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Abstract

Background: Protein-protein interactions (PPls) are challenging but attractive targets for small
chemical drugs. Whole PPIs, called the 'interactome', have been emerged in several organisms,
including human, based on the recent development of high-throughput screening (HTS)
technologies. Individual PPls have been targeted by small drug-like chemicals (SDCs), however,
interactome data have not been fully utilized for exploring drug targets due to the lack of
comprehensive methodology for utilizing these data. Here we propose an integrative in silico
approach for discovering candidates for drug-targetable PPlIs in interactome data.

Results: Our novel in silico screening system comprises three independent assessment procedures:
i) detection of protein domains responsible for PPlIs, ii) finding SDC-binding pockets on protein
surfaces, and iii) evaluating similarities in the assignment of Gene Ontology (GO) terms between
specific partner proteins. We discovered six candidates for drug-targetable PPls by applying our in
silico approach to original human PPl data composed of 770 binary interactions produced by our
HTS yeast two-hybrid (HTS-Y2H) assays. Among them, we further examined two candidates,
RXRA/NRIPI and CDK2/CDKNIA, with respect to their biological roles, PPl network around
each candidate, and tertiary structures of the interacting domains.

Conclusion: An integrative in silico approach for discovering candidates for drug-targetable PPls
was applied to original human PPIs data. The system excludes false positive interactions and selects
reliable PPls as drug targets. Its effectiveness was demonstrated by the discovery of the six
promising candidate target PPIs. Inhibition or stabilization of the two interactions may have
potential therapeutic effects against human diseases.
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Background

Most proteins exhibit their biological function via interac-
tions with partner proteins, and thus, PPIs play funda-
mental and key roles in various cellular processes in
organisms. PPIs have recently been recognized as chal-
lenging but attractive targets for small chemical drugs [1].
In particular, the inhibition of PPIs by SDCs has been
intensively studied [1-5]. Investigations to date suggest
that PPI inhibition by SDCs could lead treatments for
some human diseases [1-5]. One of the well-investigated
target PPIs is the interaction between tumor suppressor
protein p53 and murine double-minute-2 protein
(MDM2) [6-8]. It has been shown that a family of SDCs,
the nutlins, inhibit this interaction [6,7], suggesting that
the nutlins could be potential therapeutic drugs for cancer
[8]. Several promising PPIs have been targeted by SDCs,
such as AMAP1/cortactin for preventing breast cancer
invasion and metastasis [9], B7.1/CD28 for modulating T-
cell activation [10], BAK/BCL2 or BAK/BCL-X, for induc-
ing apoptosis in tumor cells [11-14], B-catenin/Tcf4 for
cancer treatment [15,16], IL2/IL2Ra for suppressing
autoimmune diseases [17,18], LFA1/ICAM1 for modulat-
ing lymphocyte and immune system function [19-21],
and NGF/p75NTR for blocking neuropathic and inflamma-
tory pain [22].

Although the PPIs targeted in the previous studies [6-22]
were arbitrarily chosen according to the researchers' own
interest in each individual PPI and by their interest in dis-
eases related to the PP, there have been few studies aimed
at discovering or selecting target PPIs at the level of whole
PPIs, called the 'interactome'. One reason for this has
been the lack of strategies for comprehensively exploring
and discovering target PPIs in the interactome. The enor-
mous amounts of PPI data produced by HTS technologies
in recent years [23-35] provide a promising opportunity
for addressing this matter.

Here we propose a novel and integrative in silico approach
for discovering candidates for drug-targetable PPIs by
computationally screening large amounts of PPI data. To
begin with, this approach is applied to the previously-
investigated target PPIs, then the effectiveness and poten-
tial of the approach is demonstrated by applying the
methodology to original human PPI data produced by
our HTS-Y2H assays.

Results

Synopsis of our in silico system

Many previously-investigated target PPls satisfy several
criteria sufficient to be chosen as drug targets. One crite-
rion is that interacting domains involved in a PPI have
been already identified. Domain-domain interactions
responsible for PPIs are more informative for researchers
than PPIs to select potential drug targets [36]. This is
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because two domains that exclusively interact with each
other can be specifically inhibited by a SDC without other
PPIs being inhibited. In contrast, if a domain targeted by
a SDC is shared with a large number of interacting pro-
teins, and if this domain interacts with other domains, it
is likely that the SDC will cause an off-target effect by
inhibiting non-targeted PPIs that are essential to the
organism.

A second criterion is the presence of SDC-binding pockets
on the surface of the interacting protein. In many cases of
the previously-investigated target PPIs, SDCs interact with
a pocket in which the small number of amino acid resi-
dues exist that contribute the large fraction of protein-pro-
tein binding free energy, so-called 'hot spots' [1,37]. In
order to inhibit a PPI by SDCs, one or both of the two
interacting proteins should have a pocket on protein sur-
face to which SDCs can bind. This criterion holds whether
the SDCs exhibit their inhibiting effects via direct binding
to the PPl interface, or via allosteric effects caused by SDC-
induced conformational change to the tertiary structure of
the SDC-interacting protein.

A third criterion is that the biological roles of the PPI are
well understood. This is necessary in order to infer the
phenotypic effects caused by inhibition of the PPI in the
cell. In addition, if the two interacting proteins detected in
an experimental study have the same cellular location
and/or have similar biological functions, it is more prob-
able that the interaction between these two proteins actu-
ally occurs in living cells.

