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Abstract

Background: Neurons require an elaborate system of intracellular transport to distribute cargo
throughout axonal and dendritic projections. Active anterograde and retrograde transport of
mitochondria serves in local energy distribution, but at the same time also requires input of ATP.
Here we studied whether brain-type creatine kinase (CK-B), a key enzyme for high-energy
phosphoryl transfer between ATP and CrP in brain, has an intermediary role in the reciprocal
coordination between mitochondrial motility and energy distribution. Therefore, we analysed the
impact of brain-type creatine kinase (CK-B) deficiency on transport activity and velocity of
mitochondria in primary murine neurons and made a comparison to the fate of amyloid precursor
protein (APP) cargo in these cells, using live cell imaging.

Results: Comparison of average and maximum transport velocities and global transport activity
showed that CK-B deficiency had no effect on speed of movement of mitochondria or APP cargo,
but that the fraction of motile mitochondria was significantly increased by 36% in neurons derived
from CK-B knockout mice. The percentage of motile APP vesicles was not altered.

Conclusion: CK-B activity does not directly couple to motor protein activity but cells without the
enzyme increase the number of motile mitochondria, possibly as an adaptational strategy aimed to
enhance mitochondrial distribution versatility in order to compensate for loss of efficiency in the
cellular network for ATP distribution.

Background

Neurons, by virtue of their unique architecture, have
developed specific transport systems to regulate antero-
grade and retrograde flow of macromolecules, vesicles or
organelles between the cell body and distal regions in the
axon and dendrites. To maintain efficiency and direction-
ality in the bidirectional flow of these cellular constituents
strict control over movement of cargo by motor proteins
on cytoskeletal elements such as microtubules, intermedi-
ate filaments, and actin, is needed [1-3]. One of the basic

elements in this control is adequate fuelling with ATP, the
major carrier of cellular energy. Homeostasis of global
and compartmentalized ATP levels, i.e. regulation of pro-
duction, distribution, and consumption of intracellular
ATP, is controlled by an elaborate metabolic network,
which varies with cell type. In neurons this circuit involves
both cytosolic-glycolytic and oxidative mitochondrial
production pathways and a high level of ATP consump-
tion for fuelling of acto-myosin dynamics, ion transport-
ers, and neurotransmitter cycling activity in the synapse
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[4-6]. Neurons use glucose from the circulation as the
main carbohydrate source for ATP production, but -
depending on specific physiological conditions - a fair
percentage of their energy may also be derived from lac-
tate, which they exchange with astrocytes [7,8], or from
ketone bodies imported from circulation. Because of the
highly branched morphology of neurons, sites of energy
consumption are usually spatially separated from sites of
energy generation in this cell type. Since diffusion of ATP
might usually be too slow to achieve optimal supply of
high-energy phosphoryl groups (~P), neurons have devel-
oped more efficient mechanisms for transport and distri-
bution of ~P. One way to minimize the diffusion distance
of ATP and regulating natural inhomogeneity in ATPs
intracellular distribution is by redirecting mitochondria to
sites were ATP demand is high, e.g. in the vicinity of syn-
apses [9]. This requires active mitochondrial transport,
which is mainly driven by members of the kinesin and
dynein superfamilies of microtubule directed motor pro-
teins such as KIF1Ba and KIF5 [10,11], although, actin
guided motility may also be involved [12-14].

