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Abstract

Background: Quantitative structure-activity relationship (QSAR) models have become popular
tools to help identify promising lead compounds in anticancer drug development. Few QSAR
studies have investigated multitask learning, however. Multitask learning is an approach that allows
distinct but related data sets to be used in training. In this paper, a suite of three QSAR models is
developed to identify compounds that are likely to (a) exhibit cytotoxic behavior against cancer
cells, (b) exhibit high rat LD50 values (low systemic toxicity), and (c) exhibit low to modest human
oral clearance (favorable pharmacokinetic characteristics). Models were constructed using Kernel
Multitask Latent Analysis (KMLA), an approach that can effectively handle a large number of
correlated data features, nonlinear relationships between features and responses, and multitask
learning. Multitask learning is particularly useful when the number of available training records is
small relative to the number of features, as was the case with the oral clearance data.

Results: Multitask learning modestly but significantly improved the classification precision for the
oral clearance model. For the cytotoxicity model, which was constructed using a large number of
records, multitask learning did not affect precision but did reduce computation time. The models
developed here were used to predict activities for 115,000 natural compounds. Hundreds of
natural compounds, particularly in the anthraquinone and flavonoids groups, were predicted to be
cytotoxic, have high LD50 values, and have low to moderate oral clearance.

Conclusion: Multitask learning can be useful in some QSAR models. A suite of QSAR models was
constructed and used to screen a large drug library for compounds likely to be cytotoxic to
multiple cancer cell lines in vitro, have low systemic toxicity in rats, and have favorable
pharmacokinetic properties in humans.

Background

An ideal lead candidate for an anticancer drug is one that
is non-toxic to the host, is well absorbed and so can be
administered orally, and is effective at inhibiting cancer
cell growth. Data on safety, pharmacokinetics, and cyto-
toxicity are expensive to generate in the laboratory, how-

ever, and there is need for developing reliable in-silico
predictive models.

One aspect of developing reliable models is to make effi-
cient use of all available training data. For example, if
training data are available for an additional task that is
related to the primary task of interest, such data could be
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useful in constructing a more reliable model. This paper
explores the use of a multitask model for oral clearance,
where bioavailability is the second task. It is among the
first papers to report results for a human oral clearance
model. Multitask models are most useful when data is
limited, as is the case with the oral clearance model. In
some cases, however, multitask models can also be useful
with larger data sets. For the cytotoxicity models con-
structed here, use of a multitask model did not affect accu-
racy, but did reduce computation time (it reduced the
computation time of the record selection algorithm).

Another aspect of developing reliable models is to base
the models on random samples from well-defined popu-
lations. Moreover, the training populations should be
very similar or identical to the population of compounds
that one wishes to make predictions for. This is often dif-
ficult to achieve in practice, and new solutions are not
proposed in this paper. This important topic is addressed
more fully in the discussion section, but the reader should
be aware that while the accuracy results presented here are
valid for the training and testing sets, they may or may not
be valid for predictions on other sets. Nevertheless, pre-
dictions are made here on other compounds to demon-
strate the approach of using multiple QSAR models to
screen a large compound library. Predicted results for any
particular compound passing the screen would need to be
verified in the laboratory. Such an approach has been
used by Boik et al. [1] in a small study.

Predictive models of safety, pharmacokinetics, and cyto-
toxicity could be designed and used for a variety of pur-
poses. Keeping in mind the model's limitations, the
intended purpose in this paper was to screen a large
library of natural products for those that might be suitable
for preclinical study as components of anticancer drug
mixtures. The criteria for suitability was that a compound
be predicted to:

e inhibit multiple cancer cell lines in vitro at modest to
low concentrations (IC50 of 50 uM or below),

¢ be of low systemic toxicity (rat LD50 > 1920 mg/kg/
day), and

e exhibit a low to modest oral clearance (<83 L/hr in
humans).

Note that if the goal were to identify promising com-
pounds for study as individual drugs, as opposed to com-
ponents of mixtures, different criteria would likely be
used. For example, more potent cytotoxic agents might be
desired. In addition, only novel compounds might be of
interest.

http://www.biomedcentral.com/1471-2210/8/12

Three QSAR classification models were constructed. QSAR
models identify statistical relationships between a
response (also called a task or target) and molecular fea-
tures of a compound, such as molecular weight, logP, and
functional group counts. As noted above, the three pro-
posed models are based on data for human oral clearance,
rat LD50, and in-vitro cytotoxicity. Oral clearance is a
measure of the rate of drug removal from the body after
oral administration, and LD50 refers to the expected dose
needed to kill 50 percent of an animal population. The
three models were applied to a set of over 115,000 natural
compounds and hundreds were predicted to be cytotoxic,
of low systemic toxicity, and of low to modest oral clear-
ance.

The data modeled here were challenging. Correlations
between single features and responses were very weak and
many of the features were highly correlated with one
another. In addition, a large number of features (>1600)
were employed, which in the case of the oral clearance
model was greater than the number of records. (The term
record is used to refer to the combination of observed
responses and calculated features for a single drug.) Lastly,
the processes modeled were biochemically complex and
observed responses were noisy. For example, measure-
ments of oral clearance commonly exhibit a within-study
coefficient of variation of 25 to 100 percent [2-6]. In a
1979 report, LD50 values were observed to vary by as
much as 3- to 11-fold between different laboratories [7].
In-vitro cytotoxicity data were also noisy, typical of high-
throughput screening experiments. With regards to classi-
fication, noisy measurements are particularly problematic
when they occur at the thresholds used to demarcate
active from inactive drugs. In the cytotoxicity data mod-
eled here, compounds were concentrated near these
thresholds.

