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Abstract

Background: Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-
based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been
developed and characterised for various traits. Although some genetic linkage maps of these populations have
been aligned with each other using publicly available DNA markers, the number of common markers among
genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm.

Results: A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been
assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64
EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to
be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic
in multiple populations served as anchor markers and allowed the construction of the first comprehensive
consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published
linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742
centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2.

Conclusions: The consensus linkage map for ryegrass based on eight mapping populations and constructed using
a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR

markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented
here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative

genetics and genomics within grass species.

Background

Ryegrasses (Lolium spp.) include the economically most
important forage and amenity grass species and their
economic value is likely to rise in future with increasing
demand for meat and milk production and the develop-
ment of environmentally friendly biofuels [1]. Perennial
ryegrass (Lolium perenne L.) and Italian ryegrass
(Lolium multiflorum Lam.) are naturally diploid (2n =
2x = 14) and outbreeding members of the Poaceaea
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family with a highly efficient two-locus self-incompat-
ibility system. Current breeding methods are comple-
mented by molecular genetic approaches, with genetic
mapping as a prerequisite for marker-assisted selection
and map-based cloning. In the case of perennial rye-
grass, the International Lolium Genome Initiative (ILGI)
reference mapping population [2] has been extensively
characterised for a range of morphophysiological traits
[3-7]. Additional mapping populations have been devel-
oped and characterised for various traits such as, VrnA
(vernalization response, disease resistance, seed yield
and fertility traits) [8-11], pop8490 (morphogenetic traits
and resistance to crown rust) [12,13], WSC (water solu-
ble carbohydrate accumulation and fertility traits)
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[7,14,15], TC1*SB2 (resistance to crown rust) [16], IpOA
(resistance to crown rust and seed set), ZX (nitrogen
use efficiency) [17] and F2 biomass (forage yield) [18].
The research focus for Italian ryegrass has been primar-
ily on morphological and disease resistance traits
[19-23].

Some of these mapping populations were evaluated for
the same traits. Resistance to crown rust, for example, is
one of the most important traits in ryegrass breeding.
This is reflected in the number of populations in which
this trait has been mapped (VrnA, pop8490, IpOA, Xtg-
ART, TC1*SB2). Major and minor QTL for resistance to
crown rust have been detected on all LGs in different
mapping populations from both perennial [9,21,24-26]
and Italian ryegrass [23], providing the opportunity to
compare the source of resistance among mapping popu-
lations. Although some genetic linkage maps developed
from these populations have been aligned with each
other using publicly available markers [27], the number
of common markers among genetic maps is very low,
limiting the ability to infer cosegregation of QTL for a
specific trait across populations. This is mainly due to
the limited number of publicly available genetic markers
for Lolium spp., and to some extent due to the limited
transferability of markers across mapping populations.
While traditionally a genetic map has been generated
from a single population, recent efforts to create maps
from multiple populations, referred to as consensus
maps, have gained much interest in the scientific and
breeding community. Integration of mapping data from
individual maps into one consensus map has been
reported in other forage [28] and cereal species [29-31]
and aims at determining the relative positions of trans-
ferable markers in order to compare candidate gene and
QTL locations across a broad variety of genetic back-
grounds. A first effort towards a consensus linkage map
in Lolium was based on two mapping populations [32]
and used comparative RFLP probes as the core mapping
set. Later, Jensen et al. [27] produced a consensus map
from four mapping populations which contained 65 SSR
markers. While this represented an improvement in
terms of marker technology, some LGs were not ade-
quately covered and large gaps were found on LG 5 and
LG 6. Therefore, a large set of publicly available genetic
markers with a high inter- and intraspecific amplifica-
tion rate is crucial for map alignment, consensus map
construction and, finally, for the assessment of co-loca-
tion of QTL and candidate genes across populations.

SSR markers are hypervariable, multiallelic, often
codominant, highly reproducible and, therefore, ideal to
anchor molecular linkage maps [33]. Gene-associated
SSRs derived from ESTs are of particular interest
for linkage map alignments, since they are highly
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transferable to other pedigrees [34-36] and may func-
tionally determine trait variation.

