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Abstract
Background: Amyloid precursor protein (APP) is enzymatically cleaved by γ-secretase to form
two peptide products, either Aβ40 or the more neurotoxic Aβ42. The Aβ42/40 ratio is increased
in many cases of familial Alzheimer's disease (FAD). The transmembrane domain (TM) of APP
contains the known dimerization motif GXXXA. We have investigated the dimerization of both
wild type and FAD mutant APP transmembrane domains.

Results: Using synthetic peptides derived from the APP-TM domain, we show that this segment
is capable of forming stable transmembrane dimers. A model of a dimeric APP-TM domain reveals
a putative dimerization interface, and interestingly, majority of FAD mutations in APP are localized
to this interface region. We find that FAD-APP mutations destabilize the APP-TM dimer and
increase the population of APP peptide monomers.

Conclusion: The dissociation constants are correlated to both the Aβ42/Aβ40 ratio and the mean
age of disease onset in AD patients. We also show that these TM-peptides reduce Aβ production
and Aβ42/Aβ40 ratios when added to HEK293 cells overexpressing the Swedish FAD mutation and
γ-secretase components, potentially revealing a new class of γ-secretase inhibitors.

Background
Currently, almost 4.5 million individuals in the United
States have Alzheimer's disease (AD) and this number is
expected to increase to approximately 16 million by 2050
[1]. Among these millions, 5–10% are a heritable form of
the disease called familial AD (FAD). A subset of FAD is
caused by mutations in the gene encoding for amyloid

precursor protein (APP). APP degradation results in the
formation of senile plaques, which are dense extracellular
deposits localized to the limbic and association cortices
and composed mainly of two amyloid peptides (Aβ40
and Aβ42) that are produced through proteolytic process-
ing by β and γ secretases [2]. First β-secretase cleaves the
APP extracellular juxtamembrane domain, and then γ-
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secretase cleaves the APP transmembrane domain (TM)
either after Val711 or after Ala713 producing Aβ40 and
Aβ42, respectively. In normal individuals APP processing
leads to low Aβ42/40 ratios, while individuals with FAD
mutations in the APP-TM domain have an increased
Aβ42/40 ratio and therefore an increased proportion of
the more neurotoxic Aβ42 [3].

Several lines of evidence indicate that APP dimerizes in its
native membrane environment. Chemical crosslinking
has indicated that APP can dimerize and use of an obligate
APP dimer (with disulfide-linkage at the TM domains)
shows that dimeric APP is efficiently cleaved by γ-secretase
[4]. The APP-TM domain contains the motif GXXXG/A
that is known to mediate dimerization of transmembrane
helices in oligomeric membrane proteins [5]. Given that
more than half of the mutations in APP that cause FAD are
localized to the TM domain [2], we hypothesized that
these mutations are capable of perturbing the dimeriza-
tion and this leads to the increased Aβ42/40 ratio seen in
FAD.

To test this hypothesis, we have examined synthetic pep-
tides corresponding to TM segments of APP (APP-TM pep-
tides) in detergent micelles and phospholipid bilayers.
We have found that this domain is capable of dimeriza-
tion, and FAD mutations within the APP-TM domain
affect the dimerization propensity. We find that the
dimerization equilibrium constants of the APP-TM vari-
ants measured in vitro are correlated to two well known
clinical pathological features of AD patients. The con-
stants are correlated to the average age of onset of AD
symptoms and to the Aβ42/Aβ40 ratios observed in FAD.
We demonstrate that the addition of our synthetic APP-
TM peptides to cell culture models reduces the production
of both Aβ40 and Aβ42. We propose that APP-TM muta-
tions increase monomerization, which leads to the
increased Aβ42/40 ratios seen in FAD cell culture models.

Results
Characterization of secondary structure and 
oligomerization state of APP-TM peptides
We examined the secondary structure and oligomeriza-
tion states of wild-type APP-TM peptides and the follow-
ing FAD mutant derivatives: T714I, V717G, and V717F
APP-TM peptides. All APP-TM peptides were capable of
inserting into SDS micelles and adopted similar highly α-
helical structures (Fig. 1A). SDS-PAGE analysis showed
that wild-type APP-TM peptides formed stable dimers,
while the V717G peptides populated both monomer and
dimer states under the same conditions (Fig. 1B). T714I
and V717F APP-TM peptides were predominantly mono-
meric under these conditions (data not shown).