Models were constructed using Kernel Multitask Latent
Analysis (KMLA), an algorithm developed by Xiang and
Bennett [8] based on earlier work by Momma and Bennett
[9] and used here with minor changes. KMLA is closely
related to partial least squares (PLS), an algorithm that is
commonly used in QSAR and microarray studies when
features are highly correlated and the number of records is
small compared to the number of features [10-16]. PLS
algorithms were originated by Wold in the 1970s and
were later refined by a number of researchers [17-20].
Briefly, PLS algorithms use a series of linear projections to
create a small set of orthogonal "latent" data columns
from the original data so that the covariance between the
latent features and response is maximized. In this way, the
dimensions of the original data are greatly reduced, prob-
lems with correlated features are eliminated, and maximal
information related to the response is retained. Whereas
PLS produces linear models, KMLA can produce nonlinear
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models, with the degree of nonlinearity determined by the
choice of kernel function and kernel parameters.

KMILA is designed for (nonlinear) multitask learning.
Multitask learning can be useful when the number of
records is small relative to the number of features [21], as
is the case for the oral clearance data. Multitask learning
models have been proposed by several authors [22-25],
although their use in QSAR is still rare. In KMLA, collec-
tive learning is ensured by forcing all problems to use a
shared set of latent features. This type of collective learn-
ing has been referred to as common feature mapping. In the
common latent feature space each task is independently
treated as a single-task learning problem [26]. Because
each task is independently modeled, tasks need not share
common records and multiple types of models can be
used (classification for one task and regression for
another, for example). The common set of latent features
is obtained by minimizing loss functions across modeled
tasks.

Results

Oral clearance

Oral clearance can be calculated as clearance divided by
bioavailability, where clearance refers to the systemic
clearance after intravenous administration (in units of
volume/time) and bioavailability is a fraction less than or
equal to 1.0. Because there is an upper limit to the sys-
temic clearance (based on physical constraints), very high
oral clearance values are associated with very low bioavail-
ability. High oral clearance is, in general, not a desirable
characteristic for compounds that are being developed as
oral drugs.

The complexities of physical events that impact oral clear-
ance make accurate prediction of oral clearance difficult to
achieve. Not surprisingly, the accuracy of predictions
made by the oral clearance model was not high under any
model variation tested here. Accuracy improved, however,
when multitask learning was used, with bioavailability as
an additional task. By definition, bioavailability is related

Table I: Results for oral clearance (OC) models
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to oral clearance and the relationship should be particu-
larly strong for drugs with high oral clearance values.

Results are summarized in Table 1 for models that
employed three latent features. The five oral clearance
models are given the abbreviations OC.1 through OC.5
(OC for oral clearance). Models were replicated 32 times
and standard deviations of results are given in parenthe-
ses.

The last two columns of the table provide test set precision
for positive and negative labels averaged over all replica-
tions. Precision on the positive labels is defined as the
number of records that are true positives and predicted to
be positive, divided by the total number of true positives.
Precision on the negative labels is defined as the number
of records that are true negatives and predicted to be neg-
ative, divided by the total number of true negatives.

Confusion matrices can be constructed from the data
given in the Table 1. The two column labels of the confu-
sion matrix are true positives and true negatives, respectively.
The two row labels are predicted positive and predicted neg-
ative, respectively. The diagonal elements of the confusion
matrix, expressed as fractions, are given in the last two col-
umns of Table 1. Using model OC.1 as an example, the
diagonal of the confusion matrix would be 0.649 and
0.569. The lower left cell would be 1.0-0.649 and the
upper right cell would be 1.0-0.569. There were 435 oral
clearance records in total and about 20 percent (87) were
used for testing in any given replication. Of these, about
70 percent (61) were true positives and about 30 percent
(26) were true negatives (see Table S.1 in Additional File
1). Thus for example, the diagonals of the confusion
matrix for OC.1 would be about (0.649)(61) and
(0.569)(26), respectively, if expressed in the units of
records.

Single task models and linear models tended to preform
worse than multitask models and gaussian kernel models.
When precision on negative labels was compared for all
models, precision for OC.2 (a single-task model) was sig-

Model Task Kernel Features Average test set precision, (+) Average test set precision, (-)
labels labels

OC.I  oral clearance Gaussian subset 0.649 (0.060) 0.569 (0.111)

OC.2  oral clearance linear subset 0.606 (0.071)* 0.547 (0.107)**

OC.3  oral clearance & bioavailability ~Gaussian subset 0.636 (0.060) 0.625 (0.091)

OC4  oral clearance & bioavailability Gaussian all features 0.626 (0.066) 0.634 (0.108)***

OC.5  oral clearance & bioavailability  linear subset 0.635 (0.061) 0.637 (0.093)

* Significant differences by ANOVA (p < 0.05): OC.1 vs. OC.2

** Significant differences by ANOVA (p < 0.05): OC.2 vs. OC.3, OC.4, and OC.5 when testing OC.| through OC.5
*k Significant differences by ANOVA (p < 0.05): OC.4 vs. OC.| when testing OC.1, OC.3, and OC.4
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nificantly lower than that for all others (ANOVA with
family-wise error correction, p < 0.05, see Table 1). When
precision on negative labels was compared only for Gaus-
sian models, precision for OC.4 (a multitask model) was
significantly higher than that for OC.1 (a single-task
model). When comparing only the single task models,
precision for the Gaussian model was significantly higher
than that for the linear one.