A large set of ryegrass EST-SSR markers has recently
become available [37]. Here we report on the collective
effort of seven European institutions (ART, Switzerland;
DJF, Denmark; IBERS, United Kingdom; ILVO, Belgium;
INRA, France; PRI, The Netherlands; and TEAGASC,
Ireland) to i) provide the map positions of a large set of
publicly available EST-SSRs, ii) to establish the first
comprehensive consensus linkage map for Lolium spp.
using EST-derived anchor SSR markers, iii) to comple-
ment this map with a reference set of publicly available
SSR markers and iv) to assess the usefulness of EST-
SSRs for comparative genetics across existing mapping
populations in ryegrass.

Results and discussion

EST-SSR markers - a useful tool for comparative genetics
and genomics

A total of 204 (43%) out of 464 recently published EST-
SSR markers [37] have been assigned to map positions
(additional file 1) using eight ryegrass mapping popula-
tions characterised for various traits (Table 1). Between
19 (LG 1) and 43 (LG 4) EST-SSRs mapped to each of
the seven Lolium LGs and constitute a dedicated tool
for comparative QTL mapping and map integration.
EST sequences of 142 EST-SSRs (70% of the mapped
EST-SSRs) revealed significant (E < e'°) sequence simi-
larities in a BLASTX search against the non-redundant
(nr) protein database of Genbank, out of which 89
(44%) correspond to genes with known functions (addi-
tional file 1). Protein functions were organised in seven
groups representing genes with binding and catalytic
activities (49% and 30%, respectively), transport activity
(3%), enzyme regulatory activities (1%), as well as tran-
scription and translation factors (7%) and structural
genes (10%). These EST-SSRs are superior to random
DNA markers for QTL mapping due to their putative
functions [38,39]. Derived from more conserved tran-
scribed genomic regions, EST-SSRs are more likely to
be transferable to other mapping populations and grass
species [34-36] and thus, are well suited as intra- and
interspecific anchor loci and for cross-species phyloge-
netic studies [40].

A representative subset of 64 selected EST-SSR mar-
kers was further characterised and used to illustrate
the relationships among the individual mapping popu-
lations. The number of identified alleles ranged from 2
to 14 with a mean value of 4.88. Between 21% (VrnA,
WSC) and 69% (Xtg-ART) of the EST-SSRs were poly-
morphic in each mapping population. Overall, 83% of
the markers were polymorphic in at least one mapping
family.
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Table 1 Detailed description of the mapping populations used for consensus linkage map construction and QTL

analysis

Mapping  Population design Institution Population size Map Number of Traits assessed Trait

population (number of reference mapped reference

individuals used Gxx EST-
for mapping) SSRs

ILGI Lolium perenne, one-way pseudo-  IBERS, UK 183 (183) [51] 3 Self incompatibility  [4]
testcross (progeny of a cross Plant fertility [7]
between a di-haploid and a hybrid Plant morphology  [3]
F1 plant)

VrnA Lolium perenne, F2, two-way DJF, DK 184 (172) [8] 138 Vernalization [8]
pseudo-testcross response [9]

Crown rust [10]
resistance Powdery [11]
mildew

Seed vyield

pop8490 Lolium perenne, F1, two-way INRA, F 185(185) [12,13] 40 Plant morphology  [12]
pseudo-testcross Crown rust

resistance

WSC Lolium perenne, F2 (selfings of a IBERS, UK 188 (188) [32] 4 Water-soluble [15]
single hybrid, obtained by crossing carbohydrates [7]
two partially inbred plants) (sucrose, glucose

and fructose)
Plant fertility

TC1*SB2 Lolium perenne, F1, two-way ILVO, B 281 (281) [16] 1 Crown rust [16]
pseudo-testcross resistance [25]

IpOA Lolium perenne, F1, two-way ILVO, B 147 (147) Unpublished 44 Crown rust Unpublished
pseudo-testcross data resistance data

Seed set

ZX Lolium perenne, one-way pseudo- PRI, NL 90 (90) (171 7 Nitrogen use [17]
testcross (progeny of a cross efficiency
between a di-haploid plant and
LTS01)