Based on the idea of the in silico structure-based drug
design, our novel and integrative in silico system discovers
candidates for drug-targetable PPIs satisfying the above-
mentioned criteria by integrating three independent
assessment procedures:

¢ detection of protein domains responsible for PPIs,
e finding SDC-binding pockets on protein surfaces,

e evaluating similarities in the assignment of GO terms
between specific partner proteins.

The in silico system is schematically represented in Figure
1. The first assessment procedure utilizes protein domain
information in the Pfam [38] database. In the second
assessment procedure, we use two programs, CASTp [39]
and MOE Alpha Site Finder [40], to find SDC-binding
pockets. Similarity scores for GO-term assignment
between specific partner proteins are calculated in the
third assessment procedure. Statistical significance of the
scores is also evaluated. For more details of these meth-
ods, see Methods section. In the following studies, we
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Schematic representation of our novel and integrative in silico
system for discovering candidates for drug-targetable PPIs in
binary PPl data. The system uses binary PPl data as an input
and assesses each PPl based on three independent in silico
investigations; detection of protein domains responsible for
PPIs, finding SDC-binding pockets on protein surfaces, and
evaluating similarities in the assignment of GO terms. By
integrating the results of these three investigations, the sys-
tem discovers candidates for drug-targetable PPIs.

investigate a suitable threshold in each assessment proce-
dure by applying our system to the previously-investi-
gated target PPIs. Then, our system is applied to original
human PPI data composed of 770 unique binary interac-
tions produced by our HTS-Y2H assays.

Application of our system to the previously-investigated
target PPIs

We conducted the three in silico analyses on the 15 previ-
ously-investigated target PPIs in [1,4]; AMAP1/cortactin
[9], B7.1/CD28 [10], BAK/BCL2(BCL-X,) [11-14], B-cat-
enin/Tcf4 [15,16], CCR5/Env [41], CD4/MHC class 1II
[42], CRM1/Rev [43], EPO/EPOR [44], IL1a (IL1B)/IL1IR
type T [45], TL2/IL2Ra [17,18], iINOS/iNOS [46], LFA1/
ICAM1 [19-21], Myc/Max [47], NGF/p75NTR [22], and
p53/MDM?2 [6-8]. Table 1 summarizes the results (see
Additional file 1 for the full results of the analyses). As
shown in Additional file 1, all proteins in the target PPIs
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have one or more Pfam-A and/or Pfam-B domains. By
searching the public domain-domain interaction data-
bases, iPfam [48], InterDom [49], and DIMA [50], we
identified interacting partner domains in most of the tar-
get PPIs (Table 1). We found one or more pockets on at
least one of the two interacting proteins in most target
PPIs. Evaluation of similarity scores for GO-term assign-
ment indicates that many target PPIs have statistically sig-
nificant (P < 0.05) scores in two out of the three GO
categories, cellular component, molecular function, and
biological process. Taken together, we adopted the follow-
ing thresholds in the three assessment procedures of our
system.

¢ A domain pair in the PPIs has been already known or
predicted as interacting partner in the public databases.

e One or both proteins have at least one pocket on the
protein surface to which SDCs can bind.

¢ Similarity score for the GO-term assignment is statisti-
cally significant (P < 0.05) in two out of the three GO cat-
egories.

By adopting the thresholds, our system can select 8 PPIs
(BAK/BCL2(BCL-X,), B-catenin/Tcf4, CD4/MHC class II,
IL1a(IL1B)/ILIR type I, iNOS/iNOS, LFA1/ICAM1, NGF/
p75NTR and p53/MDM?2) from the 15 previously-investi-
gated target PPIs. In addition, the locations of the pockets
found on the 8 PPIs are in good agreement with those of
pockets targeted by SDCs in the previous studies (data not
shown). Thus, we consider the thresholds to be suitable
for assessing drug-targetability of each PPI, although some
PPIs may be missed as false negatives.

Application to original human PPI data

Most PPIs in original human PPI data are those between
human transcription factors (baits) and other proteins
(preys) (see Additional file 2). The number of unique
baits and preys are 99 and 738, respectively (Table 2). The
baits and preys used in our HTS-Y2H assays were sequence
fragments. Protein domains included in the bait and prey
fragments are likely involved in the interaction between
the two fragments. All domains in the bait and prey frag-
ments used in the present study were retrieved from the
Pfam database (see Methods). We identified Pfam-A and/
or Pfam-B domains in most of the bait (98% (97/99)) and
prey (97% (714/738)) fragments (Table 2). Table 3 indi-
cates that in most (95% (734/770)) bait-prey pairs, both
fragments have Pfam-A and/or Pfam-B domains. This
table also shows that only 3% (23/770) of bait-prey pairs
satisfy the first criterion of our system, dramatically reduc-
ing candidate PPIs. Then, we further identified two
domains as interacting partner domains, when a single
domain was present in the bait fragment and a single
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Table I: Summary of results from the three analyses for the previously-investigated target PPls

PPI interacting Pfam domain presence of GO
pockets

Sc Vi SP
AMAPI /cortactin PFO0018/PF00018 -/no 8 6 0
B7.1/CD28 not identified yeslyes | 6 |
BAK/BCL2(BCL-X,) PF00452/PF02180, PF00452/PF00452 yeslyes 187+ 19% (10)  396** (372%F)
B-catenin/Tcf4 PF0O05 14/PF08347 yes/- 98* 23* 171%*
CCR5/Env not identified -/no 60 | 8
CD4/MHC class |l PF00047/PF00993, PFO0047/PF07654 yes/- |78+ 30°* 16
CRMI/Rev not identified yes/- 98* 10 | 15%*
EPO/EPOR PF00758/PF09067, PF00758/PF0004 | yeslyes | 6 10
ILTo (ILIB)/ILIR type | PF00340/PF00047 yeslyes 8 Nk 35k
IL2/IL2Ra PF00715/PF00084 nolyes [ 6 88*
iNOS/iINOS PF02898/PF02898, PF00258/PF00258, PF00258/PF00175, PF00258/ yeslyes 90%* 1227%* | 04

