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Abstract
Background: Pluripotency, the property of a cell to differentiate into all cellular types of a given
organism, is central to the development of stem cell-based therapies and regenerative medicine.
Stem cell pluripotency is the result of the orchestrated activation of a complex transcriptional
network characterized by the expression of a set of transcription factors including the master
regulators of pluripotency Nanog and Oct4. Recently, it has been shown that pluripotency can be
induced in somatic cells by viral-mediated expression of the transcription factors Oct3/4, Sox2,
Klf4, and c-Myc.

Results: Here we show that 5-Aminoimidazole-4-carboxamide-1-b-riboside (AICAR) is able to
activate the molecular circuitry of pluripotency in mouse embryonic stem cells (mESC) and
maintain Nanog and Oct4 expression in mESC exposed to the differentiating agent retinoic acid.
We also show that AICAR is able to induce Klf4, Klf2 and Myc expression in both mESC and murine
fibroblasts.

Conclusion: AICAR is able to activate the molecular circuitry of pluripotency in mESC and to
induce the expression of several key regulators of pluripotency in somatic cells. AICAR is therefore
a useful pharmacological entity for studying small molecule mediated induction of pluripotency.

Background
Pluripotency, the ability to differentiate into all embry-
onic tissues, is a defining characteristic of embryonic stem
cells and of induced pluripotent stem cells. Understand-
ing how to induce, modulate, and maintain the pluripo-
tent state of mammalian cells is of great importance for
the development of critical tools for regenerative medi-
cine. Pluripotency has been shown to be the product of an
extended transcriptional network[1] that can be fully acti-

vated by the viral mediated overexpression of defined
transcription factors: Klf4, Oct4, Sox2 and c-Myc[2-5].
Among these four factors, Klf4 has been suggested to have
a higher functional hierarchical position [6] that is shared
by other members of the Klf transcription factors family,
including Klf2 [7].

While viral overexpression of transcription factors has
been an invaluable tool to investigate the molecular basis
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of pluripotency, the presence in reprogrammed cells of
viral genomes seems to be a barrier for the implementa-
tion of safe regenerative therapies. In light of this, small
molecules are currently seen as plausible alternative to
induce the expression of the critical transcription factors
and, eventually, pluripotency [8-11].

Our laboratory has recently shown that the cell permeable
nucleoside AICAR can induce the expression of different
members of the Klf family of transcription factors in
endothelial cells (H.B. Larman and G. Garcia-Cardena,
unpublished observations). Thus, we hypothesized that
AICAR could induce Klf2 and Klf4 expression in other cell
types and that it could activate the pluripotency transcrip-
tional network. Here we show that AICAR induces Klf2
and Klf4 expression and activates the pluripotency tran-
scriptional network in mESC. This effect is able to antago-
nize mESC retinoic acid induced differentiation.
Moreover, AICAR is able to induce Klf4, Klf2 and Myc
expression in mouse embryonic fibroblasts, the prototyp-
ical somatic cells used for reprogramming studies. Our
data describes a new property of AICAR in modulating
mESC pluripotency network, and defines this small mol-
ecule as a new potential tool for the pharmacological
reprogramming of somatic cells.

Results
AICAR induces the expression of Klf2 and Klf4 and 
activates the pluripotency transcriptional network in 
mESC
The J1 mESC line is a well characterized pluripotent cell
line derived from the 129 Sv/J mouse strain. This cell line
was used to assess the effects of AICAR on gene expression
in pluripotent cells. ES cells were plated at 5000/cm2 and
exposed to 1 mM AICAR for 72 h. Gene expression was
measured by total RNA extraction followed by RNA
reverse transcription and real-time Taqman quantitative
PCR. As seen in Figure 1, AICAR induced a 9 fold upregu-
lation of Klf4 and a 2.7 fold upregulation of Klf2. Con-
comitantly, AICAR treatment induced the activation of the
pluripotency transcription network as demonstrated by
the upregulation of the pluripotency keeper transcription
factors Nanog [12,13], Oct4 [14], Myc [15] and Sox2 [16]