F2 biomass  Lolium perenne, F2 (selfings of a TEAGASC, 366 (363) [43] 19 Segregation [43]
single hybrid, obtained by crossing IRL distortion [18]
two partially inbred plants) Biomass

Xtg-ART Lolium multiflorum, F1, two-way ART, CH 306 (96) [19] 109 Bacterial wilt [19]
pseudo-testcross Crown rust [23]

resistance

Mapping data of VrnA, Xtg-ART, IpOA, pop8490, F2 biomass, WSC and ILGI were combined for map integration and used for the construction of the ryegrass
consensus map. The Lolium multiflorum Xtg-ART and the Lolium perenne TC1*SB2 were used to compare QTL for crown rust resistance.

SSR consensus linkage map for ryegrass

Integrated marker data of 204 EST-SSRs and 108 pub-
licly available SSR markers were available for the con-
struction of the consensus map. A total of 107 EST-
SSRs were mapped in at least two mapping populations
and served as anchor loci for map integration (15
anchor markers per LG on average, ranging from 7 on
LG 1 to 23 on LG 4). Anchor markers with a highly
conserved gene order across multiple populations,
referred to as fixed order anchor loci, were used to
define a fixed order for consensus mapping in JoinMap
4. On each LG, 4 to 6 fixed order anchor loci (a total of
35, highlighted in Figure 1), which were highly poly-
morphic, efficiently amplified by PCR and revealed easily
detectable fragment sizes, were used to divide LGs into
segments and provided the basis for the introduction of
bins. These bins are representing defined chromosome

regions of the Lolium genome, a highly useful concept
already established in other major crop species [41,42].
However, the linear marker order between consensus
and individual maps was not always congruent, particu-
larly at closely linked marker loci. Inconsistencies in
marker order were mainly due to differences in recom-
bination frequencies of marker pairs in different popula-
tions. Such heterogeneous recombination frequencies
occurred because the present study incorporated data
collected from several mapping populations differing in
design, size and marker density. For example, the pro-
portion of distorted genetic markers differed between F1
and F2 designs. The percentage of markers showing dis-
torted segregation (P < = 0.05) was highest for the F2
pseudo-testcross populations F2 biomass (10 out of 19,
53%) and VrnA (59 out of 138, 43%) and lowest for the
F1 pseudo-testcrosses pop8490 and Xtg-ART with 3%
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Figure 1 A SSR consensus linkage map for ryegrass (Lolium spp.). The consensus linkage map was developed using the mapping
populations VrnA, Xtg-ART, pop8490, IpOA, F2 biomass, WSC and ILGI (for detailed description of individual mapping populations, see Table 1).
Mapping data were joined using the Combine Groups for Map Integration function of JoinMap 4.0 [58]. The Haldane mapping function based on
regression mapping was used for map construction. The consensus linkage map contains 284 SSR markers. The total map length was 742
centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2. The seven LGs have been aligned
with the ILGI reference map [46]. Scale units are given in centiMorgan (cM) and fixed order anchor loci are highlighted in bold.

(1 out of 38) and 8% (9 out of 109), respectively. Similar
findings were recently reported by Anhalt et al. [43]
who concluded that segregation distortion was most
likely caused by genetic effects. Indeed, for the VrnA F2
population, the highest percentages of distorted markers
were found on LG 1 (80%) and LG 2 (63%), clustering
around the S and Z self-incompatibility loci located on
those chromosomes [4]. This link between self-incom-
patibility and distorted F2 progenies has been shown
earlier [11]. Interestingly, segregation distortion of the
self incompatible species red clover (Trifolium pratense
L.) was found to be specific for each accession anywhere
in the genome.