PF00667, PF00667/PF00667, PFO0667/PF00258, PF00667/PF00175,
PFO0175/PF00667, PFO0175/PF00258, PFO0I75/PFO0175

LFAI/ICAMI PF00092/PF03921 yeslyes [23%* I5% 8
Myc/Max PF00010/PF00010, PF02344/PFO0010 no/no 98%* 23%* |33
NGF/p75NTR PF00243/PF00020 yes/no 0 I1* 9k
p53/MDM2 PF08563/PF02201 -lyes 362+ 36+ 233%*

In the column of 'interacting Pfam domain', interacting partner domains identified by iPfam are shown. 'Domain a/domain b' in a row of a PPl shown by
'protein A/protein B' indicates that domain a in protein A and domain b in protein B interact with each other. In the column of 'presence of pockets',
'yes' means that one or more pockets were found by at least one of the two programs, 'no' means that no pocket was found, and '-' indicates that
pockets were not searched because of lack of nearly identical tertiary structures. Statistical significance of similarity scores (S, Sf, and Sf) for GO-term
assignment are indicated by "' (* P < 0.05, ** P < 0.01). In the row of 'BAK/BCL2(BCL-X,), similarity scores for BAK/BCL-X are shown in parentheses.

domain in the prey fragment. Among the bait and prey
fragments with domains, 32 (33%) bait and 350 (49%)
prey fragments have a single domain. In 62 (8%) out of
the 734 bait-prey pairs, we detected a single domain in
both the bait and the prey fragments. As a result, we iden-
tified interacting partner domains in 83 (11%) bait-prey
pairs. It is highly probable that these domain pairs are
involved in the interaction between the bait and prey frag-
ments. See Additional file 2 for the full list of the detected
domains in the fragments.

In order to computationally detect pockets on the surfaces
of domains/proteins in the bait and prey fragments, it is

Table 2: Summary of results from the three analyses for the bait
and prey fragments

bait prey
# of unique fragments 99 738
# of fragments with Pfam domains 97 714
single domain 32 350
two or more domains 65 364
# of fragments with nearly identical tertiary 15 51
structures
# of fragments with pockets 15 43
# of fragments with GO terms 97 672
cellular component 91 600
molecular function 93 635
biological process 89 591

essential that tertiary structures nearly identical to the bait
and prey fragments are available. To detect protein tertiary
structures nearly identical to the fragments, we searched
for entries in the PDB [51] database showing high amino
acid sequence identity and sequence coverage rate to the
fragments (see Methods). The rigorous threshold of
sequence identity > 90% and coverage rate > 90% in the
results of sequence-similarity searches was adopted in the
present study. This is because we detected pockets based
on their volume and the number of hydrophobic amino
acid residues in pockets, and these pocket properties are
very sensitive to a slight conformational change of protein
tertiary structure caused by amino acid replacement, dele-
tion, or insertion. If sequence identity between a bait or
prey fragment and a PDB entry fell within the range of
50%-90%, one could reconstruct a tertiary structure of
the protein with homology modeling based on the tem-
plate structure of the PDB entry. In these situations, how-
ever, pocket properties on the reconstructed tertiary
structure would be not always nearly identical to those on
the template structure. Therefore, we adopted the rigorous
threshold of sequence identity > 90% and coverage rate >
90% for pocket detection. Results of the sequence-similar-
ity search indicate that 15% (15/99) of bait and 7% (51/
738) of prey fragments have nearly identical tertiary struc-
tures in the PDB database (Table 2). Most of the bait and
prey fragments (100% (15/15) in bait, 84% (43/51) in
prey) have one or more pockets on their protein surface.
Table 3 shows that one or both fragments in 27% (211/

Page 4 of 15

(page number not for citation purposes)



BMC Pharmacology 2007, 7:10

http://www.biomedcentral.com/1471-2210/7/10

Table 3: Summary of results from the three analyses for the bait-prey pairs

bait-prey

# of unique pairs 770

# of pairs in which both fragments have domains 734
# of pairs in which a domain pair has been already known or predicted as interacting partner 23
# of pairs in which both fragments have a single domain 62
# of pairs satisfying one or both criteria for domain detection above 83

# of pairs in which one or both fragments have nearly identical tertiary structures 211
# of pairs in which one or both fragments have pockets 203

# of pairs with identical GO terms in any of the three categories 696
cellular component 603 (264)*
molecular function 647 (181)*
biological process 594 (256)*
# of pairs with statistically significant (P < 0.05) similarity scores for GO-term assignment in two out of the three 201
GO categories

* Numbers of pairs with statistically significant (P < 0.05) similarity scores are shown in parentheses.

770) of bait-prey pairs have nearly identical tertiary struc- ~ NRIP1, PPARA/RXRA, RXRB/PPARD, STAT1/STATG,

tures. In 96% (203/211) of the bait-prey pairs, we found
SDC-binding pockets in one or both fragments. See Addi-
tional file 2 for the full results of the pocket analyses.

