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Abstract
Background: Many commonly used chemotherapeutic agents, such as Cisplatin, are restricted in
their potential anti-neoplastic effectiveness by their side effects, with one of the most problematic
being induction of peripheral neuropathy. Although a number of different neurotrophic,
neuroprotective or anti-oxidant treatments have been tried in order to prevent or treat the
neuropathies, to date they have met with limited success. Phenoxodiol is a new chemotherapeutic
agent that has anti-proliferative and apoptotic effects on a range of cancer cells. PC12 cells are a
commonly used neuronal cell model for examination of neurite outgrowth. In this study we
examined whether phenoxodiol could protect against Cisplatin induced neurite inhibition in PC12
cells as an indication of the potential to protect against neuropathy.

Results: Using the PC12 neuronal cell line, concentrations of Cisplatin were chosen that induced
moderate or strong neurite toxicity within 24 hrs but were not cytotoxic. The effect of
Phenoxodiol on Cisplatin induced neurite toxicity was assessed by measurement of neurite
outgrowth. Addition of phenoxodiol at 100 nM or 1 µM showed no cytotoxicity and blocked the
Cisplatin induced neurite toxicity, while phenoxodiol at 10 µM was cytotoxic and enhanced neurite
toxicity of Cisplatin. When Cisplatin was added for 24 hrs, then washed out and the cells allowed
to recover for 48 hrs, neurite outgrowth was not restored and addition of phenoxodiol did not
further promote recovery or restore the Cisplatin treated cells.

Conclusion: In addition to its potential as a chemotherapeutic agent Phenoxodiol may thus also
have the potential to be used in conjunction with Cisplatin chemotherapy to prevent induction of
neuropathy.

Background
Many common chemotherapeutic drugs are limited in
their effectiveness due to side effects such as peripheral
neuropathy. This is particularly problematic for use of
otherwise highly effective anti-neoplastic agents, such as
platinum analogues or taxane family members, as the
effects are often dose or treatment regime limiting. The
neurotoxic effects can be severe and significantly affect

quality of life, even long after the treatment has ceased [1].
Even though there is often some regeneration, this is slow
and in many instances the reversal of the neuropathy is
incomplete and can affect quality of life and normal func-
tion for many years.

The platinum analogue Cisplatin (Cis-diamine-dichloro-
platinum) has been used chemotherapeutically for nearly
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40 years and is one of the most widely used cytotoxic
drugs [1]. Cisplatin is directly taken up by sensory nerves.
Although Cisplatin produces its anti-neoplastic effects by
binding directly to DNA, resulting in cross-linking and
production of apoptosis in rapidly dividing cells [2], as
neurons are post-mitotic, the mechanism by which it
induces neuropathy is not clear. While it does appear to
induce apoptosis in sensory neurons [3], early stages
involve axonal loss but not necessarily cell loss and has
been proposed to involve a disturbance of cytoplasmic/
axonal transport [1].

Many compounds have been tested to try to block or
reverse these chemotherapy induced neuropathies, with
variable success. These include neurotrophic or neuropro-
tective factors, such as nerve growth factor (NGF) [4,5],
insulin-like growth factor-1 (IGF1) [6], erythropoietin
[7,8] and leukaemia inhibitory factor (LIF) [9], all of
which showed some limited improvement in a variety of
models. Their clinical use is however limited due to diffi-
culties in drug administration, stability, deleterious side
effects or ineffectiveness in human clinical trials [10].
Antioxidants such as glutathione [11] and Vitamin E [12]
and neuroprotective compounds such as acetyl-L-carni-
tine [13,14] have also shown some effectiveness in pro-
tecting against chemotherapy induced neuropathy in
preliminary studies. However, to date, there is no com-
pound that will reliably prevent or reverse such neuropa-
thies.

Phenoxodiol (PXD; 2H-1-benzopyran-7-0,1,3-[4-hydrox-
yphenyl]) is an isoflavone analogue derived from genis-
tein, which shows greater bio-availability and increased
potency than its parent compound. It is showing promise
as an experimental chemotherapeutic drug [15,16] and is
currently undergoing phase II clinical trials for the treat-
ment of a variety of hormone-resistant cancers. It induces
apoptosis in a variety of cancer cell lines [15-17] by mod-
ulation of a number of apoptotic pathways including acti-
vation of caspase 2 and Bid signalling and inhibition of
phosphorylation and degradation of the anti-apoptotic
protein XIAP [17,18]. It also shows anti-angiogenic prop-
erties [16] and anti-proliferative properties by inducing
G1 arrest by loss of cyclin dependent kinase 2 activity and
induction of p21 Waf1/Cip1 [19]. While it shows cytotox-
icity by itself, it also sensitises cancer cells to chemothera-
peutic agents such as Paclitaxel [18], allowing
chemotherapy resistant tumours to become responsive.
PXD thus has a range of biological effects and more are
likely when examined in different cells and in different
contexts.