An alternative strategy to optimize spatial energy transfer
within cells is to relay high-energy phosphoryl groups
(~P) by enzymatic transfer systems, such as the creatine
kinase (CK) family of isozymes [15]. These enzymes
buffer ATP and ADP levels by the reversible transfer of ~P
onto creatine (Cr) (MgATP2 + Cr <> MgADP- + CrP2 + H+)
[15,16]. Indeed, CKs are mainly expressed in tissues with
high energy-turnover and sudden rises in energy demand,
such as muscle and brain [17,18]. Ubiquitous mitochon-
drial CK (UbCKmit) and cytosolic brain-type CK (CK-B)
are the two predominant isoforms in brain [17,19] and
broadly distributed throughout neurons (moderate-low
expression) and glial cells (high expression in astrocytes
and microglia) across different brain areas. The CK system
provides cells with both a temporal and spatial energy
buffer [15,16]. During transient rises in energy consump-
tion, the CrP pool is addressed by CK to provide the cell
with ATP [18,20]. In addition, CK isozymes connect spa-
tially separated subcellular locales of ATP generation and
ATP hydrolysis [21,22]

We have demonstrated that genetic ablation of CK-B in
mice causes changes in behavior, diminished perform-
ance in spatial learning tasks and delayed development of
pentylenetetrazole-induced seizures [17]. Furthermore,
the intra- and infrapyramidal mossy fiber areas in CK-B-/-
mice appeared increased. We explained these features by
diminished synaptic plasticity or compensatory adapta-
tion with altered neuronal outgrowth during develop-
ment.

http://www.biomedcentral.com/1471-2202/9/73

Here we investigated whether compromised intracellular
energy transport could underlie the diminished synaptic
plasticity or altered morphology (in analogy to [23-25]).

Intracellular transport in neurons is comprised of mem-
branous organelles and cytoplasmic proteins (or protein
complexes) that are conveyed from the cell body to the
synapse, and vice versa, by either fast or slow axonal trans-
port [1]. In general, movement of organelles is mediated
by fast axonal transport, whereas cytosolic and cytoskele-
tal proteins move at a slower pace. This difference in
velocity is attributed to the duty ratio of the motor pro-
teins involved in both types of transport [1,26].

CK-B was identified in slow component B (SCb) which,
together with slow component A (SCa), make up the
branch of slow axonal transport [27]. However, it is not
known if CK-B facilitates this particular type of axonal
transport, or that it is merely transported as inert cargo to
subcellular destinations where it is needed. To address the
question whether CK-B enzymatically contributes to
axonal transport in more detail, we compared cultured
primary hippocampal neurons derived from CK-B knock-
out and wildtype mice and monitored the fate of YFP
tagged amyloid precursor protein (APP) as a representa-
tive component in fast transport. This type of transport
correlates with a high duty ratio of motor proteins and
with high ATPase activity. In addition, we analysed mito-
chondrial dynamics. Our results suggest that CK-B does
not influence the velocity of intracellular transport of APP
or mitochondria in neurons. Rather, cells deficient in CK-
B display show a conspicuous alteration in magnitude of
transport, concomitant with an increase in the fraction of
motile mitochondria.

Results

Distribution of CK-B in primary neurons

To assess effects of CK-B efficiency in primary neurons, we
used a co-culture system of hippocampus-derived neu-
rons on a monolayer of primary astrocytes (see material
and methods). Neuronal expression of CK-B has been
demonstrated in several organisms, but not much is
known about its subcellular localization [28,29].

Immunolocalization on murine hippocampal neurons of
different age with an isoform-specific antibody [30]
showed that CK-B was evenly distributed throughout the
entire cell body, and rarely detected in the nucleus. Figure
1 displays confocal images of hippocampal neurons,
which were cultured for 1, 3 or 6 days in vitro (Figure 1a,b
and 1¢, respectively). No obvious changes were observed
in either the intensity or localization of CK-B during the 6-
day culture period.
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Figure |
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Primary neurons derived from wildtype mice were co-cultured with astrocytes for |, 3 and 6 days. Subsequently, the cells were
fixed and immunostained with an isoform specific monoclonal antibody against CK-B (21E10). Confocal images display the sub-
cellular distribution of CK-B after A) | day, B) 3 days and C) 6 days. Image bars represent |10 um. D) Lysates were prepared
from wildtype and CK-B deficient neurons (7 div) and zymogram analysis was applied to determine enzymatic CK activity.