GO [52] is useful for assessing the biological significance
of the bait-prey pairs and for selecting well-studied pairs.
This is due to the hierarchical data structure of GO in
which many biological terms are highly systematically
organized to allow the computational handling of many
terms related to biology. We counted the numbers of
shared identical GO terms and calculated similarity scores
between the bait and prey fragments (see Methods). Table
2 shows that most bait proteins (> 90%) and many prey
ones (> 80%) have at least one GO term in any of the
three GO categories. Table 3 indicates that many bait-prey
pairs (> 75%) share one or more identical GO terms. We
calculated similarity scores and evaluated statistical signif-
icance of the scores based on frequency distributions of
scores calculated for PPI data composed of random pro-
tein pairs (see Additional file 3). The number of bait-prey
pairs with a statistically significant (P < 0.05) score is
shown in Table 3. Among these pairs, 201 bait-prey pairs
have the statistically significant scores in two out of the
there GO categories. See Additional file 2 for similarity
scores calculated for all bait-prey pairs and results of the
statistical evaluation of these scores.

Among the 770 unique bait-prey pairs, we selected candi-
dates for drug-targetable PPIs that satisfy all the three cri-
teria. As shown in Table 3, 83 bait-prey pairs satisfied the
first criterion. The number of bait-prey pairs satisfying the
second or third criterion was 203 or 201, respectively. Fig-
ure 2 illustrates the distribution of the bait-prey pairs sat-
isfying one, two, or three criteria described above. Twenty-
six bait-prey pairs satisfy the first and second criteria, 70
pairs the second and third ones, and 29 pairs the first and
third ones. Nine bait-prey pairs (6 protein pairs; RXRA/

CDK2/CDKN1A, and STAT3/DST) were discovered as
candidates for drug-targetable PPIs satisfying all the three
criteria.

Discussion

Drug-targetability of selected PPIs

In this section, we discuss the drug-targetability of the two
candidate PPIs, retinoid x receptor o (RXRA)/nuclear
receptor-interacting protein 1 (NRIP1) and cell division
protein kinase 2 (CDK2)/cyclin-dependent kinase inhibi-

domain (1st criterion)

/5\

pocket (2nd criterion) GO (3 criterion)

Figure 2

Selecting candidates for drug-targetable PPls. Numbers of the
bait-prey pairs satisfying one, two, or three criteria are
shown in each region. Nine bait-prey pairs satisfy all the
three criteria.

Page 5 of 15

(page number not for citation purposes)



BMC Pharmacology 2007, 7:10

tor 1 (CDKN1A) (Table 4). The two candidates were
selected, because both bait and prey fragments had a sin-
gle domain, and interacting partner domains were explic-
itly determined, and because similarity scores for GO-
term assignment were statistically significant in all the
three GO categories. We further examined the two candi-
dates with respect to their biological roles, PPI network
around each candidate, and tertiary structures of the inter-
acting domains.

RXRAINRIPI

Biological functions of RXRA and NRIP1 have been stud-
ied in detail [53-56]. The statistically significant similarity
scores for the GO-term assignment indicate that RXRA
and NRIP1 have related biological functions (Table 4). In
fact, the two proteins share a number of gene-transcrip-
tion-related GO terms; 'nucleus' in the cellular compo-
nent category, 'transcription coactivator activity' and
'DNA binding' in the molecular function category, and
'regulation of transcription, DNA-dependent' and 'posi-
tive regulation of transcription from RNA polymerase I1
promoter' in the biological process category. RXRA is a
member of the nuclear hormone receptor family. When a
ligand binds to its hormone receptor domain, RXRA
forms a homo- or hetero-dimer with other nuclear hor-
mone receptors in order to function as a transcription fac-
tor [56]. NRIP1 interacts with homo- or hetero-dimers of
various nuclear hormone receptors and modulates their
function by repressing transcriptional activity of the dim-
ers [53-55]. Figure 3 shows the interaction network based
on PPI data originally produced by our HTS-Y2H assays
and retrieved from a public PPI database, HPRD [57] (see
Additional file 4 for the original and larger version of Fig-
ure 3). The network shows that RXRA interacts with pro-
teins related to a tumor (THRA related to pituitary
adenome) and those related to certain diseases caused by
abnormalities in lipid metabolism (e.g., NROB2 related to
obesity, PPARA to hyperapobetalipoproteinemia, and

Table 4: Two promising candidates for drug-targetable PPIs

http://www.biomedcentral.com/1471-2210/7/10

PPARGCIA to lipodystrophy). Among the proteins inter-
acting with RXRA and NRIP1, several proteins (e.g.,
PPARA, THRA, RARG, and RXRA itself) are targeted by the
drugs approved by the Food and Drug Administration
(FDA) [58]. Indeed, members of the nuclear hormone
receptor family, including RXRA, have been intensively
studied as targets for therapeutic drugs for human diseases
such as type II diabetes, obesity, and cancer [56]. Consid-
ering the biological functions of RXRA and NRIP1, we
speculate that SDCs inhibiting the RXRA/NRIP1 interac-
tion may have an effect similar to that of a RXRA agonist.
If inhibition of the RXRA/NRIP1 interaction by the SDCs
results in NRIP1 separating from a protein complex com-
posed of RXRA, another nuclear receptor, and NRIP1, the
transcription factor functionality of the resulting dimer
would be restored.