The training algorithm was designed to maximize total
precision and minimize the difference in precision
between the positive and negative labels. The percentages
of positive and negative labels in the complete data set
were unequal, however, which generally makes balanced
precision more difficult to achieve. Indeed, test set preci-
sion for the single task models (OC.1 and OC.2) was
lower for the negative labels than for the positive labels
(the larger of the two groups). Precision for the multitask
models was more balanced, however.

For all model variations tested, use of model averaging
tended to improve precision. Table S.2 in Additional File
1 lists results using OC.1 and OC.3 as examples. Although
the trend was consistent across all models, differences
were not significant (compare, for example, the values of
0.649 and 0.623 for the positive labels in the second col-
umn of the table).

To further investigate model validity, Model OC.3 was
estimated again using scrambled response values. Average
test-set precision for positive and negative labels was
0.494 (stdev =0.057, n = 8) and 0.565 (stdev = 0.056, n =
8), respectively, which was significantly different from the
means of 0.636 and 0.625 obtained for OC.3 when labels
were not scrambled (t-test, p = 3.4E-07 and p = 0.024,
respectively). The expected results for scrambled records
would have been 0.5 for both positive and negative labels
if model averaging had not been used. With model aver-
aging, there was a small bias towards negative predictions
and this bias had a relatively larger impact on the preci-
sion for the negative labels (the smaller of the two

groups).

To verify that the KMLA algorithm provided some benefit
over a standard partial least squares algorithm, an oral
clearance model was estimated using the generalized par-
tial least squares (gpls) library of R [27]. To make the com-

Table 2: Results for rat LD50 (LD) models

http://www.biomedcentral.com/1471-2210/8/12

parison as fair as possible, KMLA was used in single-task
mode, paired training and verification sets were used
between approaches, three latent variables were used for
each approach, and hyper-parameter selection (based on
validation set results) was done in the same manner for
each approach. Eight replicate models were constructed
and results were assessed using the one-sided paired t-test.
In comparing the KMLA and gpls approaches for single
task models, KMLA has the advantages that model averag-
ing and cost-sensitive learning can be used. In addition,
nonlinear responses can be modeled (the kernel used here
was near-linear, however). Without the use of model aver-
aging, precision on the negative labels (the more challeng-
ing of the two classes) was higher for the KMLA algorithm
(0.60 vs. 0.57) but the difference was not statistically sig-
nificant. When model averaging was used, precision was
again higher for the KMLA algorithm and the difference
was statistically significant (0.67 vs. 0.57, p = 0.025). Dif-
ferences in precision for the positive labels were not statis-
tically significant.

In summary, use of a multitask model modestly but sig-
nificantly improved precision on the negative labels. Mul-
titask models also tended to exhibit more balanced
precision between positive and negative labels. Use of
model averaging also tended to improve precision,
although differences were not statistically significant. The
KMLA algorithm preformed slightly better on an oral
clearance task than did a standard partial least squares
algorithm.

Rat LD50

The number of records in the rat LD50 data set (3,869)
was more than twice as large as the number of features, yet
it was small enough that all records could be modeled in
a reasonable amount of time. Results are summarized in
Table 2 for models that employed four latent features. The
two models are referred to as LD.1 and LD.2 (LD for lethal
dose). Models were replicated 8 times and standard devi-
ations are given in parentheses. This was a lower number
of replicates than used for the oral clearance model, as the
LD50 data set was larger and modeling results were less
variable. The LD50 data set contained only one response
and so KMLA was used in the single-task mode.

Model LD.2, which used a Gaussian kernel, performed
significantly better on the negative labels (the larger of the

Model Kernel Average test set precision, (+) labels Average test set precision, (-) labels
LD.I linear 0.702 (0.042) 0.674 (0.021)*
LD.2 Gaussian 0.717 (0.029) 0.707 (0.019)

* Significant differences by ANOVA (p < 0.05): Model | vs. Model 2
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two classes) than the model using a linear kernel (ANOVA
with family-wise error correction, p < 0.05, see Table 2).
Model averaging tended to improve precision but differ-
ences were not significant. Without model averaging,
average test-set precision for the positive and negative
labels of LD.2 was 0.703 and 0.699, respectively.

Confusion matrices can be constructed from the data
given in Table 2. There were 3,869 records in total, about
20 percent of which (774) were used for testing in any
given replication. Of these, about 33 percent (255) were
true positives and about 67 percent (511) were true nega-
tives (see Table S.1 in Additional File 1).

Cytotoxicity

The number of records in the cytotoxicity data set (8,983)
was more than five times as large as the number of fea-
tures. It was not practical to model more than about 4,500
records, however, and a subset of records was used. Only
about five percent of records had a positive label, and so
all of these were retained for modeling along with a
selected group of records with negative labels. Multitask
models were constructed using LC50 and TGI (total
growth inhibition) responses; models were desired for
both responses and it was expected that the biochemical
processes involved in both were related. Results are sum-
marized in Table 3 for models that employed three latent
features. The eight models are referred to as C.1 through
C.8 (C for cytotoxicity). Models were replicated 8 times
and standard deviations are given in parentheses. Testing
sets contained about 2,695 records.

