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Abstract
Background: Huntington disease (HD) is an adult onset neurodegenerative disorder caused by a
polyglutamine expansion in the huntingtin (htt) protein. Htt function is essential for embryonic
survival as well as normal function during the postnatal period. In addition to having roles in
transcription and transport, recent evidence demonstrates that wild-type htt is neuroprotective in
vivo. To determine whether treatment with wild-type htt would be beneficial in HD, we crossed
the YAC128 mouse model of HD with mice that over-express wild-type htt (YAC18 mice) to
generate YAC128 mice that over-express wild-type htt (YAC18/128 mice).

Results: YAC18/128 mice were found to express mutant htt at the same level as YAC128 mice
and wild-type htt at the same level as YAC18 mice. YAC18/128 mice show no significant
behavioural improvement compared to YAC128 mice in the rotarod test of motor coordination
or in an automated open field test. In the brain, YAC18/128 mice show no significant improvement
in striatal volume, striatal neuronal numbers or striatal DARPP-32 expression compared to
YAC128 mice. In contrast, striatal neuronal cross-sectional area showed significant improvement
in YAC18/128 mice compared to YAC128 mice.

Conclusion: While the over-expression of wild-type htt results in a mild improvement in striatal
neuropathology in YAC128 mice, our findings suggest that treatment with wild-type htt may not
be sufficient to ameliorate the symptoms of HD in this model.

Background
Huntington disease (HD) is an autosomal dominant dis-
order resulting from a trinucleotide CAG expansion in the
HD gene. While the expression of mutant htt is sufficient
to cause HD-like symptoms with normal expression levels
of wild-type htt [1-3], recent data suggests that decreased

levels of wild-type htt in HD patients may also contribute
significantly to the pathogenesis of HD [4]. In support of
this, we have recently demonstrated that the loss of wild-
type htt in YAC128 mice significantly worsens motor per-
formance, survival and striatal neuronal size [5].
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Htt function is essential for development as mice
homozygous for the targeted inactivation of the mouse
HD gene are embryonic lethal [6-8]. Furthermore,
decreasing htt levels by 50% or more from birth results in
neurological abnormalities [7,9,10]. The expression of
wild-type htt is also essential postnatally as mice express-
ing decreased levels of wild-type htt in the forebrain
beginning at postnatal day 5 were shown to have a pro-
gressive neurological phenotype [11]. Clearly, decreased
wild-type htt levels alone can lead to phenotypic abnor-
malities independent of mutant htt.

As the functions of wild-type htt become more clear, it
seems that one of the most critical functions for htt may
be in promoting neuronal survival. In vitro studies have
demonstrated that the over-expression of wild-type htt
protects cells against various insults including 3-nitropro-
prionic acid, a toxin which damages the striatum and has
been used to model HD [12]. It has also been shown that
over-expression of wild-type htt can specifically protect
against polyglutamine toxicity in vitro [13]. This finding
has been extended in vivo where increased expression of
wild-type htt eliminated apoptotic degeneration in the
testis caused by the expression of mutant htt [5,14]. The
mechanism by which htt protects neurons may be direct
by sequestration of the pro-apoptotic protein HIP-1 [15]
or indirectly mediated through htt's effect on expression
and transport within the cell as htt has been shown to be
involved in both the transcription and movement of the
brain derived neurotrophic factor [16-18]. In contrast,
fragments of mutant htt have been shown to also protect
against some forms of injury (excitotoxicity) through a
different mechanism, likely the induction of a stress
response [19].

In HD, there is evidence that striatal neurons die through
excitotoxic mechanisms [20,21]. As such, we have previ-
ously examined the ability of htt to protect neurons in vivo
against two different excitotoxic neurotoxins. For these
experiments, we used YAC18 mice that over-express htt
from a yeast artificial chromosome containing the entire
human HD gene with 18 CAG repeats [22]. After intra-
peritoneal injection of kainic acid, YAC18 mice showed
dramatically less neuronal loss in the hippocampus com-
pared to WT controls [42]. Similarly, YAC18 mice showed
significant, htt dose-dependent protection against lesions
caused by intrastriatal injection of quinolinic acid [23].