Neurons derived from CK-B knockout mice did not dis-
play any positive immunostaining with our antibody,
demonstrating specificity of our assay (data not shown).
In addition to localization studies, we also performed
zymogram analysis on cultured primary neurons to assess
enzymatic activity. As expected, CK-B catalytic activity was
present in wildtype cells, but was completely absent in
CK-B knockout cells (Figure 1d).

APP-transport in CK-B deficient neurons

To investigate a possible role for CK-B in axonal transport,
we focused on the amyloid precursor protein (APP). APP
is a membrane spanning type-1 protein which is conveyed
from the cell body to the synapse by fast axonal transport
[31-33]. The kinesin KIF-I was identified as the tubulin
directed motor protein responsible for APP transport [33]
and real time live imaging revealed that APP fused to Yel-
low Fluorescent Protein (YFP) is transported over long
distances with speeds up to 9 um/s [32]. To maintain this
dynamics a continuously high supply of ATP is needed for
motor protein functioning. To test whether CK-B medi-
ated ~P transfer has a role in safeguarding this process, we
compared the appearance and movements of APP con-
taining vesicles in wildtype and CK-B knockout neurons
after transfection with YFP-tagged APP. In Figure 2a we
show 5 successive frames of a time-lapse registration of a
cell with APP-YFP. Careful analysis demonstrated that
APP was transported in elongated tubular vesicles, con-
firming earlier observations by Kaether et al. [32]. Vesicle
appearance did not overtly differ between wildtype and
CK-B knockout cells. For further comparison, 45 and 53
APP-YFP containing vesicles from wildtype and knockout
cells, respectively, were tracked and their average veloci-
ties calculated. Figure 2b shows that the distribution of
velocities was similar for both types of cells. On average,
APP-YFP vesicles moved at 1.12 + 0.49 and 1.07 + 0.47
um/s for wildtype and CK-B knockout, respectively.

Because vesicles sometimes changed their speed during
time-lapse recording, we also calculated the maximum
velocity for each vesicle during one recording. In figure 2¢c
these maximum values are displayed. Maximal velocities
found were comparable, with 1.60 + 0.62 pm/s for APP-
YFP vesicles in wildtype cells and 1.54 + 0.55 um/s for CK-
B knockout cells. Also no difference was found in the dis-
tribution of maximal velocities. Both knockout and
wildtype vesicles reach maximal velocities up to 3 pm/s. It
may be of note here, that this is 3 times slower than the
maximum and 4 times slower than the average velocities
of APP reported in rat primary neurons [32].

Mitochondrial transport in CK-B deficient neurons

Mitochondrial transport and repositioning is an impor-
tant mechanism for neurons to comply with alterations in
local energy demand. Fission, fusion and intracellular
motility are essential processes involved in the regulation
of subcellular distribution of mitochondria. It is therefore
not surprising that many neurodegenerative diseases are
associated with perturbations of these processes [2,34]. To
investigate if CK-B coordinates the fueling role and trans-
port fate of mitochondria, we compared the dynamic
behavior of mitochondria between primary hippocampal
neurons from wildtype and CK-B knockout mice. Staining
with thodamine 123 to visualize mitochondria and time-
lapse recording and subsequent image analysis were used
to determine the average mitochondrial velocity (Figure
3a). Mitochondria included in the analysis traveled a min-
imum of 3 frames and were tracked till they stopped or
reversed direction. Mitochondria from wildtype cells
traveled at an average velocity of 0.59 + 0.26 um/s, which
was almost identical to CK-B knockout cells (0.57 + 0.24
pm/s). Furthermore, frequency histogram analysis
revealed no differences in the distribution of average
mitochondrial velocity (Figure 3b), suggesting that there
is also no subset of mitochondrial movements that is
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7-day-old CK-B deficient and wildtype neurons were transfected with plasmid DNA encoding APP-YFP. After 24 hours cells
were subjected to live imaging at 37°C and 5% CO,. Panel A shows 5 successive captures of a transfected neuron. An APP-
YFP-containing vesicle, which traverses the neuron, is marked by arrows. The bar represents |0 um. B) The average velocity
of APP-YFP positive vesicles in both wildtype and CK-B deficient neurons was calculated and plotted in the diagram. For
wildtype and CK-B (-/-) cells 45 vesicles and 53 vesicles were tracked, respectively. C) Maximum velocities for individual parti-

cles of wildtype and CK-B knockout cells were also plotted.