The Gaussian kernels performed significantly better than
the linear kernels for the H460 cell line for both positive
and negative labels (ANOVA with family-wise error cor-
rection, p < 0.05, see Table 3). Based on these results, only
Gaussian kernels were tested for the other cell lines. The
multitask models did not perform significantly better
than the single-task models, as expected given the large
number of training records. Multitask models did reduce
training time, however. In particular, the time needed to

Table 3: Results for cytotoxicity (C) models
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select records for inclusion in training sets was cut in half.
Confusion matrices can be constructed from the data
given in Table 3. The number of records in each cytotoxic-
ity data set is given in Table S.3 in Additional File 1.

Model averaging consistently tended to improve preci-
sion, although differences were not significant. For exam-
ple, without model averaging, average test-set precision
for positive and negative labels for C.2 (LC50) were 0.703
and 0.801, respectively, as compared to 0.711 and 0.809,
respectively, with model averaging.

The models listed in Table 3 were based on a subset of
records, where the subset was chosen using an algorithm
described in the Methods section. As an alternative,
records with negative labels could be randomly chosen.
Using Model C.2 (LC50) as an example, the randomiza-
tion method reduced the precision for negative labels
from 0.809 to 0.698. The precision for positive labels was
not greatly changed (0.724 vs 0.711), which was expected
because the same set of positive labels was used in both
models. The inferior performance of the model with ran-
dom negative labels is due to the fact that some labels use-
ful for classification were left out. In contrast, selection of
negative labels by the algorithm helped assure that useful
records were retained.

Precision of a final cytotoxicity model was investigated in
three ways, using Model C.2 (LC50) as an example. First,
the precision was determined for the 1,626 compounds
that were contained in both the NCI data set and the set
of 115,000 natural compounds. Some of these duplicate
compounds would have been included in the training set
for C.2 and some (with a negative label) would have been
excluded from it. Of the 1,626 compounds, 148 had a
positive label and 1,478 had a negative one. The precision
was 0.74 and 0.73, respectively.

Second, the precision was determined for a smaller set of
557 compounds that were contained in the natural com-
pound set and for which additional NCI cytotoxicity data

Model Caell Line Task set Kernel Average test set precision, (+) labels Average test set precision, (-) labels

C.l H460 LC50 Gaussian 0.707 (0.032) 0.809 (0.008)

C2 H460 LC50 & TGl  Gaussian LC50: 0.711 (0.034) TGI: 0.732 (0.021) LC50: 0.809 (0.009) TGI: 0.834 (0.009)
C3 H460 TGI Gaussian 0.729 (0.028) 0.838 (0.009)

C4 H460 LC50 linear 0.630 (0.056)* 0.788 (0.014)*

CS5 H460 TGl linear 0.683 (0.047)** 0.803 (0.013)**

C.6 MCF7 LC50 Gaussian 0.675 (0.019) 0.801 (0.011)

c7 MCF7 LC50 & TGl  Gaussian LC50: 0.674 (0.036) TGI: 0.685 (0.027) LC50: 0.798 (0.016) TGI: 0.820 (0.012)
cs8 SF-268 LC50 & TGl  Gaussian LC50: 0.665 (0.056) TGI: 0.698 (0.047) LC50: 0.826 (0.014) TGI: 0.845 (0.013)

* Significant differences by ANOVA (p < 0.05): C4 vs. C.l and C.2
** Significant differences by ANOVA (p < 0.05): C.5 vs. C2and C.3
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were available. Most of these were compounds that were
added to the NCI database after 2005. None of them was
used in training the model. There were 83 compounds
with positive labels and 472 with negative ones. Precision
was 0.48 and 0.72, respectively. Given that the testing set
precision on the positive labels was much higher (0.71),
and that the test sets contained far more compounds
(about 2,700), it seems likely that the lower precision on
the new data may have been due to differences in sample
composition. Neither the set of 557 nor the set of 1,626
mentioned above was a random sample from the natural
compounds set.

Third, precision was determined for the set of 557 com-
pounds as above, only using a model that was constructed
with scrambled training responses. Average precision on
the positive and negative labels was 0.25 and 0.51, respec-
tively (n = 2). The low precision on the positive labels was
due to the low percentage of positive labels in the training
set.

In summary, a model with Gaussian kernel performed sig-
nificantly better in cross-validation than one with a linear
kernel for the H460 cell line, and use of a multitask model
reduced the time needed for record selection. Model aver-
aging tended to improve precision, and the algorithm for
choosing negative training records was more useful than
random selection.

Predictions for natural compounds

Models described above were used to make predictions
for a set of more than 115,000 natural compounds. Gaus-
sian kernels were employed, and multitask models were
used for cytotoxicity and oral clearance.

The number and fraction of natural compounds passing
various screening criteria are listed in Table 4. Com-
pounds passed a given screen if their predictions were all
positive for the selected criterion. Screens 5 to 8 empha-
size the H460 model for illustrative purposes (any of the

Table 4: Summary of screening results
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three cells lines could have been used). The purpose of the
first, most rigorous screen is to identify compounds that
are likely to have low acute toxicity, possess cytotoxic
activity, and be suitable for oral administration. These
compounds would be a priority for preclinical study,
where their properties could be confirmed.

Comparing results from Screens 1, 2, and 5, compounds
that were predicted to be active in the H460 cytotoxicity
models also tended to be predicted active in the other two
cell lines. Comparing Screens 7 and 8, most of the com-
pounds that were predicted to be active against the H460
cell line also were predicted to be toxic to rats. Indeed,
Halle [28] reported that in-vitro cytotoxicity can be used to
predict rat LD50 values. Not surprisingly, given a predic-
tion of cytotoxicity the criterion of passing the LD50
model was more restrictive than that for passing the oral
clearance model (compare Screens 6 and 7).