Based on the clear demonstration of in vivo protection
against excitotoxic cell death in YAC18 mice and the gen-
eral protective effect of wild-type htt that has been demon-
strated in vitro, we designed this experiment to determine
if the over-expression of wild-type htt would be beneficial
in treating HD. Since HD patients have at least a 50%
genetic reduction in wild-type htt levels (resulting from

the presence of at least one copy of the mutant HD gene),
it is plausible that this decrease in htt's neuroprotective
function will make neurons more susceptible to the toxic-
ity of mutant htt. A decrease in wild-type htt levels may
also affect htt's role in transcription and transport within
the cell [16-18,24]. In fact many of htt's assayable func-
tions have been shown to be disrupted by polyglutamine
expansion [12,16,17,23] and polyglutamine expansion
also alters htt's ability to interact with its interacting pro-
teins [24]. Thus, treatment of HD with wild-type htt may
be beneficial by compensating for the loss of wild-type htt
function and or through htt's general neuroprotective
effect.

For this experiment we used the YAC128 mouse model of
HD which recapitulates many aspects of the human dis-
ease [3,25]. These mice exhibit progressive motor dysfunc-
tion, cognitive impairment and selective
neurodegeneration. YAC128 mice were crossed to YAC18
mice (which over-express full-length wild-type htt) to gen-
erate YAC128 mice that over-express wild-type htt
(YAC18/128 mice). We show that over-expression of
wild-type htt in YAC128 mice results in a mild improve-
ment in striatal neuropathology but does not improve
motor dysfunction.

Results
Generation of YAC128 mice that over-express wild-type 
huntingtin
To determine whether wild-type htt could protect against
mutant htt toxicity in the brain, we crossed YAC128 mice
with YAC18 mice to generate YAC128 mice that over-
express wild-type htt (YAC18/128 mice). In order to max-
imize the amount of neuroprotection imparted by over-
expression of wild-type htt, we used the highest expressing
YAC18 line (line 212) available. We have previously
shown that YAC18 line 212 mice express wild-type htt at
2–3 times endogenous levels [22,23,26] and exhibit the
greatest degree of neuroprotection against quinolinic acid
toxicity of all the YAC18 lines [23]. To confirm the high
expression of htt in line 212 mice, we examined total
wild-type huntingtin in line 212 and WT mice by Western
blotting with polyclonal bkp1 antibody [27]. As previ-
ously reported, we found that line 212 mice express wild-
type htt at levels that are more than two times the level of
wild-type htt expression in WT mice (Fig. 1A, (WT: 0.386
± 0.014 arbitrary units, YAC18: 0.942 ± 0.056 arbitrary
units, p = 0.02).

After breeding YAC18 and YAC128 mice together, YAC18/
128 mice were generated in equal proportions to WT,
YAC18 and YAC128 mice indicating normal embryonic
survival. Since the YAC transgenes used to generate YAC18
and YAC128 mice express human htt, we examined trans-
genic htt expression with the human specific htt antibody,
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HD650 (Fig. 1B; [3]). We also examined total htt expres-
sion using MAB2166 which detects both mouse and
human htt (Fig. 1B). As expected, WT mice (non-trans-
genic FVB/N) express wild-type mouse htt and no human
htt. YAC18 mice express increased levels of wild-type htt
which are accounted for by increased human htt expres-
sion. YAC128 mice express wild-type htt at the same level
as WT mice and human mutant htt. Finally, YAC18/128
mice express increased levels of wild-type htt and mutant
human htt. Importantly, the level of mutant htt expres-
sion was equal between the YAC128 and YAC18/128 mice
indicating that the over-expression of wild-type htt did
not down-regulate the expression of mutant htt (Fig. 1C;
YAC128: 3389 ± 197 arbitrary units, YAC18/128: 3303 ±
316 arbitrary units, p = 0.8; N = 3).