AICAR antagonizes Retinoic Acid induced differentiation 
of mESC
In order to further assess the effects of AICAR on the
pluripotency transcriptional network, mESC were treated
with AICAR in the presence of high doses of Retinoic Acid
(RA), a well-characterized differentiating agent that
induces downregulation of several members of the
pluripotency transcriptional network, including Klf4,
Klf2, Nanog, Oct4 and Sox2 [17]. As shown in Figure 2A,
AICAR rescued RA mediated downregulation of Nanog
(complete rescue), Oct4 (partial rescue), Klf4 (complete

rescue) and Klf2 (partial rescue). AICAR didn't rescue RA
mediated Sox2 downregulation. The analysis of the
AICAR effects on RA induced differentiation by morpho-
logical and alkaline phosphatase criteria [17] confirmed
the ability of AICAR to partially antagonize RA induced
differentiation. In mESC colonies exposed to RA, AICAR
was in fact able to significantly rescue the loss of alkaline
phosphatase positivity associated with differentiation (Fig
2B) and, to a lesser extent, to reduce differentiation related
colony morphological changes (Fig 2C). These results
were confirmed with the E14 mESC line.

AICAR induces Klf4, Klf2 and Myc upregulation in mouse 
embryonic fibroblasts
Embryonic fibroblasts are the prototypical cells used to
study transcription factor induced somatic reprogram-
ming [2,18,19]. We therefore tested the effect of AICAR on
mouse embryonic fibroblasts (MEFs). As shown in Figure
3, AICAR induces expression of Klf4 (2.6 fold), Klf2 (2.2
fold) and Myc (1.7 fold) in MEFs. However, under these
conditions, AICAR was not able to orchestrate the com-
plete activation of the transcriptional pluripotency net-
work as documented by the absence of AICAR-induced
expression of Nanog, Oct4 or Sox2 (data not shown).

Discussion
Pluripotency is the product of the activation of a complex
transcriptional network that induces expression of genes
encoding transcription factors, signal transduction com-
ponents, and chromatin-modifying enzymes. The
pluripotency transcriptional network seems to be the
same in both embryonic stem cells and induced pluripo-
tent stem cells (somatic cells reprogrammed to gain
pluripotency). While there have been few reports of small
molecules that can maintain pluripotency of embryonic
stem cells [20-22], there are no reports of molecules tested
for their ability of both modulating the transcriptional
network in embryonic stem cells and regulating the
expression of pluripotency inducing transcription factors
in somatic cells.

In the present work we show that AICAR is able to activate
the pluripotency transcriptional network in mESC and to
upregulate Klf4, Klf2 and Myc expression in murine
fibroblasts. The effect of AICAR as activator of the pluripo-
tency molecular circuitry is clearly shown by the AICAR-
mediated induction of the master regulators of pluripo-
tency Nanog, Oct4, Myc and Sox2 and by the AICAR-
mediated induction of Klf4 and Klf2, two transcription
factors highly expressed in undifferentiated ESCs, which
are quickly downregulated upon induction of differentia-
tion[17]. The effect of upregulating these transcription
factors on the pluripotency transcriptional network is fur-
ther supported by the ability of AICAR to antagonize RA-
induced differentiation. While the AICAR effect is not
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dominant over the differentiating action of RA, both the
gene expression analysis, and the alkaline phosphatase
staining clearly demonstrate that AICAR significantly
antagonizes RA induced differentiation by competing
against RA mediated silencing of pluripotency related
genes.

Our experiments with MEFs show that AICAR is able to
upregulate Klf4, Klf2 and Myc also in somatic cells. In
contrast to the effects exerted on mESC, in this context
AICAR is not able to induce Oct4, Nanog or Sox2 expres-
sion and is therefore not able to activate the pluripotency
network. This result is not surprising if we consider that
while Klf4 has been suggested to be able to regulate the
expression of all the transcription factors required for
somatic cell reprogramming [6], this ability is conditional

to a proper chromatin status and the function of a set of
coactivators that are likely not present in fibroblasts in the
absence of other stimuli. Moreover, AICAR induces a Klf4
upregulation of about 2.5 fold. This upregulation is much
smaller than the Klf4 upregulation obtained by the viral
mediated overexpression methods used in all the somatic
cell reprogramming protocols described [2]. While AICAR
by itself is not able to reprogram fibroblasts, AICAR medi-
ated Klf4 induction in somatic cells is of particular interest
in the context of the current quest for small molecule
mediated induction of pluripotency. Moreover, the fact
that AICAR promotes pluripotency in mESC suggests that
AICAR effect on Klf4 transcription is not linked to other
pro differentiating actions and that AICAR might be suc-
cessfully used in pluripotency inducing small molecules
cocktails.