To determine whether the APP-TM peptides show similar
behavior in phospholipid bilayers as they do in SDS
micelles, we examined APP-TM peptides incorporated
into dioleoyl phosphatidylglycerol (DOPG) vesicles using
fluorescence resonance energy transfer (FRET) analysis.
The compositions of these samples were as follows: (a)
vesicles containing donor-labeled and unlabeled peptide
mixtures, (b) vesicles containing acceptor-labeled and
unlabeled peptide mixtures, and (c) vesicles containing
equimolar mixtures of donor- and acceptor-labeled pep-
tides. The fluorescence emission spectra of these peptide
preparations are shown in Figure 2. In the preparation
containing both donor and acceptor, the emission of the
Trp fluorophore is significantly quenched compared to
the emission of vesicles with only Trp-labeled peptide.
The EDANS emission, on the other hand, is significantly
enhanced in the mixed fluorophore preparation relative
to the emission with acceptor only. Certain unavoidable
factors, such as differential incorporation of peptides in
vesicles, trapping of peptides within vesicle lumens, and
asymmetric distribution of parallel and antiparallel orien-
tations of peptides in the bilayer, can affect the fluores-
cence emission of the donor and acceptor. However, the
observed donor quenching and acceptor sensitization are
hallmark signatures of FRET and indicate that the peptides
incorporated in DOPG vesicles are oligomeric in struc-
ture. A quantitative measure of the extent of FRET was
obtained by measuring the ratio of acceptor fluorescence
to donor fluorescence (i.e. A/D ratio; see Materials and
Methods). To confirm that the observed spectral changes
are caused by FRET, the A/D ratio was measured in the
presence of increasing amounts of unlabeled peptide. The
addition of excess unlabeled peptide caused a continuous
decrease in the A/D ratio (Fig. 2 inset). This reduction in
FRET suggests that the unlabeled peptides were forming
mixed oligomers with the labeled peptides and preventing
association between donor and acceptor fluorophores.
The similarity of the FRET results obtained with DOPG
vesicles and those obtained with SDS micelles (see below)
suggests that the APP-TM peptides associate into similar
structures in both systems.

Model of the predicted structure of the APP-TM dimer
We predicted a model for the APP-TM dimer structure
using a previously described method that has proven to be
remarkably accurate for modeling homo-oligomeric TM
domains [6]. The predicted structure displays many simi-
larities with the NMR structure of glycophorin A (GpA)
[7] (Fig. 3). The GpA-TM dimer packing interface utilizes
the sequence G79VXXGV84, while APP-TM dimer packing
utilizes G709VXXAT714. Sequence alignment of APP-TM
and GpA-TM (Fig. 3) shows that residues at the dimer
interface are comparable in both sequences. A notable fea-
ture of the APP-TM model is that majority of the FAD
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mutations in the APP-TM domain are located within the
predicted dimer interface (Table 1).

Dimer stability of wild-type and FAD mutant derivatives of 
APP-TM peptides
FRET analysis of wild-type APP-TM peptide and FAD
mutant derivatives also produces the signature hallmarks
of FRET (i.e. donor quenching and acceptor sensitiza-
tion). This indicates that wild-type and mutant peptides
oligomerize in both SDS detergent micelles (data not
shown) and phosphatidylglycerol bilayers (Fig. 2). SDS-
PAGE showed that V717G populated both monomer and
dimer states under conditions where wild-type formed
stable dimers (Fig. 1B), suggesting that the FAD mutations
reduce the stability of APP-TM dimers.

To quantify whether other FAD mutations reduce the sta-
bility of APP-TM dimers, the apparent dimer dissociation
constants of all of the peptides were obtained through
analysis of the concentration-dependence of FRET (Fig.

4). All mutations tested caused an increase in the apparent
dissociation constants from 10.3 μM (wild-type) to 20.4
μM (V717G), 125 μM (V717F) and 395 μM (T714I) (aver-
age error 3.6%). Interestingly, T714I, which causes the
largest increase in Aβ42/40 ratio in FAD [8] is the least sta-
ble dimer.