We identified interaction between the Hormone_recep
domain (ligand-binding domain) [Pfam:PF00104] in
RXRA and a fragment of the PB064381 domain contain-
ing LXXLL motifs in NRIP1 (Table 4). The RXRA/NRIP1
interaction is believed to occur between a-helix 12 (H12)
located in the C-terminal region of the Hormone_recep
domain in RXRA and the LXXLL motifs in NRIP1 [54,55].
Since RXRA interact with NRIP1 in a ligand-dependent
manner [53-55], one would expect to detect pockets on
the surface of RXRA in the ligand-bound state. 1LBD in
Table 4, however, is not suitable for the present study
because it is the tertiary structure of RXRA homo-diners in
the non-ligand-bound state. Then, we further detected
pockets on IMVC_A (RXRA in the ligand-bound state)
with the second-highest score to the bait fragment from
RXRA in the sequence similarity search. Figure 4(a) and
4(b) show the locations of the found pockets and of the
H12 from the Hormone_recep domain superimposed on
the tertiary structure of IMVC_A. We found four pockets
using CASTp and three using MOE Alpha Site Finder on
the surface of the Hormone_recep domain in RXRA. The

bait prey bait prey
protein name RXRA NRIPI CDK2 CDKNIA
full length of amino acid sequence 462 1158 298 191
N terminus of fragment 212 641 5 |
C terminus of fragment 462 1081 298 119
Pfam domain PF00104 PB064381 PFO0069 (Pkinase) PF02234 (CDI)

(Hormone_recep)

Best match PDB entry
PDB ID ILBD
presence of pockets yes
Similarity score for GO-term assignment

- IVIK_A -

- yes -
98* 98%*
35k 3 |k
| 647+ 60%*

Statistical significance of similarity scores for GO-term assignment; * P < 0.05, ** P < 0.01.
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Figure 3

PPI network connecting proteins used in the HTS-Y2H assays in the present study. Part of the network around the RXRA/
NRIPI and CDK2/CDKNI A interactions is enlarged in the upper frame. Proteins are represented as diamonds (targets of
drugs approved by FDA) and circles (non-targets of FDA-approved drugs). The information on target proteins of FDA-
approved drugs was obtained from the DrugBank database [58]. RXRA, NRIP|, CDK2, and CDKNIA are colored yellow. Pro-
teins related to OMIM [96] diseases are colored brown and the remaining proteins are grey. Interactions between proteins are
indicated by lines. Novel PPIs detected in this study are shown in red, and those retrieved form a public database, HPRD [57],
are in blue. PPIs are colored green if the interaction was detected in the present study and also retrieved from the HPRD. The
network was drawn using the program Cytoscape (version 2.3.2) [97]. See Additional file 4 for the original and larger version
of the PPl network.
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Figure 4

Locations of the detected pockets superimposed on the tertiary structures of proteins or the amino acid sequence. (a) The
main chain of Hormone_recep domain of RXRA [PDB:IMVC_A] is shown by a ribbon model and is colored grey. Atoms of the
four detected pockets are shown as space-filling models, and each pocket is colored green (1,092A3, 64%), blue (463A3, 48%),
light blue (169A3, 82%), or yellow (152A3, 78%), (the volume and the hydrophobic residue ratio of each pocket are shown in
parentheses). The H12 region is shown in red. (b) Amino acid sequence of the Hormone_recep domain of RXRA
[PDB:1MVC_A]. Amino acid residues comprising each pocket are color-coded as in (a). (c) Location of a pocket laid across
CDK2 and CDKNIB on CDK2/CDKN I B/cyclin A complex [PDB:1JSU]. CDK2, CDKNIB, and cyclin A are shown in green,
magenta, and grey, respectively. Atoms are colored blue composing of the pocket with the size of 714A3 and the hydrophobic
residue ratio of 50%. The location of the 'cyclin groove' [62] already studied as drug target is also shown. The figures were

drawn using the CASTp [39].

pockets range in size from 15243 to 1,092A3. The ratio of
the number of hydrophobic amino acid residues to that of
total residues was calculated for each pocket, ranging from
48% to 82%. The pocket with the size of 152A3 and 78%
hydrophobic residues (shown in yellow in Figure 4(a))
seems most adequate for SDCs designed to inhibit RXRA/
NRIP1 interaction, because several amino acid residues in
the pocket are shared with the H12 (Figure 4(b)). Based
on this structural information, it may be possible to dis-
cover inhibitors of the RXRA/NRIP1 interaction by design-
ing SDCs to specifically bind to the pocket.
Peptidomimetics of the LXXLL motif [5] in NRIP1 could

be used as templates for designing RXRA/NRIP1-inhibit-
ing drugs. In addition, the PB064381 domain is unique to
NRIP1 [59], suggesting that inhibition of the
Hormone_recep/PB064381 interaction may not affect
other domain-domain interactions in living cells.