AICAR activates the pluripotency transcriptional network in mESCFigure 1
AICAR activates the pluripotency transcriptional network in mESC. Murine embryonic stem cells were exposed to 1 
mM AICAR for 72 h. AICAR induced upregulation of the master regulators of pluripotency Nanog and Oct4 and of the 
pluripotency related transcription factors Klf4, Klf2, Myc and Sox2. Taqman real time quantitative PCR. N = 3. Graphs repre-
sent average +/- SEM. *** = P < 0.0001, ** = P < 0.001.
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AICAR has been previously shown to have a number of
effects on cellular function [23-31] including effects on
cellular differentiation. AICAR has been in fact shown to
have anti-differentiating effects (in adypocytes [32] and
myoblasts [33]) and pro-differentiating effects (in neural
stem cells [34] and endothelial progenitor cells [35]). We
now report an effect of AICAR as antagonist of retinoic
acid induced differentiation in embryonic stem cells. The
molecular basis of these contrasting effects of AICAR on
cell differentiation is not clear but it might reflect the fact
that different molecular mechanisms maintain different
levels of multipotency in different cell types[36].

Our present data clearly do not provide a mechanism
underlying AICAR effects on mESC pluripotency and Klf
transcription in fibroblasts. Since AICAR has been previ-
ously shown to prevent skeletal myoblasts differentiation
via activation of the longevity regulator Sirt1 [33], it is
intriguing to speculate that Sirt1 might be downstream of
AICAR in the regulation of embryonic stem cell pluripo-
tency, establishing a connection between the molecular
mechanism of aging and the molecular basis of pluripo-
tency. AICAR mediated upregulation of Klf4 and Klf2 in
MEFs could be mediated by the same mechanism under-
lying activation of the pluripotency network in mESC or

AICAR antagonizes Retinoic Acid induced differentiation in mESCFigure 2
AICAR antagonizes Retinoic Acid induced differentiation in mESC. A) Murine embryonic stem cells were exposed 
to DMSO, 5 uM retinoic acid (RA) or 5 uM retinoic acid + 1 mM AICAR for 72 h. AICAR antagonized RA induced silencing of 
Nanog, Oct4, Klf2 and Klf4 but not of Sox2. Taqman real time quantitative PCR. N = 3. Graphs represent average +/- SEM B) 
mESC were grown for 5 days in the presence of DMSO, 5 uM RA or 5 uM RA + 1 mM AICAR and then stained for alkaline 
phosphatase activity. AICAR antagonizes RA induced suppression of AP activity. Representative experiment of 4 independent 
experiments that produced similar results. Bar represents average percentage of AP+ colonies per 4× magnification field +/- 
STDV. C) mESC were grown for 5 days in the presence of DMSO, 5 uM RA or 5 uM RA + 1 mM AICAR and then visually 
inspected for morphological analysis. AICAR reduces RA induced morphological changes. *** = P < 0.0001, ** = P < 0.001.

� � � � � � � � 	 
 	 
 � 
 � � 
 	

A B

C

� 
 �

� 
 �

� � 
 �

� � 
 �

� � 
 �

� � 
 �

� � 
 �

� � 
 �

� � � � � � � � � � � � � � � � � � � � �

 !"
# $%

&'
$((

) *
+'
$, -

.) /
$. *

0 -
&12

3 4 5 6 7 8 7 7 9 : ; 7 < < = > 8

? @ A B C D � �
� E D F G� E D F G B G @ H G F � I DJ J

J J J

J J J
J J J

�
� �

� �
� �
� �
� �
K �
L �
M �
N �

� � �

? @ A B O P Q R � � P F G � E D F G � E D B
G @ H G F � I D

S $'T
$+

. -
U$ *

V #S W
T$,,
T, X
(. $'(

Y Z : > < = [ = \ = [ ]