Mixed oligomerization of wild-type and FAD mutant APP-
TM peptides
With the autosomal dominant inheritance pattern of APP-
FAD [9] both wild-type and mutant APP are expressed in
heterozygotes. Combined with the dimerization propen-
sity of APP, there is a possibility that heterodimerization
of mutant and wild-type APP could contribute to FAD. To
determine whether the APP-TM domain may mediate the
formation of hetero-oligomers, we employed FRET exper-
iments using mixed preparations of wild-type and mutant
APP-TM peptides. The FRET signal (i.e. the A/D ratio)
between the Trp fluorophore on wild-type APP-TM and
the EDANS fluorophore on V717G APP-TM peptides was

APP-TM peptides adopt α-helical dimeric structure in SDS micellesFigure 1
APP-TM peptides adopt α-helical dimeric structure in SDS micelles. A. Circular dichroism (CD) spectroscopy of 
APP-TM peptides in the presence of 20 mM SDS at pH 7. The CD spectra of wild-type ( ), V717G ( ), V717F (�) and T714I ( ) 
show that all APP-TM peptides form similar highly helical structures in 20 mM SDS. B. Oligomeric state of APP-TM peptides at 
different concentrations as determined by SDS-PAGE. Wild-type APP-TM peptides were predominantly dimeric under all con-
centrations tested, while V717G APP-TM peptides formed monomer-dimer mixtures across the same concentration range.

2510125101

wt V717G

μM

Dimer
Monomer

-8 104

-4 104

0

4 104

8 104

200 210 220 230 240 250 260

M
ea

n 
Re

sid
ue

 E
llip

tic
ity

(d
eg

 c
m

2 /d
m

ol
)

Wavlength (nm)

A

B

3.0
6.0

14.4
21.5
kDa
Page 3 of 11
(page number not for citation purposes)



BMC Neuroscience 2008, 9:17 http://www.biomedcentral.com/1471-2202/9/17
measured in a series of samples. These samples contained
increasing amounts of wild-type and mutant peptide but
a constant 1:1 ratio of wild-type to mutant peptide was
maintained (Fig. 5). The results show that the A/D ratio
increases with total peptide concentration and shows
signs of saturation above 50 μM total peptide concentra-
tion. While it is not possible to extract the apparent equi-
librium constant for hetero-oligomerization from this
data, the similarities in the shapes of the FRET curves for
self-association (Fig. 4) and mixed-association (Fig. 5)
suggest that both processes are energetically similar. To
determine whether the wild type peptide can form mixed
oligomers with the other FAD mutant peptides, the A/D
ratio of APP-TM homodimers were compared with the A/
D ratio of equimolar mixtures of wild-type and mutant
peptides at 50 μM total peptide concentration (Fig. 5
inset). The A/D ratios of the mixed peptide samples are
significantly higher than 0.24, which is the baseline A/D
ratio for non-interacting peptides, indicating that wild-
type APP-TM can hetero-oligomerize with all mutant APP-
TM peptides tested. The A/D ratios of the homodimeric
samples differ from those of the mixed peptide samples.
These differences may be the result of altered orientation
of the fluorophores in the mixed samples leading to
changes in the dipole moment orientation factor and
FRET efficiency.

Comparison of dissociation constants to clinical pathology 
of AD patients
The dissociation constants of the APP-TM variants were
compared to the Aβ42/Aβ40 ratio and the mean age of
onset for the different mutations (Fig. 6). Mean age of
onset for the different mutations was calculated using all
available families [2]. Aβ42/Aβ40 ratios were obtained
from published studies using familial Alzheimer's disease
brain or cell cultures [10-12]. The dissociation constants
exhibited a direct correlation to the critical Aβ42/Aβ40
ratio (R = 0.993); the mutation-induced increases in the
dissociation constants were mirrored by increases in the
Aβ42/Aβ40 ratio in these FAD cases. Strikingly, the APP-
TM association constant were also directly correlated to
the mean age of onset of AD (R = 0.993), that is, the

Table 1: Location of FAD mutations within the APP-TM sequence

APP (709–717) 709 710 711 712 713 714 715 716 717

Wild-type sequence G V v i A T v i V
FAD mutations in the APP-TM domain T I m v F

A a t G
I
L

The segment of the APP-TM domain comprising residues 709 to 717 is shown. Residue positions that are capitalized and bolded represent positions 
predicted to form the dimer interface. Note that the majority of FAD mutations in the APP-TM domain occur in dimer interface positions. APP 
mutation references [8, 16-22].