CDK2/CDKNIA

CDK2 and CDKN1A share several GO terms; 'nucleus' in
the cellular component category, 'protein kinase activity'
and 'protein binding' in the molecular function category,
and 'cell cycle' in the biological process category. This
indicates that the both proteins have biological functions
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in signaling pathways related to cell cycle regulation in the
nucleus. CDK2 forms a protein complex with a member
of cyclin family proteins, and functions in cell cycle pro-
gression at the transition between the G1 and S phases
[60]. CDKN1A arrests cell cycle progression by acting as
an inhibitor of CDK2/cyclin protein complex [61]. The
PPI network illustrated in Figure 3 shows that CDK2 inter-
acts with the TP73 protein related to neuroblastoma. Like
the RXRA, the CDK family proteins have attracted the
researchers' interest as targets for anticancer drugs [62-64].
A large number of SDCs have been developed that interact
with ATP-binding pocket and inhibit CDKs' kinase activ-
ity [63,64]. Likewise, CDK/cyclin protein complexes have
well studied as therapeutic target [62]. CDKN1A represses
CDK2/cyclin activity by simultaneously binding to the
'cyclin groove' on cyclin and ATP-binding pocket on
CDK2 [61,62], which suggests that CDKN1A has an effect
similar to that of an antagonist of CDK2's kinase activity.
Indeed, Kontopidis and his colleagues have obtained
some peptides that mimic cyclin-groove-binding motif in
CDKN1A and inhibit interaction between CDK/cyclin
complex and transcription factors [62]. In addition to
these peptidomimetics of CDKN1A, SDCs, called 'dimer-
izers' [65], that induce or stabilize CDK2/cyclin A/
CDKN1A protein complex could potentially lead to treat-
ments for cancer.

We identified domain-domain interaction between the
Pkinase domain [Pfam:PF00069] in CDK2 and the CDI
domain [Pfam:PF02234] in CDKN1A (Table 4). This is in
good agreement with the results in the previous studies
[66] identifying interaction interface of CDK2/CDKN1A.
One strategy for inducing or stabilizing a PPI is to design
a SDC that can simultaneously bind to a pocket laid across
two interacting proteins on a protein complex. In the case
of CDK2/CDKN1A, we found pockets on the Pkinase
domain [PDB:1VIK A] in CDK2 but did not detect any
pocket on the CDI domain in CDKN1A because it has no
nearly identical tertiary structure (Table 4). Instead of
1VI1K_A, we further investigated a tertiary structure of pro-
tein complex [PDB:1ISU| composed of CDK2, cyclin A,
and CDKN1B that is a homolog of CDKN1A (sequence
identity < 45%). Figure 4(c) shows that there is a pocket
(shown in blue in Figure 4(c)) composed of atoms from
CDK2 and from CDKN1B. Most of the atoms overlap with
those composing ATP-binding pocket on CDK2. The size
is 714A3, and the ratio of hydrophobic residues in the
pocket is 50%. It is highly probable that CDK2/CDKN1A
complex has a tertiary structure not nearly identical but
similar to CDK2/CDKN1B complex, and that CDKN1A
binds to CDK2 in a similar mode to CDKN1B [67]. There-
fore, we speculate that SDCs, that bind to the pocket and
interact with atoms both from CDK2 and from CDKNI1A,
may stabilize the protein complex and become a candi-
date for anticancer drugs. Unlike the Hormone_recep/

http://www.biomedcentral.com/1471-2210/7/10

PB064381 interaction in RXRA/NRIP1, many human pro-
teins share the Pkinase domain with CDK2 [68] and the
CDI domain with CDKN1A [69]. Thus, less influence on
other PPIs may be strongly required for SDCs that can spe-
cifically induce or stabilize Pkinase/CDI interaction in
CDK2/CDKNI1A.

Advantages of targeting PPIs

Targeting PPIs has distinct advantages over targeting sin-
gle proteins; a larger number of undiscovered potential
drug targets. Using traditional approaches for drug target
discovery from the human proteome, drug targets were
single proteins and limited to a small number (~480) of
proteins such as membrane receptors and enzymes [70].
Furthermore, most pockets targeted by small chemical
drugs in these approaches were those to which endog-
enous small molecule ligands or substrates bind. By focus-
ing on PPIs, the number of latent and novel drug targets
can be expected to dramatically increase. This is because
the size of the human interactome must be considerably
larger than that of the human proteome and because
many pockets involved in PPIs but not targeted in the tra-
ditional approaches become accessible. Since the total
number of proteins encoded on the human genome is
about 25,000 - 40,000, the size of the human interactome
has been estimated to be 40,000 — 200,000 PPIs, based on
extrapolation from the yeast interactome (10,000 -
30,000 PPIs (3 - 10 interactions/protein)) [71]. However,
the number of human PPIs, registered in the public inter-
action database, is limited to ~38,000 [57]. Therefore, it is
highly probable that most PPIs, including those which
could be potential drug targets in the human interactome,
remain undiscovered. For example, some PPIs, including
BAK/BCL2, BAK/BCL-X,, p53/MDM2, and homo- or het-
ero-dimers of nuclear receptors, are mediated by hydro-
phobic grooves formed by three a-helices [1,56]. These
PPIs utilizing a-helix grooves are thought to be amenable
to small-molecule drug discovery [1], and thus may be
promising targets of PPI-inhibiting SDCs [1,5].

Our in silico system can select more reliable interactions as
drug targets by excluding spurious interactions via the
three independent assessment procedures. PPI data used
in the present study were obtained from our HTS-Y2H
assays. In general, the false positive rate of HTS-Y2H
methods has been believed to be higher than that of other
physical, genetic, biochemical, or immunological meth-
ods for experimental detection of PPIs, mainly due to
'sticky' proteins that non-specifically interact with various
proteins [72]. While a recent study on PPI prediction by
the Support-Vector-Machine-based method has implied
that PPI data produced by our HTS-Y2H assays are more
reliable than data in the previous HTS-Y2H studies (Table
4 in [73]), we do not neglect the possibility that our PPI
data also contain false positive interactions. Indeed, our
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HTS-Y2H assays identified PPIs between baits derived
from nucleus-located proteins and preys from extracellu-
lar proteins such as collagen a-1(XV) chain (COL15A1),
extracellular matrix protein 1 (ECM1), and laminin pro-
teins (LAMA3, LAMB3, and LAMC2) (see Additional file
2). These PPIs are highly probable to be false positives.
Our in silico system, however, can exclude these spurious
interactions, because, in these cases, similarity scores for
GO-term assignment are not statistically significant in the
cellular component category. Therefore, our approach
should be widely applicable to PPI data even if a number
of false positive interactions are included.

