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Abstract

species, such as rice and Arabidopsis.

confirmed by 5'RACE.

maize.

Background: miRNAs are known to play important regulatory roles throughout plant development. Until recently,
nearly all the miRNAs in maize were identified by comparative analysis to miRNAs sequences of other plant

Results: To find new miRNA in this important crop, small RNAs from mixed tissues were sequenced, resulting in
over 15 million unique sequences. Our sequencing effort validated 23 of the 28 known maize miRNA families,
including 49 unique miRNAs. Using a newly established criterion, based on the precision of miRNA processing
from precursors, we identified 66 novel miRNAs in maize. These miRNAs can be grouped into 58 families, 54 of
which have not been identified in any other species. Five new miRNAs were validated by northern blot. Moreover,
we found targets for 23 of the 66 new miRNAs. The targets of two of these newly identified miRNAs were

Conclusion: We have implemented a novel method of identifying miRNA by measuring the precision of miRNA
processing from precursors. Using this method, 66 novel miRNAs and 50 potential miRNAs have been identified in

Background

MiRNAs are known to play crucial roles in the regula-
tion of gene expression in plants [1], including functions
such as, leaf polarity, auxin response, floral identity,
flowering time, and stress response [2-7]. MiRNAs are
typically ~21 nucleotides in length. In plants, miRNA
genes are transcribed by RNA polymerasell into primary
miRNA transcripts (pri-miRNA) which can form imper-
fect stem-loop secondary structure [8,9]. Then the pri-
miRNAs are trimmed and spliced into miRNA/miRNA*
duplex by Dicer-likel (DCL1) with the help of dsRNA
binding protein HYL1 and dsRNA methylase HEN1
[1,10-12]. The length of the pre-miRNAs in plants
ranges from about 80-nt to 300-nt, and is more variable
than in animals. After being transported to the cyto-
plasm, the mature miRNAs can match to the corre-
sponding target mRNAs through RNA-induced silencing
complex (RISC) and the miRNA* are thought to be
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degraded [1,13]. MiRNAs regulate their target mRNA
either by cleaving in the middle of their binding sites or
by translational repression [14,15]. The plant miRNAs
are highly complementary to their targets with about
0~4 nucleotides mismatches [1].

The majority of miRNAs were originally discovered
through traditional Sanger sequencing of small RNA
pools [16-18]. With the advent of second (next) genera-
tion sequencing technology, the rate of miRNA discov-
ery increased dramatically [19-21]. However, due to the
complexity of small RNA population, identification of
miRNAs from the small RNA pools of sequencing pro-
duct was not trivial. Typically, genomic sequences
matched to all the small RNA with a length of 19~22-nt
were extended upstream and downstream to get a col-
lection of candidate precursors. Their secondary struc-
tures were then checked using a number of criteria with
Minimum Free Energy (MFE) as the most important
one [17,19-21]. The presence of miRNA* has been
regarded as a golden standard to reliably annotate a
novel miRNA. Nevertheless, miRNA* have only been
reported to be showed up with mature miRNA around
10% of the time [22]. As miRNAs can be enriched in
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certain genomic regions, a clustering algorithm was
sometimes used for miRNA identification from large
scale small RNA sequencing data. In these studies
[23-25], hotspots of small RNA generation were identi-
fied if they match with multiple known miRNAs; indivi-
dual hairpin sequences within these hotspots were
subsequently checked to see whether some of them
could be qualified as miRNAs.

As many miRNAs are conserved among different
organisms, sequences of miRNAs found in one species
can be used to identify corresponding miRNAs in other
species through comparative analysis [6,26]. However,
not all the miRNAs are conserved across different
organisms. Direct prediction of potential miRNAs, based
on the characteristics of miRNA precursors, has been
shown to be a useful approach to identify miRNAs for
any organisms, provided that there are a large amount
of genomic sequences available [27]. However, as mil-
lions, even billions of inverted repeat sequences exist in
complex genomes, candidate miRNAs identified just
based on computational prediction often show a high
rate of false positive.

Maize is an important crop as well as a model of plant
genetics. A number of miRNAs with specific function
have been reported in maize. The miR172 was reported
to target APETALA?2 floral homeotic transcription factor
that is required for spikelet meristem determination
[28]. Also, miR172 functions in promoting vegetative
phase transition by regulating the APETALA2-like gene
glossy15 [29]. The expression of teosinte glume architec-
turel (tgal), which plays an important role in maize
domestication, is regulated by miR156 [28]. The miR166
has been found to target a class III homeodomain leu-
cine zipper (HD-ZIPIII) protein that acts on the asym-
metry development of leaves in maize [30].

There are a total of 84 unique maize mature miRNAs
belonging to 28 miRNA families in the current version
of miRBase (release 17) [31]. These 84 miRNAs are the
products of 167 precursors. All of these miRNAs were
originally identified by searching with known miRNA
from other plant species, such as Arabidopsis and rice
[31-35]. Recently, 150 mature miRNAs from 26 families
were validated by Illumina sequencing [34]. To do de
novo identification of new miRNAs in maize, we have
sequenced small RNAs from mixed tissues, tissues of
endosperm and embryo using a next generation sequen-
cing system. Moreover, a new method of identifying
novel miRNAs, by measuring the precision of miRNA
processing from their precursors, was employed. This
method, conceptually proposed by Meyer et al., holds
that the precise processing from precursor is both
necessary and sufficient criterion for miRNA annotation
[36]. We report here the establishment of such a
method of identifying miRNAs by measuring the
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precision of miRNA processing from precursors. This
method has resulted in 66 newly identified miRNAs and
50 potential miRNAs in maize. Of the 66 newly identi-
fied miRNAs, 62 belong to 54 families that have not
been identified before in any other organisms.