The diversity of molecules passing the more restrictive
screens was considerably lower than the diversity of mol-
ecules in the entire natural compounds data set. For mol-
ecules passing the more restrictive screens, two groups
were heavily represented: anthraquinones and flavonoids.
A typical molecule from the first group was aloe-emodin,
and ones from the second group were quercetin glyco-
sides.

In summary, compounds that were predicted to be cyto-
toxic in one cell line were usually predicted to be cytotoxic
in the other cell lines, as well as systemically toxic to rats.
As would be expected, use of the cytotoxicity and LD50
screens together resulted in far fewer passing compounds
compared to use of the cytotoxicity screen alone or use of
cytotoxicity and oral clearance screens. Many of the com-
pounds that passed the more restrictive screens were
either anthraquinones or flavonoids.

Screen Screening criteria

Fraction passing Number passing

| Oral clearance, LD50, and all six cytotoxicity models 0.0036 416

2 Oral clearance, LD50, and passing in both H460 models and both LC50 and TGl of either 0.0043 498
MCF7 or SF-268 models

3 LD50 and passing in both H460 models and both LC50 and TGl of either MCF7 or SF-268 0.035 4,014
models

4 Oral clearance and passing in both H460 models and both LC50 and TGl of either MCF7 or 0.017 1,981
SF-268 models

5 Oral clearance, LD50, and passing in both H460 models 0.0045 520

6 Oral clearance and passing in both H460 models 0.039 4,458

7 LD50 and passing in both H460 models 0.022 2,255

8 Passing both H460 models only 0.24 27,608
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Discussion

Multitask learning

QSAR models in biology often suffer from a lack of avail-
able records for training and testing. This was the case
with the oral clearance model and the results presented
here suggest that for this model, multitask learning can
modestly but significantly improve precision (see Table
1). Multitask learning did not significantly improve preci-
sion of the cytotoxicity models (see Table 3), but this
result was expected due to the large number of records
available for training. However, multitask learning did
reduce computation time for the combined LC50 and TGI
models (it reduced the time for record selection by half).
Multitask learning has not yet become popular for QSAR
modeling, and these results suggest that it could play a
larger role. For the tasks modeled here, the results also
show that nonlinear models can in some cases perform
significantly better than linear ones. Model averaging also
tended to improved accuracy, but differences were not sig-
nificant.

Comparison with published models

The models developed here seem to be of comparable
accuracy to ones previously published in the literature,
however such comparisons are difficult to make because
each published study used different data and a different
modeling approach. Ralaivola et al. [29] and Swamidass
etal. [30] used graph kernels to construct QSAR models of
cytotoxicity, also based on the NCI data set. Their
approach differed in that they modeled GI50 rather than
LC50 or TGI values. GI50 is a measure of the growth
inhibitory power of a compound, TGI is a measure of
cytostatic effect, and LC50 is a measure of cytotoxic effect.
By design, GI50 < TGI < LC50. The record selection meth-
ods and threshold values they used resulted in training
sets that were nearly balanced between positive and nega-
tive labels. In comparison, the average fraction of positive
labels in the NCI data modeled here was only 0.05. One
could expect better predictive accuracy under more bal-
anced conditions. Even so, results presented in Table 3
were comparable. For the three cell lines modeled here,
Ralaivola et al. [29] reported an average precision of 0.74,
whereas average precision for TGI here was 0.71. By mod-
eling LC50 and TGI rather than GI50, the models devel-
oped here are designed to identify compounds with
higher average potency.

Several QSAR models of human oral absorption [31-39]
and bioavailability [40-43] have been published for heter-
ogenous sets of compounds, but papers on oral clearance
are rare. In comparing the complexity of the physiological
events involved in absorption, bioavailability, and oral
clearance, one would expect that oral absorption models
would be the most accurate of the three and oral clearance
models would be the least accurate. For example, first-
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pass metabolism is not accounted for when measuring
absorption, and systemic clearance by the liver is not
accounted for when measuring bioavailability. Indeed,
Hou et al. [44] reported that human bioavailability was
much more difficult to predict than oral absorption. In a
multi-label classification study of bioavailability based on
432 drugs, Pintore et al. [40] reported that average test set
accuracy was 0.75 (fraction of correctly classified com-
pounds) over all classes. Yoshida and Topliss [43] pub-
lished a multi-label classification study on bioavailability
of 232 drugs and obtained a somewhat lower average test
set accuracy (0.60). This result for bioavailability is similar
to the one reported here for oral clearance (average preci-
sion of 0.63 across positive and negative labels).

Only one QSAR study on oral clearance could be found.
Wajima et al. [45] published a regression model for oral
clearance that used 87 drugs and produced a cross-valida-
tion ¢2 correlation coefficient of 0.694. Some of the fea-
tures were generated from animal pharmacokinetic
experiments, however, and not from chemical structure
alone as done here. It can be expected that human oral
clearance would be more correlated with animal pharma-
cokinetic data than with molecular descriptors.

Numerous QSAR models of rat LD50 have been pub-
lished, but almost all of these used smaller, homogenous
sets of compounds [46-51]. Commercial QSAR LD50
models (e.g., TOPKAT [52] and MCASE [53]) also tend to
use multiple QSARs on smaller, homogenous sets of data.
In a comparison of several commercial QSAR models,
Tunkel et al. [54] reported that 67 percent of multi-label
predictions by TOPKAT were correct (based on 73 chemi-
cals unseen by the model), and 70 percent of predictions
by MCASE were correct. Neither model was able to classify
all 73 compounds because some were outside the training
sets. While the LD50 model developed in this paper is not
multi-label, it did correctly classify 71 percent of com-
pounds in the test sets.