In the current study the potential for PXD to protect
against Cisplatin induced neuropathy was assessed. Using
an in vitro model, PXD at sub-toxic concentrations was

shown to be effective at blocking Cisplatin induced neur-
ite toxicity in the neuronal PC12 cell line. This suggests
that in addition to its antineoplastic properties, PXD has
the potential to protect against Cisplatin induced neurop-
athy.

Methods
PC12 cell culture
PC-12 cells were maintained in Dulbecco's Modified
Eagle Media (DMEM; Gibco) with 10% calf serum (Turbo
calf serum, Invitrogen), 5% horse serum (JRH Biosciences,
Victoria, Australia) and 1% penicillin/streptomycin (Inv-
itrogen) at 37°C, in a 5% CO2 atmosphere. Differentia-
tion into neurons was achieved by seeding cells at a
density of 15,000 cells/well in 24-well plates (Falcon Bec-
ton Dickinson), on 13 mm glass cover slips (Menzel Gla-
ser, Germany) coated with laminin (Invitrogen) and poly-
DL-ornithine (Sigma) in DMEM plus 1% horse serum and
50 ng/mL of nerve growth factor (NGF) (Sigma). The cells
were incubated for 72 hours under differentiation condi-
tions, as previously described [20] before use in the neur-
ite outgrowth assays below.

Cisplatin and PXD Treatments
Cisplatin (Sigma) and PXD were provided by Novogen.
They were dissolved in DMSO and stocks maintained at -
20°C. Working concentrations were diluted in PC12 cell
differentiation medium as above. Control conditions con-
tained DMSO diluted as for the drug conditions.

Combination treatments consisted of a 24 hour incuba-
tion in differentiation media with various combinations
of strong or moderate doses of Cisplatin (20 µg/ml/66.65
µM and 1 µg/ml/3.33 µM) and three doses of PXD (100
nM, 1 µM, 10 µM) as described in the results section.
Recovery treatments consisted of treating differentiated
cells with either dose of Cisplatin for 24 hours. After this
period, the cells were allowed to recover for 24 hours in
fresh differentiation media. Finally, three concentrations
of PXD were added (10 nM, 100 nM, 1 µM) for a further
24 hours to assess whether PXD could rescue the neurites
from the Cisplatin induced damage.

Immunocytochemistry
Following the treatment period, cells were washed with
PBS, fixed with 4% paraformaldehyde and permeabilised
with ice-cold methanol. Neurons were immunostained
for the neuronal marker βIII-tubulin (Promega; Madison,
Wisconson, USA) and a Cy3-conjugated anti-mouse anti-
body (Invitrogen) was used to visualise the staining.

Neurite counting
Outgrowing projections were considered neurites if they
were greater than a cell body width (10 µm), essentially as
previously described [21]. Images of all neurons in thirty
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randomly selected fields were digitally captured using an
Olympus BX60 fluorescence microscope with a UPlanFl
40x/0.75 objective lens and a Zeiss Axiocam HRc digital
camera and Zeiss Axiovision 3.1 software. Neurons in all
fields were counted per condition and the number of cells
with neurites expressed as a percentage of total cells
present and error expressed as the standard error of the
mean (sem). Each experiment was conducted in triplicate
and the results pooled. Statistical significance of data was
analysed using ANOVA followed by the Bonferroni post-
hoc test.

Further analysis was conducted on the combination treat-
ments, where the longest neurite per neuron present in
each frame was measured using Image J open source soft-
ware (NIH, USA).

Results
Determination of drug doses
Optimal treatment concentrations Cisplatin that caused
neurite damage were determined by treating differenti-
ated PC12 cells for 24 hours with serial dilutions of the
drug. The concentration which caused the greatest reduc-
tion in the percentage of cells with neurites, without kill-
ing the cells, was chosen as a strong dose. A moderate dose
was also selected, where the drug reduced neurite out-
growth by approximately 50% of the strong dose. The
strong dose of Cisplatin was selected as 20 µg/mL (66.65
µM), which reduced the percentage of cells with neurites
by 65.8%, and the moderate dose of 1 µg/mL (3.33 µM)
caused a 31.9% reduction in percentage of cells with neu-
rites (Fig. 1a). The chosen concentrations did not produce
cytotoxicity (data not shown).