Results

Sequencing of maize small RNAs

In order to identify novel miRNAs from maize, four dif-
ferent small RNA samples (two from mixed tissues, one
from embryo and another from endosperm) of B73
inbred line were sequenced. The sequencing effort
resulted in over 43 million signatures with a length of
18~30nt, representing over 15 million unique sequences
(Table 1). The overall size distribution of the sequenced
reads from all four sequencing effort were very similar,
with the 24-nt class being the most abundant, followed
by 22-nt and 21-nt classes (Figure 1). Such a size distri-
bution is consistent with recent report that 22-nt siR-
NAs were specifically enriched in maize compared with
other plants [37,38]. Although over 43 million sequences
were generated, a large number of signatures were only
sequenced once, suggesting that maize has a very com-
plex small RNA composition. The percentages of small
RNAs sequenced once in four samples were 81.8% (2,
997, 412) and 77.9% (3, 227, 436) in two mixed tissues,
77.5% (5, 339, 164) in endosperm and 78.6% (3, 003,
817) in embryo, respectively. As in other small RNA
sequencing efforts, there was a small portion of distinct
signatures that matched to mitochondria or chloroplast
genomes. In the four independently sequenced samples,
there were 4.7%, 5.9%, 7.2% and 19% total signatures
that respectively represent 0.26%, 0.50%, 0.49% and 1.2%
unique reads matched to non-coding RNAs including
tRNA, rRNA, snRNA, snoRNA (Table 2).

Validation of known maize miRNAs in miRBase

There are a total of 84 unique mature miRNA
sequences belonging to 28 miRNA family in the cur-
rent miRBase for maize. All these miRNAs were identi-
fied by computational method based on sequence
conservation using sequences of known miRNAs of
other species [31-34]. Out of the 84 unique miRNA
sequences, 49 can be confirmed by our sequencing

Table 1 Summary of small RNA sequencing

No. of reads No. of unique No. of unique reads
generated reads matched to genome
mixed tissues | 6, 823, 490 3, 664, 019 3, 445, 495
mixed tissues Il 11,978,592 4, 143, 803 4,133, 620
embryo 14,812,427 6, 886, 540 6, 879, 213
endosperm 9, 567, 504 3,823,033 3,298, 557
total 43,182,013 15,387, 312 15, 220, 296




Jiao et al. BMC Plant Biology 2011, 11:141
http://www.biomedcentral.com/1471-2229/11/141

Page 3 of 14

70%

60%

50%

40%

B mixed tissues |

B mixed tissues Il

30%

20%

mendosperm

proportion of small RNA

10%

B embryo

0%

18 19 20 21 22 23 24 25

\

26 27 28 29 30
small RNA length(nt)

Figure 1 Small RNA length distribution from four separate sequencing runs.

effort, while 25 were detected in all four libraries.
Except for zma-miR393, zma-miR1432, zma-miR408,
zma-miR482 and zma-miR395, 23 of 28 known maize
miRNA families had members detected in at least one
of the four sequenced libraries. Some of the conserved
miRNAs showed very high abundances in our
sequenced libraries, for example, zma-miR156a, b, c, d,
e, f, g, h and i had more than 20, 000 reads in our
four samples (Table 3).

Sequencing of the four libraries showed that some
miRNAs from the current miRNA database may have
been mis-annotated. For example, there are two var-
iants for miR166 in the current miRBase. First, zma-
miR166b, ¢, d, e, h, and i are annotated as 22-nt
(UCGGACCAGGCUUCAUUCCCC), while zma-
miR166a is annotated as 21-nt (UCGGACCAGGCUU-
CAUUCCC). The 21-nt form has been sequenced
15432, 10857, 19833 and 37037 times respectively in
four databases, while the 22-nt form was only
sequenced 240, 260, 711 and 476 times. The 21-nt
form is nearly one hundred times more abundant than
that of 22-nt, therefore we concluded that zma-

Table 2 Summary of signatures matched to various RNAs

miR166b, ¢, d, e, h and i should have the same mature
miRNA of 21-nt as zma-miR166a.

Consistent with the general opinion that the miRNA*
degrades soon after the biogenesis of mature miRNA,
the miRNA* had much less abundance than its corre-
sponding miRNA in the sequencing dataset. Out of
167 miRNA precursors of maize in the current miR-
Base, 143 had miRNA* annotated. Among the anno-
tated miRNA*, 62 of them could be found in our small
RNA sequencing libraries. We also found 10 miRNA*
among the remaining 25 precursors that have not been
annotated before. The total sequencing abundance of
miRNA* in our four libraries was about 0.7% of that of
mature miRNAs. However, there were two exceptions
where miRNA* had more reads than its corresponding
miRNA as reported before [20]. The abundance of the
originally annotated miRNA* of zma-miR396a and
zma-miR396b was much higher (31, 120, 199, 59 times
in four sequenced libraries) than its annotated miRNA
(only 16, 9, 38, 20 in the same sequenced libraries).
The same thing happened to zma-miR408, whose
miRNA was sequenced less than its miRNA*. Both