For these reasons, map integration based on mean
recombination frequencies and combined LOD scores
using JoinMap 4.0 should be carefully interpreted
[28,30,31] and the precise marker order may need to be
verified in the population of interest. In order to ensure
an accurate consensus marker order, fixed order anchor
loci were used to define a fixed order for consensus
mapping in JoinMap. Moreover, pairs of markers with a
significant heterogeneity of recombination rates between
populations were excluded. As a consequence, only 284
(91%) out of 312 available SSR loci were mapped in the

final consensus map, i.e. 187 L. perenne EST-SSRs
reported in Studer et al. [37], 21 EST-SSRs developed
from Festuca arundinacea Schreb. [44], 18 genomic SSR
markers derived from a Lolium-Festuca hybrid published
by Lauvergeat et al. [45], 14 L. perenne genomic SSRs
mapped by Jones et al [46], 16 L. perenne genomic SSRs
published by Kubik et al. [47], 5 genomic SSRs derived
from L. multiflorum [48] and 16, 3 and 4 genomic SSR
markers of L. perenne developed at DJF, DvP and DLF-
Trifolium, respectively, reported in Jensen et al. [27].
The consensus map covered a total genetic distance of
742 cM ranging from 70 cM of LG 6 to 171 cM of LG
2 (mean LG length of 106 ¢cM) and contained 30 to 55
SSR markers (mean of 41) on each LG (Figure 1), a
marker density useful for both comparative mapping
and marker assisted breeding applications.

Consistency of marker grouping and marker order

The linear order of the markers in the individual maps was
generally well conserved (as an example, see Figure 2). The
VrnA map, which consisted of the highest number of
mapped EST-SSRs and anchor markers, revealed a highly
consistent marker order when compared to the consensus
map. In contrast, the Xtg-ART map, with the second
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highest EST-SSR density, showed changed orders for some
markers. Furthermore, the only inconsistencies in the
assignment of EST-SSRs to LGs were observed in Xtg-
ART, the Italian ryegrass population, while no inconsis-
tency was observed between individual perennial ryegrass
maps. G03_058 and G03_079 mapped on LG 2 and LG 6,
respectively, in both VrnA and IpOA, but on LG 4 in Xtg-
ART. Similarly, GO1_075 mapped on LG 4 in VrnA and
pop8490, but on LG 6 in Xtg-ART. G04_043 was assigned
to LG 7 in Xtg-ART, but clearly grouped to LG 5 in VrnA
and F2 biomass. Moreover, G03_028, G04_055 and
GO05_082 mapped to LG 4, LG 2 and LG 6 in Xtg-ART,
respectively, but on LG 2 (G03_028 and G05_082) and LG
7 (G04_055) in VrnA. This might reflect chromosome
rearrangements or - more general - differences in the gen-
ome organization between perennial and Italian ryegrass.
Indeed, Xtg-ART was clearly separated from all perennial
ryegrass populations in a UPGMA dendrogram based on
Nei’s genetic distance with a bootstrap value of 100%
(Figure 3). Although some grouping of perennial ryegrass
populations was observed, these groups were only sup-
ported by moderate bootstrap values. Still, the more
closely related populations such as VrnA, 1pOA and
pop8490 were more consistent in terms of the marker
order between maps.

A dedicated tool for comparative QTL mapping

The small number of common markers between various
genetic maps limits the ability to infer comparative
positions of QTL across germplasm [7,9,49] and to
associate interesting candidate genes to QTL detected
in different mapping populations [50]. However, this is
crucial not only to distinguish and address different
sources of disease resistance in breeding, but also for
the genetic characterisation of genomic locations con-
ferring multiple pathogen resistance, as some QTL for
disease resistance are commonly detected within similar
chromosomal regions [49]. The current ryegrass consen-
sus map provides the means to anchor maps across dif-
ferent pedigrees, to establish linkage with genes for
agronomic traits and to compare QTL for important
traits.

In order to demonstrate the usefulness of anchored
maps to compare QTL locations across mapping popu-
lations, the two major QTL for crown rust resistance on
Lolium LG 1 detected in TC1*SB2 [25] and Xtg-ART
[23] were used for comparative QTL mapping. Both
located in the distal end of LG 1, the two QTL thus
might represent the same source of resistance. EST-SSR
G03_049 mapped at position 99 cM on LG 1 in the
TC1*SB2 population, 10 cM away from the maximum
LOD score value of the recalculated QTL explaining
30% of total phenotypic variation for resistance to
crown rust at position 109 cM (Figure 4A). In contrast,