A serial dilution was also conducted for PXD to determine
the concentration which would not affect normal growth
of the differentiated cells. In addition to the maximal con-
centration tested that did not affect survival of PC12 cells
(1 µM; 3.2 µg/ml), two other concentrations were selected
for treatments, one log above (10 µM; 32 µg/ml) and one
log below (100 nM; 320 ng/ml). Doses up to 1 µM had no
effect on cell death or neurite outgrowth (Fig. 1b),
although a 10 µM concentration showed considerable
cytotoxicity (data not shown).

Effect of PXD in blocking Cisplatin neurite toxicity
To determine whether PXD could block Cisplatin induced
neurite toxicity, three different concentrations of PXD
were added to cells in combination with Cisplatin at the
concentrations determined above to produce strong or
moderate neurite toxicity. PXD had no effect on percent
neurites at 100 nM or 1 µM but showed significant neurite
toxicity at 10 µM (# P < 0.001 compared to no treatment
control) (Fig. 2a). This neurite toxicity was exacerbated in
combination with Cisplatin, with increased toxicity com-

pared to PXD at 10 µM alone (z P < 0.01 in combination
with Cisplatin 1 µg/ml; ## P < 0.001 in combination with
Cisplatin 20 µg/ml) (Fig. 2b).

Although in the initial dose response experiments Cispla-
tin at 1 µg/ml produced a modest neurite toxicity, this was
not robustly observed when subsequent experiments were

Cisplatin and PXD neurite toxicity dose responseFigure 1
Cisplatin and PXD neurite toxicity dose response. 
The percentage of differentiated PC12 cells with neurites 
was counted after incubation for 24 hrs in increasing concen-
trations of A) Cisplatin (* p < 0.001 compared to control) 
and B) PXD. Cisplatin showed a dose response in inhibition 
of neurite outgrowth and moderate and strong concentra-
tions of each indicated by arrows, were chosen for subse-
quent analyses.
Page 3 of 7
(page number not for citation purposes)



BMC Neuroscience 2007, 8:61 http://www.biomedcentral.com/1471-2202/8/61
performed (the effect was not significant when all data
was analysed using ANOVA with a Bonferroni post-hoc
test, although a direct comparison of control versus Cispl-
atin 1 µg/ml using the t-test was significant; P < 0.02) (Fig.
2b). Consequently, although there appeared to be a slight
protection by PXD, this was not significant by ANOVA,
although comparison of Cisplatin 1 µg/ml with Cisplatin
1 µg/ml+PXD 1 µM was significant by t-test (P < 0.02).
Robust neurite toxicity was observed with Cisplatin at 20
µg/ml, with a 42% decrease in percent neurites compared
to control (*** P < 0.001). PXD blocked this neurite tox-
icity by approximately 50% at 100 nM (* P < 0.01) and 1
µM (** P < 0.001) (Fig. 2b; Fig. 4).

Effect on neurite length
To determine whether there were more subtle effects on
neurite toxicity than could be measured by counting the
percent of cells with neurite as above, the effect of Cispla-
tin and PXD on neurite length was examined. The 10 µM
concentration of PXD resulted in significant reductions in
average neurite length compared to no treatment control,
both alone (Fig. 3a) and in combination with Cisplatin
(Fig. 3b) (# p < 0.001). While Cisplatin decreased the per-
centage of cells that had neurites (Figs. 1, 2), it had no sig-
nificant effect on the average neurite length of the
remaining neurites (Fig. 3b). Interestingly, while PDX
(100 nM and 1 µM) or Cisplatin alone had no effect on
neurite length, the combination of these drugs increased
neurite length compared to Cisplatin alone (* p < 0.001),
reflecting a blocking of Cisplatin neurite toxicity. Overall,
the effect of PXD on blocking Cisplatin effects on neurite
outgrowth reflected the observations for the effects on
percentage of cells with neurites.