Mixed tissues | Mixed tissues Il Embryo Endosperm

Unique Total Unique Total Unique Total Unique Total

reads reads reads reads reads reads reads reads
non_coding RNA 9, 739 322, 288 20, 836 714, 095 34,177 1, 066, 978 46, 362 1, 825, 974
chloroplast 7,584 31,673 50, 750 1, 006, 833 24, 077 43,271 4, 627 9, 533
mitochondirial 8, 986 29,197 21,579 134348 20, 660 31, 359 9, 926 13, 845
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Table 3 Expressional abundance of the known miRNAs calculated in Reads per Million

Family miRNA name mixed tissues | mixed tissues Il embryo endosperm
zma-miR156 zma-miR156a, b, ¢, d, e, f, g, h 3416.73 3982.77 20459.65 5369.74
zma-miR156j 0.15 0.08 0.07 0.63
zma-miR156k 7767 255.79 78.72 857
zma-miR159 zma-miR159a, b, f, j, k 498 3331 115 0.1
zma-miR159e - - - -
zma-miR159h, i - - - -
zma-miR159g - - - -
zma-miR159d, ¢ - - - -
zma-miR160 zma-miR160a, b, ¢, d, e, g 322 142 0.95 0.31
zma-miR160f - - - -
zma-miR162 zma-miR162 - 0.08 - -
zma-miR164 zma-miR16é4c, b, ¢, d, g 118.56 42576 7771 219
zma-miR164e 18.17 8.85 3.71 21218
zma-miR164f 147 6.51 1.62 0.21
zma-miR164h - - - -
zma-miR166 zma-miR166a 22616 906.37 1338.94 3871.12
zma-miR166b, ¢, d, e, f, g, h, i 3517 21.71 48 49.75
zma-miR166k, n 103.03 16.86 14.58 429
zma-miR166l, m, | 227.16 6136 29.57 6.27
zma-miR167 zma-miR167a, b, ¢, d 117931 379.09 1541.27 735855
zma-miR167e, f, g, h, j, i 159.74 143.59 83.98 319.62
zma-miR168 zma-miR168a, b 1908041 101231 1578.81 33060.87
zma-miR169 zma-miR169a, b 293 9.02 0.34 0.1
zma-miR169c¢, r 454 3.09 0.81 -
zma-miR169d - - - -

zma-miR169e - - - -

1
1
1
1
1
1
1
1
zma-miR16%f, g, h - - - -

1

1

1

zma-miR1690 - 0.25 0.54 0.1
zma-miR169I - - - -
zma-miR169p 9.82 359 - -
zma-miR169g, m, n - - - -
zma-miR169i, j, k 293 1 - -
zma-miR171 zma-miR171a - - - -
zma-miR171b - 0.08 - -
zma-miR171c¢ - - - -
zma-miR171d, e, i, j 11.28 21.29 6.55 26.23
zma-miR171f - - - -
zma-miR171g - - - -
zma-miR171l, m - - - -
zma-miR171n - - - -
zma-miR171k, h - - - 0.1
zma-miR172 zma-miR172a, b, ¢, d 132 543 0.07 -
zma-miR172e 645 7.26 047 -
zma-miR2118 zma-miR2118a - 0.17 - -
zma-miR2118b 0.15 0.17 0.07 0.1
zma-miR2118c - - - -
zma-miR2118d - 0.17 - -
zma-miR2118e - - - -
zma-miR2118f - - - -
zma-miR2118g 0.29 033 - -

zma-miR2275 zma-miR2275a-3p - 3.26 - -
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Table 3 Expressional abundance of the known miRNAs calculated in Reads per Million (Continued)
zma-miR2275a-5p 0.29 0.58 - -
zma-miR2275b-5p 0.15 1.17 - -
zma-miR2275¢, b-3p 044 142 - -
zma-miR2275¢-5p - - - -
zma-miR2275d-3p - - - -
zma-miR2275d-5p - - - -
zma-miR319 zma-miR319a, b, ¢, d 1.03 033 25 -
zma-miR390 zma-miR390a 49.53 743 8.1 094
zma-miR393 zma-miR393a, ¢ - - - -
zma-miR393b - - - -
zma-miR394 zma-miR39%4a, b 23.59 2.84 412 -
zma-miR395 zma-miR395a, bd, e, f, g, h, |, n, - - - -
zma-miR395k - - - -
zma-miR3950 - - - -
zma-miR3951, m - - - -
zma-miR396 zma-miR396a, b 234 0.75 1.35 397
zma-miR396¢, d - - - -
zma-miR396e, f - 033 - -
zma-miR396g.h - 033 - -
zma-miR397 zma-miR3973, b 0.15 0.17 0.07 -
zma-miR398 zma-miR398a, b 1041 0.5 047 1.67
zma-miR399 zma-miR399a, ¢, h 0.73 0.17 - -
zma-miR399b - 0.08 - -
zma-miR399d - 0.08 - -
zma-miR39%, j, i 059 - 0.07 -
zma-miR399f - - 0.07 -
zma-miR399g - - - -
zma-miR408 zma-miR408a, b - - - -
zma-miR482 zma-miR482 - - - -
zma-miR528 zma-miR528a, b 2195.36 162523 978.17 583.22
zma-miR529 zma-miR529 19.78 64.03 5.06 -
zma-miR827 zma-miR827 313.62 27232 55831 52877
zma-miR1432 zma-miR1433 - - - -

miRNAs had strong conservation among plant species
and their target genes validated [39]. This may suggest
that a small fraction of miRNA* do not degrade as fast
as others.