APP-TM peptides oligomerize within phospolipid bilayersFigure 2
APP-TM peptides oligomerize within phospolipid 
bilayers. Different forms of fluorescent donor (Trp) and 
acceptor (Edans) labeled APP-TM peptides were incorpo-
rated in DOPG phospholipid vesicles. Purified peptide-incor-
porated vesicle fractions were subjected to fluorescence 
measurements. Typical donor quenching and acceptor sensi-
tization was observed and is indicative of FRET. The fluores-
cence spectra of donor-labeled APP-TM wild-type peptide 
(�), acceptor-labeled APP-TM wild-type peptide ( ), and a 
mixed sample ( ) are shown. Note: arrows show donor 
quenching and acceptor sensitization and indicate that the 
peptides oligomerize in phospholipid bilayers. Inset: FRET 
decreases with increasing concentration of unlabeled 
peptide in phospholipids bilayers. Equimolar mixtures of 
donor- and acceptor-labeled APP-TM peptides were mixed 
with increasing concentrations of unlabeled peptide. Total 
peptide concentration was held constant at 100 μM. The 
unlabeled peptides act as competitors and reduce the likeli-
hood of forming dimers containing both donor- and accep-
tor-labeled peptides, which results in a decrease in FRET and 
A/D ratio.

0.6

0.7

0.8

0.9

1

0 75 90

A
/D

 R
at

io

[Unlabeled APP-TM] (μM)

0

5 105

1 106

1.5 106

2 106

2.5 106

3 106

300 350 400 450 500 550

R
el

at
iv

e 
Fl

uo
re

sc
en

ce

Wavelength (nm)
Page 4 of 11
(page number not for citation purposes)



BMC Neuroscience 2008, 9:17 http://www.biomedcentral.com/1471-2202/9/17
weaker the association constant, the earlier the age of
onset of AD symptoms.

Inhibition of Aβ production by APP-TM peptides in 
HEK293 cells overexpressing APP and γ-secretase 
components
We examined whether the addition of APP-TM peptides to
cells expressing APP interferes with the production of
Aβ40 and Aβ42. As it has been shown that cationic pep-
tides, such as those derived from the HIV-TAT protein, can
be taken up spontaneously by cells [13,14], we reasoned
that the cationic APP-TM peptides may also be taken up
by similar mechanisms. Once inside the cell, these pep-
tides, which have identical TM sequences to endogenous
APP, could potentially interfere with the γ-secretase activ-
ity via a competitive inhibitor mechanism and alter pro-
duction of Aβ42 and Aβ40. HEK293 cells overexpressing
APP and γ-secretase components were incubated with
APP-TM peptides and the conditioned media was assayed
for Aβ42 and Aβ40 levels using a commercial assay (Bio-
Source). The APP-TM peptides, which share sequence
identity with Aβ42 and Aβ40, do not interfere in this assay

(see Materials and Methods). Only wild-type and V717G
peptides could be examined in this experiment because
the other mutant peptides, V717F and V714I, were only
soluble in the presence of SDS, which is toxic to cells.

The addition of wild-type and V717G peptides to the
HEK293 cells resulted in a drastic reduction in the levels
of Aβ relative to control samples and displayed a strong
concentration dependence (Fig. 7A,B). The ability of the
V717G peptide to suppress Aβ production was greater
than that of the wild-type peptide. Both peptides had a
greater inhibitory effect on Aβ42 production (Fig. 7B)
than on Aβ40 production (Fig. 7A). Because of their
greater inhibitory effect on Aβ42 production, both pep-
tides caused a reduction in the Aβ42/40 ratio relative to
control samples (Fig. 7C), which were comparable to in
vivo Aβ42/Aβ40 ratios [15]. Importantly, the reduction in
Aβ production is not caused by any cytotoxic activity of
the peptides. Examination of the effect of APP-TM pep-
tides on the viability of these HEK293 cells demonstrated
that they do not reduce cell viability (Fig. 8). Analysis of
the cell extracts revealed an accumulation of the α- and β-

Model of Alzheimer precursor protein transmembrane (APP-TM) dimerFigure 3
Model of Alzheimer precursor protein transmembrane (APP-TM) dimer. The solid state NMR structure of the glyc-
ophorin A (GpA-TM) dimer, residues 75–87 (left), and the predicted APP-TM dimer, residue 705–717 (right) are compared. 
GpA-TM dimer contains the central G79VXXGV84 residues as the packing contacts, whereas APP-TM dimer packing utilizes 
G709VXXAT714 residues. Sequence alignment of APP-TM and GpA-TM (bottom) shows that residues comprising the packing 
interface are comparable in both sequences and denoted by capital letters. Exposed residues are shown as lowercase letters.