Effect of Cisplatin and PXD on neurite lengthFigure 3
Effect of Cisplatin and PXD on neurite length. Differ-
entiated PC12 cells were incubated with Cisplatin alone or in 
combination with PXD for 24 hrs and the neurite length was 
determined by measuring the longest neurite on cells with 
neurites longer than 10 µm. A) PXD alone had no effect on 
neurite length up to a concentration of 1 µM, however 10 
µM PXD decreased neurite length (#p < 0.001). B) Cisplatin 
at 1 µg/ml and at 20 µg/ml did not affect neurite length. PXD 
at 100 nM and 1 µM had little effect on neurite length in the 
presence of Cisplatin, although there was a slight increase in 
neurite length with PXD at 100 nM and 20 µg/ml Cisplatin (* 
p < 0.001). The combination of 10 µM PXD and Cisplatin at 
1 µg/ml or 20 µg/ml was not different to the effect of 10 µM 
PXD alone. Data shows combined results of n = 3 experi-
ments.

Protection from Cisplatin induced neurite toxicity by PXDFigure 2
Protection from Cisplatin induced neurite toxicity by 
PXD. Differentiated PC12 cells were incubated with Cispla-
tin alone or in combination with PXD for 24 hrs and the per-
centage of cells with neurites was determined. A) PXD alone 
had no effect on neurite outgrowth up to a concentration of 
1 µM, however 10 µM PXD showed neurite toxicity (#p < 
0.001). B) Cisplatin (1 µg/ml) showed a non-significant (n.s.) 
trend for moderate toxicity and at 20 µg/ml showed strong 
neurite toxicity (***p < 0.001). PXD blocked the Cisplatin 
induced neurite toxicity at 100 nM (p < 0.01) and 1 µM (p < 
0.001), while the combination of 10 µM PXD and Cisplatin at 
1 µg/ml or 20 µg/ml showed enhanced neurite toxicity com-

pared to 10 µM PXD alone ( p < 0.01 and ##p < 0.001 
respectively, combined results of n = 3 experiments).
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Effect of PXD in enhancing recovery from Cisplatin neurite 
toxicity
Co-administration of PXD with Cisplatin blocked the Cis-
platin-induced neurite toxicity. To determine whether it
could have an effect on recovery from Cisplatin induced
neurite toxicity by exacerbation, reversal, retardation or
facilitation of repair, recovery experiments were per-
formed. When conducting the recovery experiments, the
concentrations of PXD tested were decreased by 1 log to
10 nM, 100 nM and 1 µM so that the highest concentra-
tion was below the toxic level. Differentiated PC12 cells
were incubated with Cisplatin for 24 hrs as above, which

was then washed off and the cells allowed to recover for
24 hrs before PXD was added for a further 24 hrs. Addi-
tion of PXD at 10 nM, 100 nM or 1 µM had no effect on
neurite outgrowth by themselves (Fig. 5a).

After 48 hrs of recovery, Cisplatin showed no neurite tox-
icity at 1 µg/ml but greater than 50% toxicity at 20 µg/ml
(*P < 0.001) compared to the no treatment control, indi-
cating that the cells could not recover from this higher
dose by 48 hrs after drug addition. PXD had no significant
effect on recovery of neurite outgrowth following 20 µg/
ml Cisplatin treatment, although there was a slight
enhancement of neurite outgrowth by PXD (1 µM), fol-
lowing Cisplatin at 1 µg/ml (**P < 0.001) (Fig. 5b). Over-
all, PXD was protective for Cisplatin induced neurite
toxicity at concentrations of 100 nM to 1 µM when co-
administered but not when administered after toxicity
had already occurred.

Discussion
PXD at low doses was able to significantly block neurite
toxicity induced by Cisplatin in the PC12 neuronal cell

Lack of rescue of Cisplatin induced neurite toxicity by PXDFigure 5
Lack of rescue of Cisplatin induced neurite toxicity 
by PXD. Differentiated PC12 cells were incubated with Cis-
platin alone or in combination with PXD for 24 hrs. The cells 
were washed and left for 24 hrs, then PXD at the concentra-
tions indicated was added for a further 24 hrs before the 
percentage of cells with neurites was determined. The con-
centrations of PXD used in these experiments was 1 log 
lower than in the previous experiments. A) PXD alone had 
no effect on percent of cells with neurites. B) Cisplatin at 1 
µg/ml showed no effect but at 20 µg/ml the cells failed to 
recover from the neurite toxicity (*p < 0.001 compared to 
control). PXD did not rescue the cells from the Cisplatin (20 
µg/ml) induced neurite toxicity, although it showed 15% 
enhancement at 1 µM with 1 µg/ml Cisplatin (** p < 0.001). 
Data shows combined results of n = 3 experiments.