Novel miRNA identification and target prediction

During the miRNA biogenesis process, the pri-miRNA
transcribed by RNA polymerase II is trimmed and
spliced into miRNA/miRNA* duplex by Dicer-likel
(DCL1) [1]. The precise enzymatic cleavage of miRNA/
miRNA* from the precursor is a key criterion that dis-
tinguishes miRNAs from diverse siRNA [36]. We
observed that, for most miRNA precursors, there were
few small RNA reads other than miRNA and miRNA*
that mapped to the precursors. To gain an overall pat-
tern of small RNA distribution along the miRNA pre-
cursors, we tested the percentage of small RNA reads
mapped to position of mature miRNAs vs. reads

mapped to other regions of the same miRNA precursors
for all known maize miRNAs. The result showed that
out of the 120 known miRNA precursors which had
mature miRNA expressed in our four small RNA
libraries, 104 (86.7%) had over 75% of the small RNA
reads mapped to the exact mature miRNA/miRNA*
sites or 4-nt around. Having 75% of reads mapped to
the miRNA/miRNA* and its close vicinity had recently
been proposed as a primary criterion for valid miRNA
annotation. Our result further demonstrated that such a
precise processing criterion [36] could be used as a
straightforward and reliable method to identify the
miRNA from the diverse small RNA data.

To identify novel miRNAs using the method described
above, maize genome sequences (downloaded from
http://www.maizesequence.org) with known transposons
masked were used to generate inverted repeat
sequences. A total of 330, 048 inverted repeat sequences
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with a copy number of no more than 10 in the maize
genome were obtained. These inverted repeat sequences
were then folded by RNAfold, in both sense and anti-
sense directions, which effectively narrowed down the
candidate precursors. Candidate single loop precursors
with an overall length of 80-300bp were kept in this
study. We then attempted to identify novel miRNAs
from our four sequenced RNA samples separately using
the precise processing criterion as described in methods
(Figure 2). There were 314 sense and 313 antisense
RNAs that qualified as miRNA precursor candidates
based on the primary criterion. Finally, the secondary
structures of these candidates were carefully checked for
their validity as miRNA precursors, along with their cor-
responding mature miRNAs (Figure 3).

There were 13 new miRNAs identified from mixed tis-
sues I, 22 from mixed tissues II, 30 from embryo, 38
from endosperm (Table 4). All together we obtained a
total of 66 unique new miRNAs. These new miRNAs
could be grouped into 58 families (Table 4), given that
two miRNAs with less than 4 nucleotides mismatches
were grouped into one family. Sixty-two of the 66 newly
identified miRNAs belonging to 54 families have not
been identified before in any other organisms. Since
some of the miRNAs are derived from multiple precur-
sors, the 66 newly identified miRNAs correspond to 70
miRNA precursors. The full information and secondary
structure were shown in Additional file 1 and Additional
file 2.

From the 66 new miRNAs, 16 were sequenced in all
four libraries, 17 in three, 15 in two and 18 in one
library. The expressions of the 5 newly identified miR-
NAs were validated by Northern blot using RNAs from
kernel of mixed stages (Figure 4). As additional evidence
to support the annotation of some of these miRNAs, 22
of the 70 new miRNA precursors were found to have
miRNA* in our sequencing data (Additional file 1).

The 54 miRNA families that were identified for the
first time in maize from our sequencing effort provided
an opportunity to identify conserved miRNAs that have

Page 6 of 14

not yet been discovered in other plant species. After
searching the genomes of sorghum, rice and Arabidop-
sis, we found 17 conserved in sorghum, 14 in rice and 2
in Arabidopsis (Table 5).

As most miRNAs are near perfect complementary to
their corresponding targeted mRNAs, we performed the
target prediction by allowing no more than 3 mis-
matches between miRNA and its corresponding mRNA
sequences [40]. After searching in the annotated maize
filtered genes set, we found 41 targeted genes for 23
new miRNAs, 2 of which were validated by 5’RACE.
GRMZM2G416426 and GRMZM2G037792 were tar-
geted by miRNA3 and miRNAG65, respectively (Figure
5). GRMZM2G416426 was predicted to be an alcohol
dehydrogenase 1 (adhl) and GRMZM2G037792 was a
GRAS transcription factor. MiRNA65 was identical to
miR171a, b, ¢ in Arabidopsis, which is reported to target
GRAS transcriptional factor in Arabidopsis [41,42], sug-
gesting that this miRNA and target pairs were conserved
among dicot and monocot plants. A complete list of our
predicted miRNAs and their predicted targets are shown
in Additional file 3. The target gene GRMZM2G401869
of new miRNA4, was annotated to be a ribosomal pro-
tein, reported to be regulated by miR-10a in mouse [43].
MiRNA38 was predicted to target a plant specific absci-
sic acid (ABA) stress-induced protein (GRMZM
2G027241) [44].