Dimer Interface

Exposed Aβ40
Cleavage Site

Buried Aβ42
Cleavage Site
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stub fragments of APP, which are γ-secretase substrates.
Accumulation of γ-secretase substrates is evidence of γ-
secretase inhibition (Fig. 9). While the mechanism by
which these peptides reduce Aβ production requires fur-
ther investigation, their action may be caused by interac-
tions between the γ-secretase complex and monomeric/
dimeric forms of the APP-TM peptide or heterodimeric
complexes of the peptides with endogenous APP (see
below).

Discussion
Our studies indicate that APP dimerization propensity,
measured in vitro, is correlated with two previously identi-
fied in vivo pathological features of FAD: the Aβ42/40
ratio and the age of onset of AD symptoms. While our bio-
physical studies indicate that APP-TM peptides form dim-
ers that are sensitive to APP-FAD mutations, validation of
the predicted structure will require high-resolution tech-
niques, such as NMR spectroscopy. However, when the
locations of FAD mutations in the TM domain of APP are
mapped onto our predicted structure of the APP-TM an
intriguing feature arises. Out of the 11 known FAD muta-
tions in the APP-TM domain, 7 occur within the predicted
dimer interface and the remaining 4 are adjacent to the
interface (Table 1) [8,16-22]. These mutations are ideally
located to disrupt APP dimerization. Our experiments on
FAD mutant derivatives indicate that such mutations can
in fact result in loss of APP-TM dimerization (Fig. 4). The
dissociation constants of our APP-TM peptides may differ
from full-length APP; however, what is important is the
relative difference between the wild type dissociation con-

stant and that of the FAD APP-TM variant. Previoulsy,
Aβ42/Aβ40 ratios determined using primary culture neu-
rons were compared to the mean age of onset and found
to exhibit a strong inverse correlation [10]. Here we com-
pared our dissociation constants to these two important
clinical features of AD. Interestingly, our in vitro Kd meas-
urements are directly correlated to the Aβ42/Aβ40 ratios
and the in vitro Ka measurements are equally correlated to
the mean age of disease onset. These correlations suggest
that the relative production of Aβ42 increases as the equi-
librium between dimeric and monomeric APP shifts
toward monomer. The exact mechanism responsible for
causing the shift in Aβ42/Aβ40 ratios between wild-type
and FAD mutants is currently unclear. It is likely, however,
that the preferential cleavage at either the Aβ40 or Aβ42
sites is related to the process by which the γ-secretase com-
plex recognizes monomeric versus dimeric APP.

There is evidence that APP dimers are physiologically rel-
evant as it has previously been shown that APP dimers
exist in vivo and that these dimers are substrates for β- and
γ-secretase. Scheuermann et al [4] have provided direct
biochemical evidence for the presence of APP dimers in
cellular environments using chemical cross-linking exper-
iments on full-length and deletion mutants of APP. They
identified two extracellular domains in APP that mediate
dimerization. A third dimerization domain was detected
and its location was determined to be between the start of
the TM domain and the end of APP at the C-terminus. It

Hetero-oligomerization of wild-type and mutant APP-TM peptides monitored by FRETFigure 5
Hetero-oligomerization of wild-type and mutant 
APP-TM peptides monitored by FRET. Trp-labeled 
wild-type APP-TM peptides were incubated with equimolar 
amounts of Edans-labeled V717G APP-TM peptides in the 
presence of 20 mM SDS. The A/D ratio is plotted as a func-
tion of total peptide concentration. Inset: The solid bars rep-
resent the A/D ratio of APP-TM homodimers at 50 μM total 
peptide concentration. The open bars represent the A/D 
ratio of wild-type and mutant heterodimers at 50 μM total 
peptide concentration. The gray line indicates the A/D ratio 
for a mixture of monomeric peptides.
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is likely that the APP-TM domain studied here represents
the precise location of this third dimerization domain.
The X-ray crystal structure of the extracellular E2 domain
of APP [23] demonstrates that it is dimeric and likely cor-
responds to the first extracellular dimerization domain
detected by Scheuermann et al [4]. Scheuermann et al.
also developed a site-directed obligate dimer of APP
where engineered Cys residues placed at the N-terminal of
the TM domain tether together two monomers with a
disulfide bond. When expressed in cells, this obligate APP
dimer is efficiently cleaved by β- and γ-secretases to form
Aβ. There is, therefore, significant biochemical data that
indicates that APP dimers exist in vivo and are substrates
for β- and γ-secretases.