Of the three models constructed here, the oral clearance
model was the least accurate (precision of 0.636 and
0.625 for positive and negative labels, respectively, for
model OC.3). Nevertheless, the model is still of interest
for two reasons. First, this is one of the few published
attempts at modeling oral clearance and better results
have not been reported for comparable data. Second, the
model variants that were constructed suggest that use of
multitask learning may impart a small but significant
learning advantage.

Model generalizability

In this paper, three classification models were constructed
for oral clearance, cytotoxicity, and rat LD50 data, respec-
tively, and predictions were made for a large set of natural
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compounds. In all three models, the largest publically
available data sets were employed (with some com-
pounds failing the inclusion criteria). Each set of com-
pounds used was a sample from some larger population
of compounds, but it seems highly unlikely that they were
random samples. Moreover, the set of natural compounds
is unlikely to represent a random sample from the popu-
lation of all natural compounds that could pass the inclu-
sion criteria. Furthermore, the training sets were unlikely
to be random samples from the natural compounds pop-
ulation.

The populations that the training sets were drawn from
are essentially unknowable, and therefore true random
samples from those populations cannot be collected. For
example, oral clearance values were taken from the litera-
ture and may have been subject to publication bias. One
might expect published results to be rich in compounds
that have some significance to pharmacology or toxicol-
ogy, and that have low to modest oral clearance. The cyto-
toxicity data provide another example. NCI selected
particular compounds for screening based on a variety of
concerns, which likely included expected activity, chemi-
cal structure, past results, and the submissions made to
the NCI program.

In spite of the uncertainties of the populations, these are
the best available public data on which to base models
and so are used here. There is some assurance that the
models will generalize to the hold-out test sets, as demon-
strated by cross-validation, but there is little assurance
that the models will generalize to any new set of com-
pounds collected by NCI or others, or to the set of natural
compounds on which predictions were made. One would
hope, however, that the size of the data sets, particularly
the NCI and LD50 data sets, might increase the generaliz-
ability of the models.

The best way to test generalizability would be to know the
populations from which the training sets were taken and
then to randomly sample compounds from that popula-
tion for additional testing. If these populations were
known, a sizable sample of compounds, perhaps many
hundreds, would need to be tested in the laboratory. Such
an undertaking is beyond the scope of this project. Fur-
thermore, this still would not address the issue that the
prediction set of natural compounds may be different
from the training sets. If the only population of interest
were the particular set of natural compounds used here, a
random sample from that set could be tested in the labo-
ratory. But again the sample would need to be large.

In spite of the uncertain generalizability of the models to
new compounds, such models may still be worthy of
investigation. The kernel-based multitask modeling
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approach itself should be of interest to investigators, and
furthermore it is possible that the models could be of use
in drug discovery. In a small application of the models,
Boik et al. [1] used them to help identify several dozen
compounds that were predicted to be active in-vitro
against the three NCI cell lines, were predicted to have low
rat LD50 values, and were commercially available. Of
these, 22 were tested in-vitro and 8 were sufficiently water-
soluble and cytotoxic in a specific 48-hour assay to allow
their use in the study.

Conclusion

The results shown here suggest that in some cases, multi-
task learning can be useful for constructing QSAR models.
Depending upon the multi-task model, precision was
improved over single-task models and computation time
was reduced. When applied to a large natural compound
library, the models developed here for cytotoxicity, LD50,
and oral clearance identified an active set of about 400
compounds that was rich in flavonoids and anthraqui-
nones. This is the first published report of an oral clear-
ance QSAR model that used only chemical information as
explanatory variables.

Methods

Data sets used

Rat LD50 values were taken from the Registry of Toxic
Effects of Chemical Substances (RTECS) database [55]
and cytotoxicity values were taken from the public
National Cancer Institute (NCI) Developmental Thera-
peutics Program database [56]. For the LC50 and cytotox-
icity data sets, compounds were excluded if they were not
cyclic, were of molecular weight greater than 700 grams/
mole, or were composed of any atoms other than carbon,
oxygen, nitrogen, sulfur, and/or hydrogen. These criteria
were intended to select compounds that resemble drug-
like natural products. The cytotoxicity model consisted of
submodels for three human cancer cell lines: lung NCI-
H460, breast MCF7, and glioblastoma SF-268. These lines
were selected because they were employed in the NCI pre-
screening process. Each cell line submodel itself consisted
of two submodels: LC50 (concentration of drug resulting
in a 50 percent reduction in the measured cellular protein
content) and TGI (concentration of drug producing total
growth inhibition).

The oral clearance model used bioavailability as a second,
related task. Bioavailability was included only to improve
the accuracy of oral clearance predictions, and so bioavail-
ability predictions are not reported. Oral clearance and
bioavailability values were taken from the literature (see
Additional File 2). Wherever possible, oral clearance and
bioavailability values were obtained for healthy adults.
Averaged values of oral clearance or bioavailability were
used if more than one value per drug was available, and
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compounds were excluded if the deviation of reported
values was excessive. Compounds were also excluded if
their molecular weight was greater than 900 grams/mole
or if they were composed of atoms other than carbon, oxy-
gen, nitrogen, sulfur, chlorine, fluorine, and hydrogen.
Less restrictive exclusion criteria were used for the oral
clearance and bioavailability data compared to the cyto-
toxicity and LD50 data in order to obtain a suitable
number of records for training; relatively few published
oral clearance values were available. This means that
while predictions can be made for a greater variety of com-
pounds with the oral clearance model relative to the other
models, the accuracy of these predictions will be lower -
a wider chemical space is being modeled with a smaller
number of training records. Descriptor values used in the
oral clearance models are available from the author by
request.