Discussion

Identification of new miRNAs according to the precision
of excision from the stem-loop precursor

MiRNAs have been known to play very important
post-transcriptional regulation roles throughout plant
development. Identifying new miRNA is therefore a
critical step towards the understanding of biological
regulation. However, small RNA populations in all
organisms are extremely complex; while accurate miR-
NAs identification is not straightforward. Thus far, the
majority of reported miRNAs have been identified by
“extending method” [17,19-22]. The short reads that

miRNA

275%

Figure 2 A pictorial model for the precision of miRNA processing.

miRNA"

miRNA precursor
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330,048 imperfect inverted repeats that are less
than 10 copies in the genome

Fold inverted repeats by RNAfold and
retrieve single loop stem-loop sequences

88,757 miRNA precursor candidates in sense strain
87,807 miRNA precursor candidates in antisense strain

Map small RNAs to the precursor candidates
and test the preciseness of miRNA processing

3

314 precursor candidates in sense strain
313 precursor candidates in antisense strain

Check the secondary structure of precursor candidates
and combine the overlap ones from both strains

A

70 new miRNA precursors
generating 66 mature miRNAs

Figure 3 Flowchart for miRNA prediction.

resulted from sequencing were mapped to the known
reference genome and then candidate precursors were
taken by extending upstream and downstream of small
map sites. The secondary structures of these extended
sequences were then carefully checked for considera-
tion as miRNA precursors. This method typically cost
significant computation time, as millions or billions of
small RNA sequence generated from sequencing need
to be mapped to and extended in the genome individu-
ally. For any miRNA precursors, there are other small
RNA sequences mapped to 4-nt around the mature
miRNA, which often confuse the miRNA annotation.
Lacking other supportive information, the appearance
of miRNA* is regarded as an essential condition for
valid miRNA annotation. However, being degraded
after miRNA release, miRNA* has a much lower

probability of being sequenced than that of mature
miRNA. The annotation of miRNAs based on the
appearance of miRNA* would often miss many true
miRNAs. As the sequencing becomes relatively easily
available with the development of new sequencing
technology [45,46], a robust miRNAs identification sys-
tem has become increasingly important. In this study,
we adopted the primary criterion suggested recently by
a large group of scientists in the field of plant miRNA
[36]. Our method is based on an assumption that: if
any sequences with stem-loop secondary structure
have 75% of all small RNAs mapped onto this stem-
loop fall in one distinct position (where the miRNA/
miRNA* locate), then this hairpin sequences should be
annotated as a miRNA precursor [36]. The advantages
of our new method are apparent; it saves significant
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Table 4 Summary of the new miRNAs

Family miRNA length Sequence Abundance (Reads per Million)
(nt)

mixed mixed Embryo endosperm

tissue | tissue Il
family1 mMiRNAT1 21 CAGAAAAUCGGAGGAGAUUGA 0 0 0 1.36
family1 mMiRNA2 20 AGGAUACCGGAGGAGAUUGA 0 0 041 0
family2 miRNA3 21 UUAUAUAAGUUGGAUUAUGGU 0 0.08 0 0.94
family3 miRNA4 21 UGGAAUCAAGUGUGACAUGUU 0 0 0 125
family4 miRNA5 21 AUAUGGAUUGGAGGGGAUUGA 0 0 0.07 1.78
family5 miRNA6 21 ACCGGAGGGGAUUGGAGGGGC 3.96 0.5 0 042
family5 miRNA7 21 UUCUGGAGGGGAUUUGAGUUU 0 0 0 0.63
family6 miRNA8 20 GGGAUUGAGGGGGCUAUAAU 0 0 034 0.52
familyé mMiRNA9 21 GGGGAUUGGAGUGGCUAAAAU 0 0.08 135 0.84
family7 miRNA10 21 UUUGAAUGCACUAGAGCUAAU 0.29 0 0.54 585
family7 mMIiRNAT11 21 UUUGAAUGCACUAGAACUAAU 234 042 0.74 3167
family8 mMIiRNA12 21 UCCGAAUGGUGUAGAAGGAAU 0.59 117 0.14 6.06
family9 miRNA13 21 CUUGUGUCUUGGUUGUACGGU 073 0 0 0.31
family10 miRNA14 21 AGGAAUUCACUUAAUUCCCGU 073 0.08 0 0
family11 miRNA15 21 UGAAUUGACGAUUUUGCCCCU 0 0.75 0.07 042
family12 miRNA16 20 UAUCUCUACAACUAUUAAGA 0 0.08 0.81 0.1
family13 mMIiRNA17 20 AUAUGGACGUGCAAAACACU 0 0.58 1.22 0
family14 miRNA18 21 UUUGGGGUGGAUACGUGGUCA 0 0.08 0 0.63
family15 miRNA19 21 AUGCAGAACAAUUUACAGACG 2.05 7.26 0.68 20.07
family16 miRNA20 21 AUGGUGCAUUGACUUGGUCAA 0.15 0.17 0 0.84
family17 miRNA21 20 CGACGAUCGAGAACGGCGAG 0 0 041 0
family18 mMiRNA22 20 GCCAUAGAUCUUGGCGCCGA 0 0.08 1.08 334
family19 miRNA23 21 UAUCUAGAAAAGCCGAAACGA 044 0.08 0.07 1.05
family20 miRNA24 21 AAAGCUAGAACGACUUAUAAU 0 0 0 1.25
family21 mMIRNA25 22 UCAGCGCCACCACGAUGACCUC 0.15 0.08 061 0
family22 miRNA26 22 UGAAACAAGUAUCUCGAGAGCA 25.06 0.17 0.68 100.24
family23 miRNA27 22 CAAGUGAGAGGUGGGAAUUCCC 0 0 0 063
family24 miRNA28 22 AAAAAGCCAGAACGAUUUAUGA 0.15 0.08 034 0.84
family25 miRNA29 21 UUUGGUAGUUUGAUUGGACGA 0 0 0 0.73
family26 miRNA30 20 ACCAGACUAGAGCAGCAGAU 0 15.86 0 0
family27 miRNA31 20 AUCCAUAGAGACAAAACACU 0 042 047 0.21
family28 miRNA32 21 UUUAUAAUUCGUUUGACUUUU 0.15 0.08 0 115
family29 mMiRNA33 20 AGAGACAAAAUACUGUAGAA 0 042 0.95 0
family30 miRNA34 21 UGGACAGGGAAAUGAAGGGGA 0.15 0 0 3.14
family31 miRNA35 21 UAGUACAUGGACCUAGAUGAC 0.59 1.5 047 1881
family32 miRNA36 21 AAAUUAUAGGGCAUUUUUAUA 0 0 0.68 0.52
family33 miRNA37 20 GUUAUUUUCGGUAGCAUAAG 0 0 041 0.1
family34 miRNA38 21 AAAAAGAAACGGAGGGAGUAC 132 0.58 0.07 282
family35 miRNA39 21 AUACUAGGAGUGAAGGGAUCA 0.29 0 0.07 355
family36 miRNA40 21 UCGGGAUUGAAGGGGAUUGGA 0.73 0.08 0 282
family37 miRNA41 21 GGAGGGAAUUGGAGGGGCUAA 3.81 0.25 027 7.73
family38 miRNA42 21 UUAAUAGACCAAGACAUGCAC 0 526 0.07 0
family39 miRNA43 20 AUUAGUUGGCUAACUAUUAG 0 0 034 0
family40 miRNA44 21 AUAUGGAUUGGAGGGGAUUGA 0 0 0.07 1.78
family41 miRNA45 20 AAUUAGUCAUGGUAUGUUUA 0 0 034 0
family42 miRNA46 21 UGAGAGCAAGGAUACUGGAGG 073 0 0 0
family43 miRNA47 21 AAAUGAAACUGUAAAGGGCAU 0.29 0.67 0.54 2.72
family44 miRNA48 21 CGAAGATCTTGGGAAGATGAC 0 0 0 1.05