Dimerization appears to be a common theme among sev-
eral membrane proteins involved in Aβ metabolism and
AD. Both BACE [24], the membrane-bound protease
responsible for β-site cleavage of APP, and presenilin 1
[25], the catalytic component of γ-secretase, are dimeric in
their native membrane environments. While the dimeric
nature of these proteases does not provide evidence for

APP dimerization, this common theme is nevertheless
noteworthy.

Recently, Marchesi proposed a novel mechanism of Aβ
toxicity that involves homo- and hetero-dimerization of
α-helical membrane segments [26]. Marchesi proposes
that a certain fraction of Aβ molecules generated by β- and
γ-secretases remain inserted in the membrane bilayer in a
helical conformation and can utilize its GXXXG/A motif
to form homodimers or heterodimers with other GXXXG/

Inhibition of Aβ production by APP-TM peptides in cells sta-bly overexpressing APPFigure 7
Inhibition of Aβ production by APP-TM peptides in 
cells stably overexpressing APP. HEK293 cells stably 
expressing Swedish mutant APP and the γ-secretase compo-
nents were incubated overnight with APP-TM peptides. An 
Aβ ELISA immunoassay was used to quantify the concentra-
tion of Aβ40 (A) and Aβ42 (B) produced and secreted into 
the conditioned cell culture media. The effect of the APP-TM 
peptides on Aβ42/40 ratio is shown in C.
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A membrane proteins, such as APP or Aph1. It is specu-
lated that accumulation of homo- and hetero-dimers of
Aβ interferes with biochemical processes that occur in the
membrane including receptor, channel, and secretase
activities. This interference may lead to downstream

events that culminate in eventual neuronal dysfunction.
While Marchesi's proposal and the hypothesis reported
here are fundamentally different, they both invoke the
contribution of homo- and hetero-typic interactions of
membrane proteins in AD pathology. The heterotypic
association of wild-type and mutant APP-TM peptides
that we have observed (Fig. 5) reinforces the idea that such
interactions could occur with other molecules, such as Aβ
and Aph1.

The addition of APP-TM peptides to Aβ-producing
HEK293 cells causes dramatic reductions in Aβ produc-
tion, and intriguingly, the V717G mutant caused signifi-
cantly greater inhibition of Aβ production than the wild-
type peptide (Fig. 7). While elucidation of the mechanism
of inhibition requires further study, several feasible possi-
bilities arise involving the interaction of the peptides with
the γ-secretase complex. The γ-secretase complex can
potentially interact with monomeric or dimeric forms of
the APP-TM peptides or form heteromeric complexes of
peptide with endogenous APP. Both monomeric and
homodimeric forms of the APP-TM peptides could act as
competitive inhibitors of γ-secretase leading to the
observed accumulation of γ-secretase substrates (i.e. α-
and β-stubs) and decrease in γ-secretase products (i.e. Aβ).
Mutational and chemical crosslinking studies are under-
way to test these hypotheses. It should be noted that pep-
tides analogous of the APP-TM domain that are too short
to span the plasma membrane have also been shown to
inhibit γ-secretase activity [27].

Conclusion
We have provided in evidence using a cell culture model
that the extent of APP dimerization can determine the
Aβ42/40 ratio and disruptions of dimerization induced
by at least one FAD mutation in the APP-TM domain
increases the Aβ42/40 ratio. These studies have to be rep-
licated in vivo to substantiate the hypothesis that dimeric
APP causes preferential production of the less neurotoxic
Aβ40. A detailed understanding of the pathological and
physiological processing of APP would be a valuable asset
in the development of novel therapeutic strategies, such as
small molecule stabilizers of the dimeric form of APP,
aimed at controlling Aβ production.