affected by CK-B deficiency. Because a single mitochon-
drion could vary its speed during the cause of one move-
ment, we also calculated the maximum speed for every
mitochondrion during its recording period. The bar-dia-
gram in figure 3c displays the average of maximal reached
speeds of all tracked mitochondria in wildtype (1.13 +
0.43 um/s) and CK-B deficient cells (1.07 + 0.38 um/s). A
frequency distribution diagram of maximal speeds also
revealed no significant differences in maximal velocities
of mitochondria between knockout and wildtype cells
(figure 3d).

Since CK-B deficiency had no impact on the average and
maximal velocities by which mitochondria travel in neur-
ites, we wondered if lack of CK-B mediated ~P transfer
could elicit more subtle effects and have impact on the

rate of engagement in intracellular transport or affect the
process of anchorage of mitochondria, two types of events
which are also believed to be regulated by local energy
demand [35,36]. To answer this question, we analysed
whether the fraction of mitochondria that was rendered
motile might be affected by CK-B deficiency (Figure 4).
Image stack difference analysis was applied to estimate the
percentage of mitochondria that moved during the time
of one recording (3 minutes). For wildtype cells 10.5 +
3.2% of mitochondria were motile at any moment during
the course of one recording. Surprisingly, CK-B deficient
cells showed a significant increase of 35% (p < 0.05) in
motile mitochondria (14.1 + 3.8%). The dot plot in figure
4c also clearly shows the shift towards more motile mito-
chondria in CK-B deficient cells. To validate this conclu-
sion, we also applied a method with manual counting
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Figure 3

Mitochondria of 7-day-old CK-B deficient and wildtype neurons were stained with rhodamine 123. Live imaging was applied to
track these mitochondria. Average velocities were determined for mitochondria of wildtype cells (164 mitochondria) and CK-
B deficient cells (138 mitochondria). The bar diagrams in panel A, display average velocities with error bars representing the
standard deviation (SD). Panel B shows the distribution of mitochondrial velocities. Maximum velocities for individual tracked
mitochondria were also determined and the average of these are presented in panel C. Error bars represent SD. D) The distri-
bution of maximal velocities of individual mitochondria are shown for wildtype and CK-B knockout neurons.

(see Additional file 1). Importantly, the outcome of this  and 8.1 + 2.0% for CK-B(-/-); p < 0.0005) (see figure in
analysis was almost identical (37% increase in the fraction ~ Additional file 2). When this same image analysis meth-
of motile mitochondria in CK-B deficient neurons),  odology was applied to YFP-APP vesicles, no significant
although absolute percentages of motile mitochondria  effect of absence or presence of CK-B was found (Figure
were lower with this method (5.9% + 2.2% for wildtype  4d).
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The percentage of motile mitochondria in wildtype and CK-B knockout neurons was determined. The first (red) frame and the
100t frame (green) of a movie were merged. Yellow mitochondria are non-motile mitochondria. Panel A) Istand 100t frames
of a movie of mitochondria in a wildtype neuron after merging. Panel B) displays the CK-B knockout equivalent. For wildtype
(n = 12) and CK-B knockout (n = 15) movies were analyzed using the stack difference method (see methods). The percentage
of motile mitochondria is presented in the scatter dot plot in panel C (p < 0.05). The percentage of motile YFP-APP particles
in wildtype and CK-B knockout neurons was determined by analyzing 2 sets of merged frames from every movie (see also
Additional Files | and 2). Panel D shows the average percentages (WT: 74%; CK-B: 76%; p = 0.57) of motile YFP-APP vesicles
(error bars represent SEM). n = 22 for WT and n = |4 for CK-B(-/-).

