 + 4.65

EVC 554 + 433 6.16 + 4.98 504 + 4.84 378 £7.13
P-value 0177 0.066 0.042 0.241

SND2-overexpressing (SND2-OV) and empty vector control (EVC) sector values are expressed as a percentage change relative to non-transformed tissues.
Measurements were obtained from 11 (SND2-OV) and 9 (EVC) transgenic-nontransgenic control sector pairs from two F1 Eucalyptus hybrids. P values are based

on one-tailed Student’s t-test.
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Figure 5 Proposed model of SND2-mediated SCW regulation in IFs. Solid lines indicate known direct protein-DNA interactions. Dashed lines
indicate direct or indirect protein-DNA interactions. Master regulator SND1 is activated by a signal transduction pathway proposed by Oikawa et
al. [56] (a). SND1 directly activates transcription of MYB103 and SND3 (b), and indirectly activates SND2 through an unknown intermediate (c;
[21]). SND2 activates cellulose-synthesizing CesAs, either directly (d) or through the activation of MYB103 (e), which is known to activate SCW
cellulose gene, CesA8 [21]. SND2 regulates hemicellulosic genes (f; Table 1), independently to a similar role played by direct SND1 targets MYB46,
MYB83 or C3H14 [76-78]. SND2 plays a role in lignification through activation of lignin polymerization genes LAC4 and LACI17 (g; Table 1), but it
does not regulate monolignol biosynthetic genes as is the case for MYB58, MYB63 and MYB85 (h) [21,60]. SND2 activates transcription of GPI-
anchored FLATI1/FLAT2, CTL2 and other components of the signal transduction pathway (i), which leads to upregulation of SNDT (a).

SCW transcriptional regulation, but our study suggests
that, at excessive levels of overexpression, SND2 has a
negative effect on IF SCW deposition. This phenomenon
requires further investigation. We postulate that SND2
overexpression could increase SCW deposition within a
limited range of overexpression, relying in part on the
abundance of additional regulator proteins. However, we
show that SND2 overexpression has the potential to
enhance fibre development in Eucalyptus trees, an impor-
tant commercial forestry crop.

Methods

Plant growth conditions

Arabidopsis thaliana Columbia (Col-0) plants were
grown in peat moss bags (Jiffy Products International

AS, Norway) under a 16 h day artificial light regime, at
~22°C and ~75% humidity with weekly fertilization.
Where applicable, hygromycin selection was performed
for ~14 days before transferral of seedlings to peat moss
bags. The stated age of the plants is inclusive of the
hygromycin selection period.

Generation of overexpression constructs and
transformation

The coding sequence of SND2 (AT4G28500) was ampli-
fied (forward primer, 5-ATGACTTGGTGCAAT-
GACCGTAG-3’, reverse primer 5-TTAAGGGATA
AAAGGTTGAGAGTCAT-3’) from Arabidopsis thali-
ana Col-0 inflorescence stem cDNA. The amplicon was
gel-purified with the MinElute Gel Extraction Kit
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(Qiagen, Valencia, CA) and cloned into pCR8/GW/
TOPO as per the manufacturer’s instructions (Invitro-
gen, Carlsbad, CA). The sequenced insert was trans-
ferred to pMDC32 and pCAMBIA1305.1 [35] using the
Gateway LR Clonase™ II Enzyme Mix (Invitrogen). The
construct was introduced into Agrobacterium tumefa-
ciens strains LBA4404 and AGL1 for pMDC32 and
pCAMBIA1305.1 constructs, respectively, followed by
Agrobacterium-mediated transformation of Arabidopsis
thaliana Col-0. After surface sterilization, transgenic
seed was selected on 0.8% agar containing 20 pg/ml
Hygromycin B. The seeds were artificially stratified at 4°
C for 2-4 days prior to germination at 22°C under artifi-
cial illumination.