Methods
APP-TM peptide sequences
Wild-type: Lys-tag(W/EEDANS)GAIIGLMVGGVVIATVIV-
ITLVML Lys-tag

V717G: Lys-tag(W/EEDANS)GAIIGLMVGGVVIATVIG-
ITLVML Lys-tag

V717F: Lys-tag(W/EEDANS)GAIIGLMVGGVVIATVIFIT-
LVML Lys-tag

Addition of APP-TM peptides to HEK293 cells affects APP processing and leads to an increase in γ-secretase substratesFigure 9
Addition of APP-TM peptides to HEK293 cells affects 
APP processing and leads to an increase in γ-secre-
tase substrates. HEK293 cells were incubated overnight 
with APP-TM peptides. The cells extracts were separated by 
SDS-PAGE and probed by western blotting with an APP C-
terminal antibody (Sigma). See Blue plus-2 (Invitrogen) 
molecular weight markers were used. Total protein concen-
tration was the same in each lane. There is a noticeable 
increase in the amount of γ-secretase substrates (α- and β-
stubs) relative to untreated cells.
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APP-TM peptides are not toxic to HEK293 cells stably over-expressing APP and γ-secretase componentsFigure 8
APP-TM peptides are not toxic to HEK293 cells sta-
bly overexpressing APP and γ-secretase components. 
HEK293 cells stably expressing Swedish mutant APP and the 
γ-secretase components were incubated overnight with APP-
TM peptides. The SRB cytotoxicity assay was used to deter-
mine whether wild-type (black bars) and V717G (clear bars) 
affected cell survival. Note that neither peptide caused a 
reduction in cell survival.
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T714I: Lys-tag(W/EEDANS)GAIIGLMVGGVVIAIVIG-
ITLVML Lys-tag

The sequences of the APP-TM peptides are shown above,
and the central block of residues given in the one-letter
code correspond to residues 700 to 723 of human APP
and contain the TM segment. All peptides contain N- and
C-terminal oligo-lysine tags, which have been shown pre-
viously to increase aqueous solubility of TM segments
[28]. Two versions of each peptide were synthesized. The
first version contained a Trp residue that followed the N-
terminal Lys-tag; the second version differed from the first
in that a Glu residue with the fluorescent group EDANS
covalently linked to its sidechain (Glu-EDANS; Molecular
Probes) was used instead of the Trp residue. The fluores-
cence of the Trp residue and the EDANS group were used
to follow dimerization of the peptides through fluores-
cence experiments discussed below.

All peptides were prepared by solid-phase synthesis on a
PerSeptive Biosystems 9050 Plus peptide synthesizer as
previously described [29]. The peptides were cleaved with
88% trifluoroacetic acid/5% phenol/5% distilled H2O/
2% tri-isopropylsilane (v/v). Cleaved peptides were pre-
cipitated with ice-cold diethyl ether, dissolved in distilled
H2O and lyophilized. Crude peptide powder was dis-
solved in water and purified by reverse phase C4-HPLC.
Mass spectroscopy was used to confirm the molecular
weight of the purified peptide. The stock peptides solu-
tions were stored in distilled H2O at 4°C.

Structural modeling of APP-TM oligomerization
Detailed modeling procedures for TM helix oligomeriza-
tion are described elsewhere [6,30]. The APP-TM sequence
was built into uniform α-helices with backbone torsion
angles of Φ = -65° and ψ = -40°. Sidechain rotamers were
chosen using the backbone-dependent rotamer library
program SCWRL [31]. The Monte Carlo (MC) search pro-
cedures and parameters for potential helix packing were
described previously [6]. Homo-dimeric APP-TM models
were selected from four hundred independent MC simu-
lations. The selected model structures were clustered by
Cα RMSD using the NMRCLUSTER program [32]. The
median model from the largest cluster was selected as our
final predicted structure.

Fluorescence resonance energy transfer of APP-TM 
peptides in the prescence of phospholipids bilayers and 
SDS micelles
DOPG vesicles with incorporated peptides were prepared
via sonication of dried lipid films in the presence of pep-
tide solution at a molar ratio of 1 mole of peptide: 20
moles of DOPG as previously described [33]. The samples
contained 50 mM Tris, 10 mM NaCl (pH 7.0) as the
buffer. Gel filtration experiments on these samples indi-

cated that the majority of the peptides were incorporated
into the vesicles and absorbance measurements indicated
that similar amounts of donor- and acceptor-labeled pep-
tides were incorporated. Purified peptide-incorporated
vesicle fractions were used for fluorescence measure-
ments.

Mixed peptide-SDS micelles were prepared by the addi-
tion of concentrated SDS to peptide solutions, such that
the final concentrations were 20 mM SDS, 40 mM Tris, 8
mM Acetate (pH 7.0) and 0 – 90 μM peptide. The samples
were sonicated and incubated overnight in the dark at
room temperature before making fluorescence measure-
ments.