J J
Page 4 of 7
(page number not for citation purposes)



BMC Pharmacology 2009, 9:2 http://www.biomedcentral.com/1471-2210/9/2
by a different one, like activation of MEF2, a known target
of AICAR in muscle cells [37] and a known regulator of
Klf4 and Klf2 expression in endothelial cells[38]

Conclusion
Collectively, this work describes for the first time a small
molecule that is both able to activate the pluripotency
transcriptional network in mESC, and to induce the
expression in somatic cells of two of the four transcription
factors required for reprogramming. Our study identifies
AICAR as a pharmacological space important for the
establishment and/or maintenance of induced pluripo-
tent stem cells.

Methods
Cell culture
The J1 mouse embryonic stem cell line (a gift of Dr.
George Daley, Children's Hospital, Boston) was gelatin
adapted and grown on 1% gelatin coated tissue culture
flasks in DMEM (Invitrogen, USA) 10% FCS, 1× non
essential amino acids (Invitrogen, USA), 55 μM β-mercap-
toethanol (Invitrogen, USA), Penicillin 10 units/ml (Inv-
itrogen, USA), Streptomycin 10 μg/ml (Invitrogen, USA),
1000 U/ml LIF (ESGRO, Millipore, USA) and split by
trypsinization every 2–3 days. The E14 mouse embryonic
stem cell (gift of Dr George Daley, Children's Hospital,
Boston) line was cultured in similar conditions but on a
feeder layer of mytomycin-treated murine embryonic
fibroblasts (Millipore, USA). E14 mESC were deprived of
contaminating embryonic fibroblasts by trypsinization

AICAR induces Klf4, Klf2 and Myc expression in fibroblastsFigure 3
AICAR induces Klf4, Klf2 and Myc expression in fibroblasts. Murine embryonic fibroblasts were cultured in the pres-
ence or absence of AICAR for 48 h. AICAR induced upregulation of Klf4, Klf2 and Myc. Taqman real time quantitative PCR. N 
= 3. Graphs represent average +/- SEM. *** = P < 0.0001, ** = P < 0.001, * = P < 0.05.
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and 45 minutes incubation on non-gelatinized tissue cul-
ture flasks prior to plating for exposure to AICAR.

Strain CF-1 Mouse embryonic fibroblasts were purchases
from Millipore (USA) and cultured in DMEM (Invitrogen,
USA) 10% FCS, Penicillin 10 units/ml (Invitrogen, USA),
Streptomycin 10 ug/ml (Invitrogen, USA).

Gene expression analysis
Total RNA was extracted with the ABI 6100 Nucleic Acid
PreStation (Applied Biosystems, Foster City, CA) accord-
ing to manufacturer's instructions. Reverse transcription
of RNA was performed with Multiscribe reverse tran-
scriptase (Applied Biosystems, Foster City, CA) according
to manufacturer's instruction. Real-time Taqman PCR was
performed in 20 μl reactions with primers from Applied
Biosystems, according to manufacturer's instructions.

Exposure to AICAR and Retinoic Acid induced 
differentiation
5-Aminoimidazole-4-carboxamide-1-β-riboside (Calbio-
chem, San Diego, CA) was dissolved in PBS without cal-
cium at a 100 mM final concentration. All trans-retinoic
acid (Sigma, St Louis, MO) was dissolved in DMSO at a
final concentration of 2.5 mM. To induce mESC differen-
tiation, Retinoic Acid was added to mESC culture media
without LIF at a final concentration of 5 micromoles per
liter. Media with RA and or AICAR was replaced every 24
hours.

Alkaline phosphatase staining
Growing cells were washed in PBS, fixed for one minute in
4% PFA PBS, and then incubated for 30 minutes in BM
purple alkaline phosphatase (AP) staining solution
(Roche applied sciences, USA). The percentage of alkaline
phosphatase positive colonies was calculated counting
the number of AP+ and AP- cell clusters in three different
fields at a 4× magnification.

Statistical Analysis
Two way analysis was performed with un-paired t-test
assuming samples with equal variance. Three way analysis
was performed with single factor ANOVA.
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