In conclusion, CK-B is not influencing the speed of intra-
cellular transport of APP or mitochondria once this trans-
port is initiated, however, in cells that lack CK-B a larger
fraction of mitochondria is recruited into the actual
motile pool.

Discussion

ATP generation and distribution is essential for the highly
compartmentalized eukaryotic cell. Especially in neurons
with their extended axonal and dendritic networks, it is
important to modulate fuelling logistics. Spatially con-
fined cellular processes like synapse functioning require
local supply of energy. In order to fuel these functions
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optimally, they are coupled to sites of energy production.
The CK system provides cells with a temporal and spatial
ATP buffer to connect local energy consumption with sites
of energy production [16,28,37]. Other phosphotransfer
enzymes, like adenylate kinases and nucleoside diphos-
phate kinases are also active in neurons, and serve in the
global network that distributes ATP throughout the cell.
In addition, neurons have the capacity to relocate their
energy production machinery to specialized subcellular
sites to help in local ATP generation. Partitioning of glyc-
olytic enzymes on cortical actin or membrane-near sites
can provide local energy to membrane pumps by func-
tional coupling [38,39], whereas oxidative generated ATP
can be generated locally, by recruiting mitochondria to
sites of high ATP consumption such as synapses and den-
dritic spines [9,35,40].

We focused on the question whether CK-B facilitates effi-
cient axonal transport by comparing transport of APP and
mitochondria in primary murine neurons derived from
CK-B deficient and proficient mice.

Active transport of cargo in neurons is achieved by a wide
variety of motor proteins, which are guided by the infra-
structure of the cellular cytoskeleton [14]. These cargos
can travel along actin filaments or microtubules either by
plus end or minus end directed trafficing, thus facilitating
both anterograde and retrograde axonal transport. Both
types of cytoskeletal structures have their own assortment
of motor proteins, which can be divided in actin-guided
myosins [41] and microtubule-guided kinesins and
dyneins [3]. A common denominator for myosins,
dyneins and kinesins is that they require ATP hydrolysis to
exert their function.

Fast axonal transport of membranous organelles and
membrane proteins depends on highly processive motor
activity and, consequently, a steady and adequate ATP/
ADP ratio for optimal fuelling of motor proteins. Our data
show that the actual speed of fast axonal transport of APP-
YFP is not affected by CK-B deficiency. Although the max-
imum and average velocities observed are lower than
reported for rat neurons [32], this may be a mouse related
feature and no differences between wildtype cells and CK-
B deficient cells were found. In addition, mitochondrial
transport velocities were not affected in CK-B knockout
cells. Mitochondria are subject to saltatory movement,
which involves cycles of anterograde and retrograde trans-
port driven by kinesins and dyneins, respectively [40].
Because axons and dendrites in 7-day-old cultures of pri-
mary neurons are totally intertwined, we were unable to
distinguish between axonal/dendritic or anterograde/ret-
rograde transport. Therefore, and also because other
groups have reported that mitochondrial velocity and the
rate of anterograde and retrograde transport are highly

http://www.biomedcentral.com/1471-2202/9/73

similar in axons and dendrites of hippocampal neurons
[42,43], we decided not to discriminate between CK-B
effects further. At this point, we thus consider it unlikely -
but can also not fully exclude - that CK-B deficiency
affects the ratio of anterograde/retrograde transport of
mitochondria.