Issues in out approach

Our approach has some advantages described above, but
some issues should be noted for further refinement of the
approach. For more careful assessment of domain detec-
tion, we did not identify interacting partner domains
when bait and/or prey fragments have multiple domains,
so long as a domain pair was not registered in the public
domain-domain interaction databases. However, a large
number of human proteins are multi-domain ones, and
this is also the case in the bait (> 60%) and prey (> 45%)
fragments used in the present study. Several computa-
tional methods have been developed in recent years for
predicting interacting partner domains from large
amounts of experimental PPI data [74-80]. Application of
the methods to the PPI data used in this study will be
needed for more exhaustive identification of interacting
domains. For the purpose of pocket detection, we adopted
simple criteria mainly based on pocket volume and the
number of amino acid residues composing the pocket.
Many studies in past few decades have revealed various
properties of pockets involved in endogenous ligand
binding or PPI [[37,81-83] and references therein]. These
properties, such as volume, shape, hydrophobic clusters,
shallowness, roughness, and accessible surface area, can
be taken into consideration as parameters for assessment
of drug-targetability of each pocket. We are now develop-
ing a computer program that evaluates drug-targetability
of pockets based on these parameters. The program will
enable us to judge whether a pocket is suitable for drug
target. To investigate whether biological function of each
PPI has been well understood or not, we assessed each PPI
by using GO terms. GO has been frequently used in PPI
network studies for researchers' purpose of annotating
biological function of PPIs [28-32,34], but it has also a
weak point that well-studied proteins have many GO
terms and poorly-understood ones have little. While PPIs
between well-studied proteins have been annotated too
much, those between poorly-understood ones too little.
Thus, when our approach assesses PPIs by using GO
terms, it may miss poorly-understood but therapeutically
important target PPIs as false negatives. But, one of the
aims of our system is to select PPIs on which biological
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information are more abundant. In vivo and in vitro vali-
dation process of PPIs as drug target, it is more desirable
that a researcher can obtain as much information as pos-
sible on biology of the PPIs. Since PPIs annotated too lit-
tle are considered as difficult target in this respect, our
system does not select the PPIs in this study. More accu-
mulation of GO annotation will help us select therapeuti-
cally important target PPIs that are annotated too little by
GO terms at present.

Future directions

Our in silico system can be further expanded for more pre-
cise assessment of candidates for drug-targetable PPIs if
other computational methods are incorporated. These
methods include the prediction of interaction interfaces
on protein tertiary structures, the prediction of disordered
regions, and the evaluation of similarities in the expres-
sion patterns of messenger RNAs encoding the two inter-
acting proteins in every tissue/organ. In the case of RXRA/
NRIP1 and CDK2/CDKN1A4, it is fortunate that the inter-
action interfaces have been well studied by biochemical
and immunological approaches [54,55,66], although the
tertiary structures of the protein complexes remain
unsolved. However, if the interaction interface of a candi-
date target PPI has not been well studied and the tertiary
structure of the protein complex is unknown, computa-
tional methods to predict the PPI interface [84-88] are
required in order to determine whether a detected SDC-
binding pocket is located at the interface. Cheng and col-
leagues [89] recently proposed that interaction interface
regions in proteins tend to have disordered tertiary struc-
tures and that information regarding these disordered
regions is useful for drug target discovery. As for gene
expression patterns, two proteins could presumably inter-
act in living cells, if the expression patterns of their corre-
sponding genes were similar to each other.

We focused on discovering drug targets for SDCs based on
the idea of the structure-based in silico drug design,
although there are various other types of drugs, including
peptides, antisense RNAs or DNAs, aptamers, and anti-
bodies. Candidate target PPIs for each type of drugs, as
well as small chemical drugs, will be selected by adopting
distinct criteria based on the three (or more) independent
in silico investigations in our system. For example, to select
candidate target PPIs for antibodies, one can adopt criteria
so that i) at least one tertiary structure of the interacting
domains is known, ii) the interacting domain has an
interaction interface predicted to be recognized by anti-
bodies, and iii) the interacting proteins share identical GO
terms such as 'extracellular' in the cellular component cat-
egory and have expression patterns similar to each other.
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Conclusion

In this paper, we propose a novel and integrative in silico
approach for discovering candidates for drug-targetable
PPIs in interactome data. The system excludes false posi-
tive interactions and selects more reliable PPIs as drug tar-
gets. The application of our system to original human PPI
data demonstrated its effectiveness by discovering the six
promising candidates for drug-targetable PPIs. Advances
in HTS technologies for detecting PPIs and the accumula-
tion of high fidelity PPI data in the near future will enable
our system to facilitate the more comprehensive explora-
tion of drug-targetable PPIs.