The library of 115,000 natural compounds was con-
structed using structures from the CrossFire Beilstein data-
base [57], the PhytochemicalDB [58], and Dr. Duke's
Phytochemical and Ethnobotanical Databases [59]. Natu-
ral compounds were included if they were cyclic, of
molecular weight less than 800 grams/mole, of natural
origin, and composed only of carbon, oxygen, nitrogen,
sulfur, and/or hydrogen. The selection criteria were less
restrictive than that for the LD50 and cytotoxicity data
(molecular weight of <800 vs. <700 grams/mole, respec-
tively). Less than four percent of the natural compounds
had a molecular weight greater than 700, and very few of
these would be considered as multivariate outliers to the
LD50 and cytotoxicity training sets. None of the com-
pounds passing the most restrictive screen listed in Table
4 were of molecular weight greater than 700.

Characteristics of the data sets are summarized in Tables
S.1 and S.3 of Additional File 1. The threshold values
listed in the tables (83 L/hr for oral clearance, 1,920 mg/
kg for LD50, 50 uM for LC50, and 10 uM for TGI) were
used to transform continuous responses into binary +1
and -1 labels for classification, which are referred to in the
text as positive and negative labels, respectively. Classifi-
cation models were constructed rather than regression
because higher accuracy could be obtained. As part of a
multitask model for oral clearance, however, bioavailabil-
ity was modeled as a regression problem. This is because
higher accuracy was obtained for the oral clearance classi-
fication model when bioavailability was modeled in a
regression setting. In the multitask model for oral clear-
ance and bioavailability there were 526 records.

Software used

Structural features were generated using five software pro-
grams: Dragon [60], Molconn-Z [61], Molecular Mode-
ling Pro [62], Recon [63], and JChem [64]. The number of
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features generated by each was Dragon (929 features),
Molconn-Z (1191 features), Molecular Modeling Pro
(246 features), Recon (248 features), and JChem (63 fea-
tures). In total, 2,671 features were generated. After dupli-
cate and completely correlated features were removed,
approximately 1,610 were available for modeling,
depending on the training set. No attempt was made to
presuppose the relative importance of individual features.
Because the in-vivo three-dimensional conformation of a
compound is often not known and some (low-energy)
conformers can be computationally expensive to identify,
features were based on two-dimensional chemical repre-
sentations. Python [65] with Numpy/Scipy [66], and
MATLAB [67] environments were used for modeling.

The KMLA Algorithm

The KMLA algorithm [8,9] is used here with minor
changes. A short mathematical explanation of the KMLA
algorithm is given in Additional File 3 and a brief over-
view is presented below. The algorithm is an extension to
kernel PLS, as used by Deng et al. [68].

KMLA uses a kernel function to transform the feature
space into a symmetric, positive-definite similarity matrix.
Learning occurs via a PLS-like algorithm on the kernel
matrix (i.e., in the distance space), rather than on the orig-
inal features. Denote the original feature matrix by X € R"
<mand responses by Y € R" <k for k tasks. Let a single sub-
script denote a column of a matrix (e.g., Y,) or a single
entry of a row vector. The algorithm consists of applying a
kernel function to X, thereby creating a kernel matrix K
Rnxn Next, columns i = 1, 2,... z of a matrix of linear
orthogonal latent variables, T € R" %, are iteratively gen-
erated from K, with z << n. For example, in the oral clear-
ance/bioavailability model, z = 3 and n = 526. The goal is
to generate T in such a way that it is a linear projection of
K into a reduced subspace and the loss function

k. n
L= Z Zéi,gfyp ( Yo Fig ) is minimized. Here, F = TC,
g=11i=1

where F € R %, is a matrix of predicted values, C € R= kis
a matrix of coefficients, and &, ,= 0 if Y; . is missing and J;
¢= 1 otherwise. Note that a separate model is constructed
for each task and each task has its own vector of coeffi-
cients. The only thing in common between tasks is that all
use the same matrix of latent variables, T. As such, it is rea-
sonable to allow tasks to be based on different sets of
records.

The loss function can vary between tasks. For linear regres-
sion on task g, fyr= (Y; ,- F; ;)% Other loss functions could
be used if desired. For binary classification on task g, tar-
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gets are labeled as +1 and -1 and an exponential loss func-
tion is used, fyp = y; exp(-Y; (F; ,). Weights y; allow cost-
sensitive learning and can be based on the relative fre-
quency of the positive and negative labels. After learning
in the subspace is completed, the matrix of PLS coeffi-
cients, C, is transformed to a matrix of kernel coefficients,
B, such that predictions can be calculated as F = p + KB,
where 1 is a vector of coefficients for a constant hypothe-
sis.

Note that KMLA is only one approach to kernelized PLS.
Another, proposed by Rosipal [69] uses a PLS algorithm
within the reproducing kernel Hilbert space (RKHS) pro-
duced by a kernel function. That is, learning is done in the
RKHS rather than in the distance space.