Microarray analysis

For the eight-week experiment, T4 seedlings were
selected on hygromycin for two weeks and grown in
peat moss bags for six weeks. For the four week experi-
ment, no selection was employed; homozygous T4 seeds
were germinated directly on peat moss. Each of three
biological replicates consisted of ten or six plants in the
four and eight week experiments, respectively. Stem tis-
sues were collected on the same day between 08:30 and
11:00, flash-frozen in liquid nitrogen and stored at -80°
C. Total RNA extracted from the bottom 100 mm of
the primary inflorescence stems was treated with the
RNase-free DNase Set (Qiagen) and genomic DNA con-
tamination assessed by PCR using intron-spanning pri-
mers. RNA integrity was quantified using the
Experion™ instrument (Bio-Rad Laboratories, Inc.).
cDNA synthesis and cyanine dye coupling were per-
formed as prescribed by the African Centre for Gene
Technologies (ACGT) Microarray Facility (available at
http://www.microarray.up.ac.za/MA008_indirect_label-
ling_version3.pdf).

Microarray hybridization was performed using the
Arabidopsis thaliana 4 x 44k DNA microarray V3 (Agi-
lent Technologies, Santa Clara, CA), as described by the
manufacturer’s instructions, but substituting cRNA with
c¢DNA. Dye-swaps were employed to correct for fluoro-
phore bias. Slides were scanned using an Axon GenePix
4000B instrument (Axon Instruments, Foster City, CA,
USA). Features were extracted using Axon GenePix Pro
software (v6.0) and imported into limma (linear models
for microarray data) [71]. Data were normalized in R as
described by Crampton et al. [72], with linear models
based on the comparison between SND2-OV(A) and the
wild type, analyzing each time point independently. Sig-
nificant DEGs were defined as those with P.-value <
0.05, where P, is the False Discovery Rate. Raw data
files of all the microarray experiments are available from
the Gene Expression Omnibus http://www.ncbi.nlm.nih.
gov/projects/geo/, under accession number GSE29693.
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Differentially expressed genes were subjected to an
anatomical meta-analysis of expression in selected Ara-
bidopsis tissues by hierarchical clustering (Pearson cor-
relation) in the Genevestigator V3 public microarray
database [39]. Only high quality ATH1 22k arrays, and
probe sets highly specific for a single gene, were selected
for analysis.

Reverse Transcription Quantitative Polymerase Chain
Reaction (RT-qPCR) analysis

The quality of total RNA extracted from lower inflor-
escence stems was assessed by Experion™ analysis
(Bio-Rad Laboratories, Hercules, CA). First-strand
c¢DNA synthesis from genomic DNA-free RNA was
performed using the Improm-II™ Reverse Transcrip-
tase cDNA synthesis kit (Promega, Madison, WI) and
c¢DNA purified using the RNeasy Mini Kit (Qiagen).
RT-qPCR reactions were quantified using the LightCy-
cler 480 system [45 cycles of 95°C denaturation (10s),
60°C annealing (10s) and 72°C extension (15s)] (Roche
GmbH, Basel, Switzerland). Primer sequences that
were used for each gene target are listed in Additional
file 3, Table S2. LightCycler 480 Software v. 1.5.0.
(Roche) was used for second derivative maximum
value calculation and melting curve analysis. Statistical
analysis was performed with Biogazelle qBasePLUS
[73].

Microscopy

For light microscopy, the lower ~5 mm of the primary
inflorescence stem was fixed in formaldehyde/glutaralde-
hyde buffer (3.5% and 0.5% v/v, respectively) for up to
five days and dehydrated in an ethanol series before
embedding in LR White™ resin. Stem sections of 0.5
pm thickness were visualized with Toluidine Blue.
Micrograph measurements were performed using Image]J
software (National Institutes of Health, http://rsbweb.
nih.gov/ij/), using the polygon tool for cell area mea-
surements. For SEM, 90 nm thick epoxy-embedded
samples were imaged following sodium methoxide etch-
ing for 1 min [74] using a LEO 1455 VP-SEM instru-
ment (Carl Zeiss, Germany) at 5 kV.