Page 5 of 10

QTL analysis in Xtg-ART detected NFFA012 at position
122 cM to explain the highest percentage of observed
phenotypic variation for crown rust resistance [up to
38% for the trait “BLAST"; [23]], whereas G03_049
mapped at position 140 cM, clearly separated from the
maximum of the QTL at position 135 cM (Figure 4B).
Based on the QTL position relative to G03_049, the
described QTL on LG 1 are likely to represent two dis-
tinct sources of crown rust resistance. The present con-
sensus map indicates SSR markers that are located in
this region and can be used for further mapping efforts.
Moreover, the density of mapped EST sequences
described in this paper also delivers a valuable resource
for developing cross species genomic alignments, i.e., for
cross-referencing between Lolium, and other grasses
such as wheat, barley, rice and Brachypodium. These
inter-species alignments are fundamental for transferring
information between crop species and between crop and
model species.

Conclusions

This study has greatly increased the number of gene-
derived SSR markers with known map positions as a
tool for comparative QTL mapping in ryegrass and will
facilitate a rapid transfer of linkage information between
different ryegrass maps and eventually across related
species. Overall, this consensus map, containing a large
set of publicly available Lolium EST-SSRs, represents a
major consolidation of existing ryegrass genetic mapping
information and will prove to be an asset in the devel-
opment of both molecular breeding for ryegrass and
comparative genetics and genomics within the grasses.

Methods

Mapping populations

Eight ryegrass populations were used to assign EST-SSR
markers to map positions: (i) the p150/112 intraspecific
ILGI reference population consisting of 183 individuals
[[51]; http://ukcrop.net/grass.html], (ii) 172 genotypes of
the VrnA two-way pseudo-testcross population [8], (iii)
185 genotypes of the pop8490 two-way pseudo-testcross
population [12,13], (iv) 188 F2 individuals of the WSC
population [32], (v) 147 genotypes of the IpOA popula-
tion, (vi) 90 genotypes of ZX population [17], (vii) 363
individuals of the F2 biomass population [43] and (viii)
96 individuals of the L. multiflorum Xtg-ART popula-
tion [19]. These eight populations were selected based
on their extensive use for genetic mapping and QTL
analysis in ryegrass (Table 1).

Genotyping of EST-SSR markers

Primer characteristics of EST-SSR markers along with
the accession number and annotation of the correspond-
ing Lolium EST and the PCR amplification protocols are
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Figure 2 Comparison of linkage group (LG) 6 between the mapping populations Xtg-ART, VrnA, pop8490, IpOA and F2 biomass. The
Haldane mapping function based on regression mapping of the software package JoinMap 4.0 [58] was used for map construction. Common
markers used as anchors for map integration are indicated in blue bold, markers mapped in more than two populations share similar colours.
Scale units are given in centiMorgan (cM).

described in Studer et al. [37]. The 143 EST-SSRs
reported as being polymorphic in the VrnA mapping
population were mapped using 172 VrnA F2 plants.
Another set of 64 primer pairs was first evaluated for
polymorphisms in six to eight individuals of each of the
populations described above and then mapped in those
populations for which clear polymorphisms were
detected.

At each institute, PCR amplification and fragment
separation were optimized for the technology available
in-house. At DJF, the MegaBACE™ 1000 96 capillary
electrophoresis system (GE Healthcare, Waukesha, WI)
and the software GeneMarker version 1.6 (SoftGenetics,
LLC., PA) was used to detect and score fragment sizes.
At ART Reckenholz-Téanikon, amplification products
were separated, visualised and scored using an ABI 3130
16 capillary electrophoresis system (Applied Biosystems,
Foster City, CA) and the GeneMarker software version
1.5 (SoftGenetics, LLC., PA). The same capillary

electrophoresis system was used at ILVO and TEA-
GASC, but in combination with the GeneMapper soft-
ware version 4.0 (Applied Biosystems, Foster City, CA).
At INRA and IBERS, M13-labelled tailed primers were
used for PCR amplification [52] followed by electrophor-
esis on the LI-COR 4200 IR2 system (LI-COR, Lincoln,
NE). The LI-COR system was also used at PRI, but with
the adenine tail labelling method according to Marcel
et al. [53].