family45 miRNA49 21 UAGUUUGGGAACACUAAUUUC 0 0 0 0.52
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Table 4 Summary of the new miRNAs (Continued)
family46 mMIiRNA50 22 CUUUGACGUGGGAGAGAGGCAC 0 0 047 0.21
family47 mMiRNA51 20 AACUAAAAUGGAAUAAAAUG 0 1.59 26.53 8.15
family48 mMIiRNA52 21 UUUUUGUGGGGGACUAUAAAC 0 0 0 0.52
family49 mMIiRNA53 20 AACUAUUAGCUAGGAUGUUU 0 0 0.14 0.73
family50 miRNA54 21 UUCACCAUAUAAGAUUGUUGA 0 0 0 0.52
family51 mMIiRNAS55 20 GACGACCUCAGGAAGCUAUC 0 0 041 0
family52 mMiRNA56 21 UUUGGGAGCAAGUGGAAUGGA 0.15 0 0 0.52
family53 mMIiRNAS57 20 GAGACAAUUGCAUAUUUAGG 0 042 041 042
family54 mMIiRNA58 20 GAAGAGGAACACAAACAGAG 0 0.5 0 0
family55 miRNA59 21 UAAGACGUUUUGACAUUUCUA 0 0.17 0.07 1.05
family56 miRNAGO 21 GUGGAUUGGAUGGUAUUGAGU 0 0.17 0.2 052
family57 mMIiRNA61 21 UUAGAUGGGAUACAUGAGAGG 0 0.5 0 1.67
family58 mMiRNA62 20 AGGGACUAAAGUUUAGUUAG 0 0.08 1.76 0.1
miR169 mMiRNA63 21 UAGCCAAGGAUGAGCUGCCUG 0.15 042 0.07 0.1
miR171 miRNA64 21 UUGAGCCGCGUCAAUAUCUCC 322 16.03 7.22 0.63
miR171 miRNAGS 21 UUGAGCCGCGCCAAUAUCUCU 0 0.5 0.27 0
miR156 miRNA66 20 UGAUAGAAGAGAGUGAGCAC 0.88 2.25 891 3.14

computation time, and the exact sequences of mature
miRNAs for all the precursors are easy to determine.
However, finding new miRNAs using this method is
highly depended on the depth of small RNA sequen-
cing, which is practical only using a next generation
sequencing platform. Additionally, our method starting
with the prediction of potential miRNA precursors
using a very relaxed criterion, it is still possible that
some precursors may have been missed, particularly
for those of the multi-loop secondary structure.

Although our method relied on the precision of exci-
sion from the stem-loop precursors, as demonstrated by
the small RNA sequencing data, other cleavage patterns
of miRNA precursors, such as the extensive degradome
sequencing in rice [47], can also be used to verify
miRNA prediction. The elegant degradome sequencing
results showed that most conserved miRNA precursors
were cleaved precisely at the beginning or end of
miRNA/miRNA* duplex.

Additional miRNA candidates

Using this new method, we have identified 66 new miR-
NAs, 62 of which have not been identified before in any
other organism. The discovery of these miRNAs and
their targeted genes was a critical step in understanding
the complex miRNA regulation network of this impor-
tant crop.

According to our method, a relative high sequencing
depth is required for new miRNAs identification. In our
four libraries, unique small RNAs were sequenced an
average of 2.6 times. Thus, we have taken 5 as the mini-
mal abundance in the new miRNA prediction. However,
some real miRNAs were not sequenced in high enough
coverage and were missed. There were 50 small RNAs
with a sequencing coverage lower than 5 but higher than
2. At the same time, the corresponding genomic regions
of these 50 small RNA fulfill all the criteria for typical
miRNA precursors; therefore, these 50 small RNAs are
potential miRNA candidates (Additional file 4).