Effect of PXD Cisplatin on βIII-tubulin stained PC12 cellsFigure 4
Effect of PXD Cisplatin on βIII-tubulin stained PC12 
cells. Differentiated PC12 cells were incubated with Cispla-
tin alone or in combination with PXD for 24 hrs then fixed 
and immunostained for the neuronal marker βIII-tubulin. A) 
Control cultures showed a large percentage of cells with 
long neurites, which were also present in B) 100 nM PXD 
and C) 1 µM PXD. D) Significant cell and neurite toxicity was 
observed in cells incubated with 10 µM PXD. E) Cisplatin at 
20 µg/ml decreased the percentage of cells bearing neurites 
compared to control, which was blocked by (F) 1 µM PXD. 
Scale bar in F represents 50 µm and applies to all panels in 
the figure.
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model. It did not however, affect recovery from Cisplatin
induced neurite toxicity, indicating that PXD needs to be
administered prior to or concomitant with Cisplatin to be
effective.

The sensitivity of neurite toxicity to the protective effect of
PXD was approximately 10 fold higher than the cytotoxic
and anti-proliferative effects observed in a variety of can-
cer cell lines. Significant protective effects of PXD on neu-
rite toxicity were observed at 1 µM, which is within the
cytotoxic and anti-proliferative range of PXD in a range of
cells including epithelial ovarian carcinoma, human
umbilical vein endothelial cells and trophoblast cells [16-
18,22]. However, significant neurite protective effects
were also observed at a 10 fold lower concentration of
PXD, which does not show robust effects on cancer cell
viability [17] or endothelial cell proliferation [16]. The 1
µM concentration of PXD was not toxic to the PC12 cells,
unlike the ovarian cancer cell lines described [17,18],
although this concentration is also not toxic to normal
ovarian surface epithelial cells [17].

The ability of PXD to protect against Cisplatin induced
neurite toxicity is likely reflected in the mechanism by
which it produces neurite toxicity. Cisplatin is a DNA
binding drug and the amount of DNA cross-linking corre-
lates with cytotoxicity in cancer cells [23,24], which are
particularly susceptible due to high mitotic rate as well as
a decreased ability to repair Cisplatin-induced DNA dam-
age [25,27]. The DNA binding of Cisplatin also results in
damage to a large number of genes [28], which would
have consequences for transcription and consequent gen-
eral metabolism of the cell. How Cisplatin specifically
affects neurite outgrowth is as yet unknown but may be a
result of general effects on signal transduction and signal-
ing pathways altered because of DNA damage.

Post-mitotic sensory neurons such as Dorsal root ganglia
(DRG) neurons are also particularly susceptible to Cispla-
tin binding [29] and DNA damage, although this can be
rescued by administration of 100 ng/ml NGF [30,31].
Similar to DRG neurons, NGF also blocks Cisplatin
induced cytotoxicity of PC12 cells [31]. Hence, in our
study in which the PC12 cells were maintained in a differ-
entiated state in the presence of NGF, we were able to iso-
late the effects of Cisplatin on neurite toxicity from that of
cytotoxicity. While the mechanism by which PXD blocked
neurite toxicity is at this stage unknown, PXD has previ-
ously been shown to upregulate p21 Waf1/Cip1 in a range
of cancer cell lines [19]. Upregulation of p21 Waf1/Cip1
is however not only associated with cell cycle regulation,
it is also a regulator of neurite outgrowth. In the PC12 cell
model, as used in this study, upregulation of p21 Waf1/
Cip1 promotes neurite outgrowth [32-34]. It also pro-
motes neurite outgrowth in other neuronal cell lines and

primary neurons [35], promotes axonal regeneration after
spinal cord injury in rats [36] and regulates radial axon
growth and motor function recovery following peripheral
nerve injury [37]. Therefore, PXD can actively upregulate
a signal transduction pathway that is not only closely
associated with mitotic arrest but also with neurite out-
growth.

Conclusion
Overall, given the dose and treatment limiting neuro-
pathic side effects of Cisplatin, one of the most widely
used chemotherapeutic drugs and the lack of any cur-
rently available prophylactic treatment or cure, PXD is a
promising candidate that warrants further testing. Suc-
cessful prophylactic treatment of Cisplatin induced neu-
ropathy with PXD could allow more intensive and hence
more effective Cisplatin therapy.
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