Klason Lignin and Cell Wall Sugar Analysis

Complete inflorescence stems from eight-week-old
transgenic and wild type plants were stripped of siliques
and cauline leaves and dried (100°C, 24 h). Stems from
up to 24 plants were pooled for each of three biological
replicates. Cell wall sugar and Klason lignin analysis
were performed essentially as described by Coleman et
al [75], using High Performance Liquid Chromatography
(Dionex CarboPac PA1 4 x 250 mm) to determine car-
bohydrate concentrations. Triplicate technical repeti-
tions were performed.
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Induced Somatic Sector Analysis (ISSA)

ISSA was performed as described before [42] with some
modifications. Eleven ramets of each of two hybrid clones,
E. grandis x E. camaldulensis and E. camaldulensis x E.
globulus, were selected in early summer on the basis of
good form and growth for experimentation and ten 1 cm?
cambial windows were created on each plant. Agrobacter-
ium tumefaciens AGL1 harbouring pCAMBIA1305.1 con-
taining the Arabidopsis SND2 CDS and the f-
glucuronidase or ‘GUS’ reporter gene was injected into the
cambial windows. Plants were fertilised after inoculation
and maintained in the glasshouse in the same condition as
described previously [42] until harvest. After 195-210 days
cambial windows were excised from the main stem, the
phloem portion was removed and the remaining xylem tis-
sue was washed twice with 0.1 M NaPO, buffer (pH 7).
Transgenic sectors were identified by GUS reporter stain-
ing. Eleven SND2-overexpressing and nine empty vector
control sectors were analyzed. Transgenic sectors were
excised in blocks of 1-3 mm? (from the cambium to
wound parenchyma) using a single edge razor blade, so
that the sector was located close to the middle of the
block when viewed on the longitudinal tangential plane.
Blocks were then sliced transversely through the middle of
the sector to expose the transverse surface of the sector,
and then mounted with conductive adhesive on SEM
stubs. Transgenic sectors were delineated within the block
by etching the borders of the GUS reporter stain with a
razor blade. Blocks were desiccated overnight prior to
SEM imaging. Cell morphology measurements were
undertaken using the Quanta Environmental Scanning
Electron Microscope (FEI, Hillsboro, Oregon) to investi-
gate changes in cell wall thickness, cell wall area (total
amount of cell wall), cell area and lumen area. Images
were taken of both transgenic sector and directly adjacent
non-transgenic tissue, twenty to fifty cells from the cam-
bial surface, using the low vacuum mode. Images were
then analysed using freeware Image-J http://rsbweb.nih.
gov/ij/ with ten fibres measured per micrograph. For the
cell wall thickness, the mean of three measurements for
each cell wall were used for cell wall thickness calcula-
tions, whilst for the remaining properties one value for
each fibre was sufficient. Average values were calculated
for each sector and their non-transgenic control tissues
and converted into percentage change values. Percentage
change values between SND2 overexpression sectors and
empty vector control (EVC) were statistically assessed
with the Student’s t-test.

Additional material

Additional file 1: Figure S1. Figure S2. Figure S3. Figure S4. Figure S5.
Figure S6. Figure S7.
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Additional file 2: Microarray data of SND2-OV(A) vs. wild type (8
weeks), fold change > |+1.5]. List of significantly differentially expressed
genes of SND2-OV line A stems at 8 weeks, compared to the wild type,
with fold change values larger than 1.5.

Additional file 3: Additional file 3, Table S1. Additional file 3, Table S2.

Additional file 4: Microarray data SND2-OV(A) vs. wild type (4
weeks). List of significantly differentially expressed genes of SND2-OV
line A stems at 4 weeks, compared to the wild type.
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DEG: differentially expressed gene(s); EVC: empty vector control; FDR: false
discovery rate; GO: gene ontology; IF: interfascicular fibre; ISSA: Induced
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