M -21nt

new_miR19 new_miR33

Figure 4 Northern blot validation of five new miRNAs.
A

-21int -20nt

- -21nt
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Table 5 Conservation of the new miRNA
miRNA id

conservation
Arabidopsis rice
miRNA3 Y
miRNA4 Y
mMiRNA5 Y Y
miRNA6 Y
miRNA10
miRNA17
mMiRNA22
miRNA23
miRNA24
miRNA26 Y
miRNA28 Y
mMiRNA29
mMiRNA32
miRNA35
miRNA40
miRNA41
mMiRNA42
miRNA43
miRNA47
miRNA48 Y
mMiRNA51 Y
mMiRNA53 Y
miRNA56 Y
mMiRNA59 Y
miRNA6O Y
mMiRNA62 Y Y

Sorghum

< < < < <

< < < < <

< < < <

Some miRNA precursors overlap with the protein-coding
genes

Based on the maize genome annotation release-5b
downloaded from http://www.maizesequence.org/, the
genome locations of the 167 known and 70 new miRNA
precursors were determined. About 18% of the precur-
sors were located within annotated protein coding genes
(Figure 6). For those miRNAs that fell on genes, 10%
overlapped with exons (sense and anti-sense), and 7%
were located in intron regions. This result was

1230 (6/8)

GRMZM2G037792 5° GAGATATTGGCGCGGCTCAA

. FETEEErrrrrrrrrrernl
new miRNA65  3° GAGATATTGGCGCGGCTCAA

2137(9/10)

GRMZM2G416426 5' TTATATAAGTTGGATTATGGT

FEEEErrrrr e
new miRNA3 3" TTATATAAGTTGGATTATGGT

Figure 5 Two validated new miRNA targets.
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consistent with the result reported in P. patens [48],
where more than half of the miRNA precursors over-
lapped with protein coding regions.

The small RNA population in maize is highly complicated
To identify novel maize miRNA, we conducted four
next generation sequencing runs for small RNAs: two
mixed tissues, embryo and endosperm. Although we
generated over 40 million signatures, sequences from
the four databases have a limited overlap, with only 233,
132 unique sequences appeared in all four libraries and
a small fraction overlapped between two libraries (Figure
7). This limited overlap indicates a very large number of
small RNAs exist in maize.

We noticed that some known miRNAs had very dif-
ferent abundance in the four databases especially
between embryo and endosperm: 30 new miRNAs were
sequenced either in embryo or endosperm. For example,
zma-miR168a, b and zma-miR166a had a very high
abundance in the two mixed tissues and the endosperm
while they could not be detected in the embryo library,
which indicates that they may be endosperm specific.
Although their true tissue specificity needs to be further
validated through experiments, their relatively high level
of expression in embryo or endosperm suggested that
they could have important regulatory roles throughout
embryo/endosperm development.

Conclusion

We have implemented a novel process of identifying
miRNA from small RNA sequencing data by measuring
the precision of miRNA processing from precursors.
Using this method, 66 novel miRNAs belonging to 54
families have been identified in maize. These newly
identified miRNAs can be grouped into 58 families, of
which 54 have not been identified in any other species.

Methods

Plant Materials and sequencing

B73 inbred was used in our study. Four separated RNA
samples were sequenced. Two samples were the mixed
tissues of root, stem, leaf, tassel, ear, shoot, pollen and
silk. Another two samples were the tissues of endo-
sperm and embryo. The embryo and endosperm were
collected 12, 16, 20 and 24 days after pollination. For
samples of mixed tissues, RNAs were extracted from 8
tissues separately by using TRIzol reagent (Invitrogen)
and then mixed in equally amount for sequencing. The
small RNAs of 18-28-nt in length were purified by poly-
acrylamide gel electrophoresis (PAGE). 3’ and 5" adap-
tors were added for RT-PCR amplification and PCR
products were subjected to sequencing. Low quality
reads and the adaptor sequences were removed before
further analysis.
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M intron(sense)

M intron{antisense)

B exon(sense}

B exon(antisense)

B exon-intron junction{sense)

E non annotated
82%
Figure 6 A pie chart of the distribution of miRNA precursors in the maize genome.
. J
Data analysis map to the genome were excluded. RepeatMasker

All the reads generated from sequencing were mapped  http://www.repeatmasker.org) was used to filter the
to the maize genome sequences (release-3b.50, http://  reads from repeat elements. Known non-coding RNAs
www.maizesequence.org/. Reads that could not perfectly including tRNA, rRNA, snoRNA, snRNA and other

endosperm
total:3,823,033

embryo
total:6,886,540

mixed tissue II

mixed tissue I total:4,143,803

total:3,664,019

Figure 7 Overlap among four sequenced small RNA libraries.
. J
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non-coding RNA sequences were annotated by compar-
ing the reads with the Rfam database http://www.sanger.
ac.uk/Software/Rfam/ using BLAST (identity > 80%).
The known mature miRNA sequences and precursors
were downloaded from miRBase (Release 17.0; http://
microrna.sanger.ac.uk/sequences/. Sequences matched
to the known miRNA precursors were excluded in the
miRNA identification pipeline.