Methods

PPI data

The PPI data analysed in the present study consists of 770
binary interactions between human proteins. The data
were produced by our HTS-Y2H assays supported by the
Genome Network Project from the Ministry of Education,
Culture, Sports, Science and Technology of Japan. See
Additional file 2 and the website of the Genome Network
Platform [90] for all PPI data used in this study. Most of
bait proteins used in the HTS-Y2H assays are transcription
factors, including members of the nuclear hormone recep-
tor family (NR1D1, NR1D2, PPARA, PPARD, RORB,
RXRA, THRA, etc), those of the Signal Transducer and Acti-
vator of Transcription (STAT) family (STAT1, STAT3, and
STAT4), homeodomain proteins (FOXP2, LHX1, LHX2,
PKNOXI1, etc), and zinc-finger proteins (RFP, ZNF31,
ZNF581, TRIM21, etc). Preys used in the assays were pre-
pared from cDNA libraries derived from various cell lines
(brain, breast cancer/prostate cancer, liver, and macro-
phage). Our HTS-Y2H method uses sequence fragments as
baits, and preys isolated with the baits are also sequence
fragments. This enables us to identify protein domains
responsible for PPIs because it is highly probable that pro-
tein domains included in the bait or prey fragments are
involved in the interactions between the two fragments.
Full details of our HTS-Y2H method, including experi-
mental materials and conditions, will be reported else-
where in near future.

Detection of protein domains responsible for PPls

All domains in the bait and prey fragments were retrieved
from the Pfam (version 20.0) database [38] using the Uni-
Prot (release 50.3) or TTEMBL (release 33.3) database [91]
accession numbers associated to the fragments. When no
domain was detected in a bait or prey fragment, the bait
or prey fragment was further searched for Pfam domains
to profile Hidden Markov Models of the Pfam-A and
Pfam-B domains using the program HMMPFAM [92]. The
HMMPFAM search was performed with the default pro-
gram parameters except for '-E 0.1 - domE 0.1' (E-value <
0.1 for each detected domain). If the sequence length of a
detected domain included in a fragment was < 10 resi-
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dues, the domain was excluded in the following studies.
To check whether a domain pair has been known or pre-
dicted as interacting partner in previous studies, all com-
binations of domains between bait and prey fragments
were searched for the public domain-domain interaction
databases, iPfam [48], InterDom version 1.1 [49], and
DIMA [50].

Finding SDC-binding pockets on protein surfaces

Using amino acid sequences of the bait and prey frag-
ments as queries, we searched the PDB database [51] (the
version at the date of 2006/5/18) for tertiary structures
similar to each fragment using the program BLASTP (ver-
sion 2.2.13) [93]. This similarity search was performed
with the default program parameters except for '-F F' (no
mask for low complexity regions) and '-e 0.001' (E-value
< 0.001). We considered the fragment to have a tertiary
structure nearly identical to the chain, when a bait or prey
fragment had sequence identity of > 90% and query cov-
erage rate (length of query sequence showing the identity/
full length of the query sequence) of > 90% to a chain in
a PDB entry, and if the sequence length showing the iden-
tity was > 50 residues. If no nearly-identical tertiary struc-
ture was detected for a fragment, the fragment was further
searched in the PDB database using the program PSI-
BLAST (version 2.2.13) [93]. The default program param-
eters were used for the PSI-BLAST search except for '-j 10'
(10 times the iteration search).

The search for pockets on protein surfaces was performed
for the bait and prey fragments showing high sequence
identity (= 90%) to a chain in a PDB entry. We used two
programs, CASTp [39] and MOE Alpha Site Finder [40],
which implement different pocket-search algorithms.
Coordinate data for the chains in the PDB showing high
sequence identity to the bait and prey fragments were
used as input to the programs. We counted the number of
pockets satisfying the following empirically-determined
criteria in order to detect potential SDC-binding pockets:
in the case of CASTp, i) the volume (v) of a detected
pocket was within the range of 150A3 <v < 200043; i) in
that of MOE Alpha Site Finder, a) the number of atoms
comprising the side chains of the amino acids inside the
pocket was > 37 or b) the number of hydrophobic atoms
inside the pocket was > 22.

Evaluating similarities in the assignment of GO terms
between specific partner proteins

Based on GO terms assigned to two proteins from which
the bait and prey fragments were derived, we evaluated
similarities between fragments by counting the number of
shared identical GO terms. GO terms assigned to the pro-
teins were retrieved from the QuickGO database [94]
using the UniProt/TrEMBL accession numbers. GO organ-
izes a wide variety of biological terms as hierarchy. If a
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specific term is assigned to a gene product, then all 'par-
ent' terms in all paths ascending from that specific term to
the top level terms ('cellular component', 'biological proc-
ess', and 'molecular function') of the hierarchy are also
assigned to that gene product [96]. Thus, we collected all
parent terms of specific ones assigned to each protein. A
similarity score (S;) between a protein pair i is calculated
as

5= 3L
j

where L; is the jth level of GO hierarchy (in the present
study, L;j=1, 2, 3, ..., 13, from the top level term (L;= 1) to
a specific term (L; > 1)) and n;; is the number of shared
identical GO terms in the jth level between a protein pair
i. We calculated the scores for the three GO categories; cel-
lular component (S;€), molecular function (S/), and bio-
logical process (S;°).

Statistical significance of the similarity scores was evalu-
ated on the basis of frequency distributions of scores cal-
culated for PPI data composed of 10,000 random pairs of
human proteins (see Additional file 3). The random pairs
were constructed from proteins in the UniProt and
TrEMBL database with GO terms. The frequency distribu-
tions of random scores were calculated for all three GO
categories, and probabilities of the real scores were esti-
mated based on the distributions.

Abbreviations
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