KMLA (common feature mapping) is also only one
approach to multi-task learning. Yu and Tresp [26] discuss
several others, including Regularized Multi-task Learning
and Parametric Bayesian Multi-task Learning. Another
innovative form of multitask learning is to redesign
molecular descriptors to be suitable for modeling multi-
ple tasks as a single task [70].

Model training

The model training and prediction process occurred in
two phases, as listed in Table 5. The purpose of Phase I
was to identify an optimal set of model parameters for a
given task and to estimate model accuracy. The purpose of
Phase II was to build predictive models using the optimal
parameters identified in Phase 1.

In Phase I, models were replicated numerous times to bet-
ter evaluate accuracy. For each replicate model, the com-
plete data set was randomly partitioned into training and
testing sets. The test set was not used for any training,
parameter selection, record selection, or feature selection.
After partitioning, features that were of constant value or
completely correlated with others in the training set were
removed. Training data were further divided into 10 sets
for cross-validation. For the models constructed in Phase
11, all records (or a selected subset of records for the cyto-
toxicity model) were used in training and no test set was
created. As in Phase I, training data were partitioned into
10 cross-validation sets.

Table 5: Modeling phases and data partitions
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Model averaging was employed in both Phase I and 1I to
help increase the predictive power of the models. The
noisy nature of the modeled responses, as well as the weak
relationships between features and responses, made con-
struction of accurate models a challenging task. Binary
predictions from the 10 cross-validation models were
averaged; average values less than zero were labeled -1,
and those zero or above were labeled +1.

Model selection

To use the KMLA algorithm, the number of latent features
(the parameter z described above) must be specified. In
this paper, no more than four latent features were used for
any model constructed. The choice of latent features was
determined from the training set results - only those
latent features that greatly affected training set accuracy
were retained.

The kernel type and any associated kernel parameters also
must be specified. A Gaussian kernel function was
employed for all nonlinear models constructed here. The
Gaussian kernel has one parameter that must be chosen,
kernel width (¢2). Based on results from several training
sets, 02 = 500 was used for all Gaussian kernels. Predic-
tions were not very sensitive to small changes in ¢2.

Lastly, when used for classification the KMLA algorithm
requires that a threshold parameter (the parameter
described in Additional File 3) be specified for separating
the classes. This parameter is tuned to produce similar pre-
cision for positive and negative labels and is determined
based on results of 10-fold cross-validation of the training
records.

Record selection

The NCI data set contained 8,983 records, which was too
large to model in a reasonable length of time. In addition,
the number of positive labels in the data set was much
smaller than the number of negative ones (see Table S.3 of
Additional File 1 for the distribution of positive labels).
Therefore, all records with positive labels in the training
set were retained, along with a subset of records with neg-
ative labels. The subset was constructed by two methods:
random selection and an iterative method.

In the iterative method, 2,000 negative-label records were
randomly chosen to form a training set (along with all

Phase Partitions/activity Oral Clearance LD50 Cytotoxicity
Phase | training set 348 of 435 (80%) 3,095 of 3,869 (80%) 4,000 of 8,983 (44%), chosen from 70%
testing set 87 of 435 (20%) 774 of 3,869 (20%) 2,695 of 8,983 (30%)
Phase Il training set 435 of 435 (100%) 3,869 of 3,869 (100%) 4,500 of 8,983 (50%), includes all positive labels
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positive-label records). Model parameters were estimated
and scores were given to each negative-label record based
on the sum of the absolute values of the vector of coeffi-
cients for that record, taken from the matrix B (see above).
The reasoning was that if values taken from B were small
for a given record, that record would not greatly influence
predictions and it could be assumed that the record was
relatively unimportant to the model. In subsequent itera-
tions, some records were randomly selected for training
and scoring, and some were selected based on their aver-
age scores from previous iterations. After all negative-label
records had been selected at least twice, they were ranked
by score and 4,000 records in total were selected for the
Phase I training set (4,500 were selected for the Phase II
training set). Note that record selection was based on the
training records only - test set records were not used for
any training or record selection. Therefore results from the
test sets can be used to assess the two record selection pro-
cedures.

Feature selection

To improve the accuracy of the oral clearance model, an
iterative backwards elimination feature selection algo-
rithm was used. In each iteration, features were removed
that did not contribute greatly to predictions. More specif-
ically, in each iteration a model was constructed using a
data set of m features and n rows, and predictions were
made for the training set. In the first iteration, m equaled
the total number of available features. Five models were
created, where the number of retained latent features in
each was three to seven, inclusive. Thus, five predictions
were made for each training point and predictions formed

a matrix Y e R"*5. Next, m additional Y matrices were
produced, each one for a data set where one of the m fea-
tures was omitted. The score for the ith feature was calcu-

lated as S; = " ';{m - ?_i ", where the subscript m refers to

use of all available features and the subscript -i refers to
use of all available features except feature i. If removal of
feature i did not alter the predictions at all, the score S;
would be equal to zero. Features with a score less than 5
percent of the maximum score for that iteration were
removed and a new iteration was started using the
reduced feature set. No more than 15 percent of the avail-
able features were removed in any single iteration. The
iterations continued until the scores for all remaining fea-
tures were greater than 5 percent of the maximum score
for that iteration. Roughly 80 percent of all features were
retained using this algorithm.

A variety of other feature selection methods have been
proposed in the literature and could have been used. For
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example, genetic algorithms have been used for feature
selection in QSAR studies [71]. The feature selection algo-
rithm described above was chosen because it could han-
dle large numbers of features (including large numbers of
retained features), and because it could serve as a wrapper
for the KMLA algorithm.
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