We hypothesized that CK-B deficiency would bring about
an altered capacity to distribute intracellular ATP, and cre-
ate abnormal inhomogeneity in local ATP. Because neu-
rons rearrange their mitochondria according to local ATP
needs [9,40], altered local ATP distribution may deter-
mine altered mitochondrial motility. The fact that no dif-
ferences in either mitochondrial or YFP-APP velocities in
combined anterograde/retrograde transport were found is
therefore an interesting finding in its own right. Possibly,
flexibility in the energetic network, with higher ~P flux
through adenylate kinase (AK) or glycolytic enzymes
helps to compensate the loss of CK-B [44-46], or - alter-
natively - mitochondria produce are still able to produce
enough ATP to sustain their own transport.

Indeed, our findings suggest that initiation or abrogation
of transport may be steps in the process that are more cru-
cially dependent on cell energy state. Quantification of
the fraction of mobile mitochondria revealed that CK-B
deficient neurons contain on average 36% more mito-
chondria in the motile fraction. The metabolic factors that
modulate and mobilize mitochondrial motility are largely
unknown. Local ATP depletion, or locally elevated H* and
ADP levels caused by CK absence, could serve as a direct
or indirect signal to attract mitochondria, or arrest nearby
motor activity, arresting mitochondria while passing the
"fuel-arid" area [40,47-49]. A combination of mechanistic
events is also possible. In addition, secondary effects like
inadequate Ca2+* handling, due to CK-B deficiency [20,50],
could act in signalling pathways for mitochondrial motil-
ity and/or docking [51]. For neurons, it has been found
that local neuronal growth factor (NGF) application trig-
gers mitochondrial recruitment through PI3K. Moreover,
an intact F-actin cytoskeleton is required [52,53], which is
organized by the action of formins and RhoA [54]. Inter-
estingly, we recently found that CK-B increases the F-actin
content in phagosomes [55]. Although the underlying
molecular mechanisms of this effect on F-actin are yet
unclear, it is tempting to speculate that CK-B deficiency in
neurons could induce less efficient actin accumulation at
sites of mitochondrial arrest. Indeed, a prominent role for
actin-state in mitochondrial movement has been pro-
posed [56]. Future research might help to discriminate
between these different putative mechanisms.

Conclusion
We conclude that different types of axonal and dendritic
transport in neurons do not directly require ATP gener-
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ated by CK-B. However, CK-B mediated phosphotransfer
is functionally interconnected to events that determine
the transport-initiation or -docking efficiency of mito-
chondria in neurons.

Methods

Isolation and culture of primary neurons

The generation of CK-B knockout mice and the study of
genotype-phenotype relationships of these animals in
comparison to wildtype controls has been described in
detail elsewhere (also [17,57]). Primary cultures of mouse
hippocampal neurons were established using a modified
protocol [58]. In short, brains were isolated from CK-B(-/
-) [17] fetuses (E16.5) or fetuses of mixed background
(C57BL/6 x 1290la). Meninges were removed and hip-
pocampi were separated from the hemispheres. Hippoc-
ampi were incubated for 20 minutes at 37°C in Hanks'
Balanced Saline Solution (HBSS, Gibco) containing
0.05% trypsin, 1 mM EDTA and 20 mM HEPES (pH 7.35)
and subsequently dissociated by pipetting and seeded
onto 24 mm coverslips. Cells were allowed to attach for
3-4 hours in Neurobasal medium (Gibco), after which
they were placed inverted on a layer of primary astrocytes
(also see [58]). The co-culture was maintained in Neuro-
basal medium containing 1x B27 supplement (Gibco),
0.5 mM glutamine and 0.05 mg/ml gentamycin (=
NBM+).

Creatine kinase activity (zymogram)

Cultured primary neurons (5 days in vitro) were lysed in
buffer containing 12.6 mM Na,HPO,, 2.8 mM KH,PO,,
0.05% Triton-x-100 and 0.3 mM DTT. Zymogram analysis
was performed as described [20] and, zymograms were
subsequently developed using the colorimetric detection
kit from Sigma Diagnostics (procedure number 715-EP).