Novel miRNAs identification and target prediction

The maize genome sequences masked with the MIPs
repeat were downloaded from B73 genome project [49]
(release-3b.50, http://www.maizesequence.org/. Inverted
repeat sequences were extracted by EMBOSS-einverted
[50] from the masked genome sequences using para-
meters “-gap = 20, -threshold = 60, -match = 5, -mis-
match = -4, -maxrepeat = 400”. As we noticed that a
sequence can have different secondary structures in the
sense and antisense direction when calculated by RNA-
fold, the inverted repeat sequences were folded in both
directions to retrieve stem-loop sequences with single
loops as the candidate miRNA precursors.

We then attempted to identify novel miRNAs from
four sequenced RNA samples separately. For each
sequenced RNA samples, short reads were first mapped
to all the candidate precursors. The precursors that ful-
filled the following conditions were selected for further
analysis: 1) precursor had at least one unique small RNA
of 20~22-nt mapped on it, 2) the unique small RNA had
at least five identical reads in a sequencing library, 3) the
genomic sequences of the unique small RNA are less
than 20 copies in B73 genome. For each selected precur-
sor, a particular position that had the highest number of
identical 20-22-nt small RNAs mapped to it was regarded
as the potential mature miRNA.

Finally, distributions of reads for all the mapped small
RNAs for the selected precursors were checked. If the
number of small RNAs mapped around the potential
mature miRNA (including 4-nt upstream and down-
stream) account for 75% of all the reads mapped to the
precursors, then the candidate precursor was regarded
as a true miRNA precursor, while the most abundant
small RNA mapped on it was regarded as the mature
miRNA.

After screening by the primary criteria, the secondary
structures of the precursors were predicted again by
RNAfold [51] using additional parameters. The second-
ary structures of the inverted repeat should satisfy the
following: the MFEI [32](minimum free energy calcu-
lated by RNAfold divided by the sequence length)
should <-0.15; the miRNA candidates should be on the
stem of the stem-loop sequences; the candidate miRNA
and miRNA* should have no more than 5 mismatches.
Inverted repeat sequences that passed all the filters were
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regarded as our new miRNA precursors, and their cor-
responding mature miRNAs were the small RNA with
the largest abundance among the ones mapped to them.

To find additional evidences for the newly identified
miRNAs, the expression of the precursors were tested
by BLAST analysis with existing expressed sequence tag
(EST) database. We also tried to find the miRNA* in
our four small RNA libraries as additional evidence for
the annotation of new miRNAs.

To find conserved miRNA in Arabidopsis, rice and
sorghum for newly identified miRNAs in maize, genome
sequences of Arabidopsis, rice and sorghum http://www.
arabidopsis.org/, http://www.tigr.org, http://www.phyto-
zome.net/ were downloaded. If the new miRNAs have
conserved sequences of no more than 4 mismatches in
the genome, we extend the corresponding sequences for
further analysis. Two extensions were made: one
upstream 30-nt and downstream 300nt, the other
upstream 300nt and downstream 30-nt as putative pre-
cursors, for the reason that mature miRNA are on the 3’
or 5" stem of its precursor. Then the putative miRNA
precursors’ secondary structures were predicted by
RNAfold. If the secondary structure fulfilled the criter-
ion for miRNA precursors, we considered the miRNA
conserved in the genome.

The maize annotated coding sequences and Go anno-
tation were downloaded from B73 genome project [49]
http://www.maizesequence.org/. release-5b). Because
most miRNAs were near perfect matches to their corre-
sponding target mRNA, we identify the miRNA target
using BLAST with no more than 3 mismatches between
miRNA and target sequences.

New miRNA validation by northern blot

The RNA gel blot hybridization was performed as
described previously [52]. Total RNA was extracted
using RNA pure plant kit (TTANGEN of Beijing,
DP437). The low-molecular-weight (LMW) RNA was
detected by 15% polyacrylamide gels, blotted onto
Hybond N+ membrane (Amersham BioSciences) using
the transferring machine (Bio-Rad Laboratories, Mini
Trans-Blot) for 1.5 hours at 200 mA, and UV cross-
linked. Blot probes for specific small RNAs were labeled
using y->*P-dATP by T4 polynucleotide kinase (NEB,
MO0201). Blots were prehybridized and hybridized at 37°
C for 7 and 24 hours respectively using perfectHyb plus
hybridization buffer (Sigma, H7033). Blots were washed
at 50°C first with 2 x SSC/0.2% SDS for 15 minutes one
time, the second wash was carried out using 1 x SSC/
0.1% SDS for 10 minutes, then repeated.

miRNA target validation by 5 RACE
Total RNA was extracted from maize (B73 inbreed) 14
days seedlings, then treated with RQ1l DNase I
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(Promega) for half an hour. cDNA templates were pre-
pared by following the instruction of SMART RACE kit
(Clontech). Two gene-specific primers (GSP1 and
NGSP1) were designed by Primer Premier 5.0 software.
These two primers were used for two rounds of PCR.
Nested PCR products were analyzed on an agarose gel.
Positive PCR products were cloned into pEASY-T1
(TransGen) vector by use of pEASY-T1 Cloning Kit
(TransGen). Each target sequence was confirmed by at
least 7 clones.

Additional material

Additional file 1: new miRNA precursors. new miRNA precursors. the
location of the new miRNA precursors in maize genome

Additional file 2: secondary structure of the newly identified miRNA
precursors. the secondary structure of the newly identified miRNA
precursors. the secondary structure of the newly identified miRNA
precursors.

Additional file 3: the target gene of new miRNAT1. the target gene of
new MIRNA. the target gene and annotation of new miRNAs

Additional file 4: candidate miRNA precursors. candidate miRNA
precursors. the location of the candidate miRNA precursors in maize
genome
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