EST-SSR marker characterisation

The number of alleles was determined using the Power-
Marker software [54]. Genetic divergence between the
mapping populations was assessed using Nei’s genetic
distance [55] based on allele frequencies of 64 EST-SSRs
assessed in 6 to 8 individuals of each population. A den-
drogram was constructed using the UPGMA clustering
method and bootstrap analysis with 1000 re-samplings
implemented in NTSYSpc v. 2.2 [56]. The molecular



Studer et al. BMC Plant Biology 2010, 10:177
http://www.biomedcentral.com/1471-2229/10/177

Page 7 of 10

VrmA

pop8490 60

ZX

61

IpOA

ILGI

n

WSC

F2_biomass

100

Xtg-ART

0.00 0.25

Nei's Genetic Distance

Figure 3 UPGMA clustering of the mapping populations VrnA, pop8490, ZX, IpOA, F2 biomass, ILGI, WSC and Xtg-ART. The
dendrogram is based on Nei's genetic distance derived from allele frequencies of 64 EST-SSRs assessed in 6 to 8 individuals of each mapping
population. Numbers above branches indicate percentage of bootstrap values obtained from 1000 re-sampling cycles.
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function of mapped EST-SSRs was determined based
on Gene Ontology (GO) using the Blast2GO search
tool [57].

Map construction

Map construction was carried out for each population
separately using the independence LOD score for group
formation and the Haldane mapping function based on
regression mapping of the software package JoinMap 4.0
[58]. Individual LGs including all markers available from
previous studies were calculated for each mapping
population first. Markers with a mean chi-square contri-
bution larger than five indicated that these loci did not
fit very well at the respective map positions and were
therefore excluded from further analyses. LGs from
VrnA, Xtg-ART, IpOA, pop8490, F2 biomass, WSC and
ILGI were subsequently joined using the Combine
Groups for Map Integration function of JoinMap 4.0
[58]. Marker data of the individual populations were
used to estimate all pairwise recombination frequencies
and the corresponding LOD values. Combining the pair-
wise recombination values and LOD scores was possible
by common markers that were shared by individual
linkage maps. Such markers were considered as anchor
loci, around which the map was developed. Differences
in pairwise distance estimates of markers between popu-
lations were identified using the Heterogeneity Test of
JoinMap 4.0 [58]. Since mapping was based on different

population designs (i.e. F1 or F2) and the total number
of mapped markers varied between populations, a con-
sensus order of loci common between mapping popula-
tions was determined and used as fixed order for
mapping. EST-SSR markers revealing such a conserved
order between mapping populations were referred to as
fixed order anchor loci and helped to overcome limita-
tions of map integration based on averaged recombina-
tion frequencies and common LOD scores. The mapped
EST-SSRs complemented with publicly available SSR
markers were used for the final consensus map. The
LGs are named according to the chromosome assign-
ments in the ILGI reference population p150/112 which
correspond to the homologous groups of the Triticeae
cereals (Jones et al. 2002b).

QTL analysis

Previously published QTL for resistance to crown rust
in the mapping populations Xtg-ART [23] and
TC1*SB2 [25] were recalculated including the EST-SSR
GO03_049, which was found to map in the vicinity of
the QTL identified. QTL analysis was performed with
MapQTL version 5.0 [59] using multiple QTL mapping
(MQM). Automatic cofactor selection (backward elimi-
nation, P < 0.02) was used for the detection of signifi-
cantly associated markers as cofactors. LOD
significance threshold levels were determined using
1,000 permutations.
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Figure 4 Genetic linkage map and LOD profiles of multiple QTL model mapping on linkage group (LG) 1 for resistance to crown rust
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individuals of TC1*SB2 and Xtg-ART, respectively, were used to investigate crown rust related traits reported earlier [23,25]. The horizontal line
indicates the LG-specific significance threshold. Cofactors are indicated and designate markers which absorb the genetic effects of their nearby
QTL and function as a genetic background control.
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Additional material

Additional file 1: Detailed mapping information of EST-SSR markers.
This table originally published by Studer et al. [37], was supplemented
with detailed mapping information such as the linkage group where the
markers map to, the map position in each mapping population and the
information, if a marker was used as an anchor or a fixed order anchor
locus.
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