Indirect immunofluorescence

Neurons (3-7 days in vitro) grown on glass coverslips were
fixed with 2% paraformaldehyde in PHEM buffer (25 mM
HEPES, 10 mM EGTA, 60 mM PIPES, 2 mM MgCl,, pH
6.9), permeabilized with 0.1% Triton X-100 and incu-
bated 20 min in PBS containing 4% bovine serum albu-
mine (BSA). CK-B was detected by subsequent incubation
of monoclonal 21E10 (1:2000) [30] and goat-anti-mouse
IgG conjugated to Alexa Fluor 488 (Molecular Probes).
Images were taken with a Biorad MRC1024 confocal
microscope using an oil immersion 60x objective.

Transfection and rhodamine 123 labeling of neurons

Neurons (7 days in vitro) grown in glass bottomed 35 mm
Willco dishes (GWSt-3522) were transfected using
Nupherin-neuron (Biomol) transfection reagent in com-
bination with Lipofectamine (Invitrogen). Per dish 0.5 pg
pcDNA3-APP-YFP (kind gift from Carlos Dotti [32]) and
2.5 ul Nupherin were premixed in phenol red free Neuro-

http://www.biomedcentral.com/1471-2202/9/73

basal medium and incubated for 10 minutes. An equal
volume of phenol red free NBM with 1 pul Lipofectamine
was added and after 30 minutes this mix was added to the
neurons. After 2 hours the medium was replaced by
NBM+ medium and neurons were cultured for 24 hours
prior imaging. For tracking mitochondria cells were
loaded with rhodamine 123 (10 pM) for 1 minute in
NBM+ w/o phenol red.

Live imaging and image analysis

Cells cultured on Willco dishes were imaged on an
inverted microscope (Axiovert 200 M; Zeiss, Jena, Ger-
many) equipped with a temperature controlled CO, incu-
bator (type S) and sample stage, and using a
PlanApochromatic 63 x 1.4 oil immersion Plan NeoFluar
DIC lens (Carl Zeiss GmbH, Jena, Germany). Rhodamine
123 was excited using a monochromator (Polychrome IV;
TILL Photonics, Grifelfing, Germany) set at 488 nm.
Images were recorded with the appropriate filter set
(Omega Optical, Brattleboro, VT, USA) on a CoolSNAP
HQ monochrome charge-coupled device (CCD) camera
(Roper Scientific, Vianen, The Netherlands). All hardware
was controlled with Metafluor 6 software (Molecular
Devices Corp., Downingtown, PA, USA).

For particle (i.e. APP-cargo vesicles or mitochondria) trac-
ing, sequential images were taken every 2 seconds to
obtain image stacks of 100 images each. Particles were
tracked using Metamorph 6 software (Molecular Devices
Corp., Downingtown, PA, USA) software by marking
them manually in subsequent frames (only particles that
moved at least in 3 subsequent frames were tracked). The
velocity per particle-vesicle was calculated by dividing the
travelled distance by time. Additionally, for each moving
particle the maximal velocity (during two subsequent
frames) was determined. The number of analysed parti-
cles is mentioned in the text or legends.

To estimate the percentage moving mitochondria the
same dataset as mentioned above was analyzed with
ImageJ software version 1.34s (U. S. National Institutes of
Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/
ij/). The original image stacks were converted to binary
stacks by manually applying a threshold, according to the
quality of each individual stack. The total number of
mitochondria in the stack was counted using the particle
count function (5 < mitochondria <50 pixels). To distin-
guish between moving and stationary mitochondria,
every frame "n" was compared to an earlier frame "n-3"
("stackdifference" option from the Image] kymograph
plugin, EMBL, Heidelberg, Germany). The resulting stack
of images contains motile mitochondria, which were
counted. Numbers obtained were divided by two to com-
pensate for double counting of both "old and new" mito-
chondrial positions in "difference-stack" images. Finally,
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percentages of motile mitochondria in the stacks were cal-
culated. For more information see Additional file 1.
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