Fluorescence measurements were made at room tempera-
ture using a PTI QM-1 fluorescence spectrophotometer. A
quartz cuvette with a 2 mm excitation pathlength and a 1
cm emission pathlength was used. The excitation wave-
length was 285 nm and the bandpass was 4 nm. We
obtained a quantitative measure of the degree of peptide
oligomerization by integrating the EDANS emission sig-
nal from 472–496 nm and dividing this value with the
integrated Trp emission signal from 350–375 nm. This
ratio of acceptor fluorescence to donor fluorescence is
denoted either as Acceptor/Donor ratio or A/D ratio and
can be used to compare peptide oligomerization at vary-
ing concentrations.

SDS-PAGE
Samples contained 20 mM SDS, 40 mM Tris, 8 mM Ace-
tate (pH 7.0), 5% glycerol, and 0 – 25 μM peptide. They
were boiled for 5 minutes and subjected to SDS-PAGE
using precast 4–12% Nupage gels (Invitrogen) and a
standard running buffer. SeeBlue®Plus2 molecular weight
markers from Invitrogen were used as standards.

Circular dichroism (CD) spectroscopy
Circular Dichroism (CD) spectra were recorded on an
Aviv-62DS CD-spectrometer at 25°C. Spectra were
obtained from 260 nm to 198 nm with a 1.0 nm step size,
a 1 nm bandwidth, a 1 mm pathlength and an averaging
time of 8 seconds. The peptide concentration was 80 μM.

Data and statistical analysis
The apparent dissociation constants were determined
using an equation derived from first principles of mono-
mer-dimer equilibrium, where Kd = [A]2/[A2]. The fluores-
cence acceptor-donor ratio was plotted against total
peptide concentration and fit to the following equation:
Page 9 of 11
(page number not for citation purposes)



BMC Neuroscience 2008, 9:17 http://www.biomedcentral.com/1471-2202/9/17
Where AT = total APP-TM peptide concentration, F = A/D
ratio, fraction dimer = (Fobs-Fmin)/Fmax-Fmin), and % dimer
= 100% (fraction dimer). The goodness-of-fit to the
model were assessed using the chi-squared test, nonlinear
least squares correlation, and examination of residuals.

HEK293 cell culture, cytotoxicity and Aβ ELISA
Stably transfected HEK293 cells overexpressing the Swed-
ish double mutant (K670N/M671L) of APP751, preseni-
lin 1, nicastrin, PEN-2 and APH-1 were grown to
confluency in DMEM media containing 10% fetal bovine
serum [34]. The cells were grown for another 48 hours
with the media changed twice at equivalent time intervals.
Cells were then incubated overnight in fresh media con-
taining 0, 20 or 100 μM APP-TM peptides. The media was
collected and subjected to an immunoassay to determine
the Aβ42 and Aβ40 concentrations. The ELISA BioSource
immunoassay human β-amyloid 1–40/1–42 colorimetric
kit (catalogue number KHB3482/KHB3481) was used
and the standard protocol was followed. This sandwich
ELISA technique makes use of an immobilized Aβ anti-
body that binds both Aβ40 and Aβ42 at an N-terminal
epitope. The bound Aβ40 and Aβ42 are then detected
using a C-terminal antibody specific for either Aβ40 or
Aβ42. The APP-TM peptides, which share sequence iden-
tity with both Aβ40 and Aβ42, do not interfere in this
analysis because they lack the N-terminal epitope respon-
sible for capturing Aβ40 and Aβ42 from the media. There-
fore, this assay is ideally suited to detect any disturbances
in the normal processing of endogeneuous full length APP
in the presence of APP-TM peptides.

Sulforhodamine B (SRB) cytotoxicity assay was used to
assess whether the APP-TM peptides possessed any intrin-
sic toxicity. Stably transfected HEK293 cells overexpress-
ing Swedish-mutant APP751 and γ-secretase components
were plated at 15,000 cells/well in DMEM media contain-
ing 10% fetal bovine serum. The cells were grown for
another 48 hours with the media changed twice at equiv-
alent time intervals. Cells were then incubated overnight
in fresh media containing 0, 10, 20, and 100 μM APP-TM
peptides, and the SRB cytotoxicity assay was performed as
previously described [35].
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