Over-expression of wild-type huntingtin does not improve 
motor function in YAC128 mice
To examine the effect of wild-type htt on the motor dys-
function present in the YAC128 mice, we monitored
motor coordination on the rotarod from 2 to 12 months
of age. While ANOVA revealed an overall effect of geno-
type on rotarod performance (genotype: F(3,36) = 7.9, p <
0.001, N = 8 WT, 9 YAC128, 16 YAC18, 8 YAC18/128),
there were no significant differences between the YAC128
mice and YAC18/128 at any time point (YAC128: 147 ±
13 seconds, YAC18/128: 134 ± 14 seconds, pYAC128vsYAC18/

128 = 0.5, YAC18: 164 ± 19 seconds). Both groups per-
formed significantly worse than WT mice (WT: 227 ± 15
seconds, p < 0.001).

We have previously reported early hyperactivity and late
hypoactivity in YAC128 mice compared to WT mice [3,5].
As such, we compared the activity of YAC18/128 mice and
YAC128 mice at 2 and 12 months of age to determine if
wild-type htt expression could ameliorate the abnormal
activity pattern present in YAC128 mice. We observed no
significant improvement in activity in YAC18/128 mice
compared to YAC128 mice (2 months – YAC128: 334 ±
13 beam breaks, YAC18/128: 320 ± 12 beam breaks,
pYAC128vsYAC18/128 = 0.5, YAC18: 324 ± 11 beam breaks; 12
months – YAC128: 274 ± 19 beam breaks, YAC18/128:
289 ± 15 beam breaks, pYAC128vsYAC18/128 = 0.5, YAC18:
277 ± 11; N = 8 WT, 9 YAC128, 16 YAC18, 8 YAC18/128).
Overall, increasing wild-type htt expression did not pro-
vide a significant behavioural benefit to YAC128 mice.

While this study was not powered to demonstrate signifi-
cant differences in survival, the number of YAC18/128
mice surviving to 12 months was similar to what we nor-
mally observe in YAC128 mice [Table 1; 12 month sur-
vival – WT males: 91%, YAC128 males: 73%, YAC18/128
males: 73% (8 of 11 mice), WT females: 90%, YAC128
females: 93%, YAC18/128 females: 100% (4 of 4 mice)].

Huntingtin expression in YAC18/128 miceFigure 1
Huntingtin expression in YAC18/128 mice. YAC18 and 
YAC128 mice were crossed to generate YAC18/128 mice. 
A. To confirm high levels of htt over-expression in YAC18, 
line 212 mice we performed Western blots on whole brain 
lysates. We found that line 212 mice have 2.4 times the levels 
of wild-type htt as WT mice (WT: 0.386 ± 0.014 arbitrary 
units, YAC18: 0.942 ± 0.056 arbitrary units, p = 0.02). B. 
Total htt and human htt levels were assessed by Western 
blotting with MAB2166 and HD650 antibody respectively. 
The human specific HD650 antibody was used to detect htt 
expressed from the YAC transgenes in YAC18, YAC128 and 
YAC18/128 mice. Western blots performed with HD650 
antibody indicate that YAC18/128 mice express both wild-
type htt and mutant htt from YAC transgenes. As expected 
WT mice express no human htt, YAC18 mice express only 
wild-type human htt and YAC128 mice express only mutant 
human htt. Examination of total htt levels with MAB2166 
antibody reveals that all mice express similar levels endog-
enous wild-type htt. C. Quantification of protein expression 
reveals that YAC18/128 mice express mutant htt at the same 
level as YAC128 mice (YAC128: 3389 ± 197 arbitrary units, 
YAC18/128: 3303 ± 316 arbitrary units, p = 0.8). N = 3 mice 
per group. Error bars indicate standard error of the mean. 
A.U. = arbitrary units.
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Mice surviving to 12 months of age were sacrificed and we
examined brain and testicular weight as these have been
shown to be decreased in YAC128 mice [3,5]. In both
cases, there was a significant difference between YAC128
and WT mice which was not improved by the over-expres-
sion of wild-type htt (Brain weight – WT: 403 ± 7 mg,
YAC18: 402 ± 4 mg, YAC128: 384 ± 4 mg, YAC18/128:
382 ± 3 mg, pYAC128vsYAC18/128 = 0.6, N = 17 WT, 17
YAC128, 14 YAC18, 17 YAC18/128; Testis weight – WT:
164 ± 5 mg, YAC18: 152 ± 7 mg, YAC128: 142 ± 5 mg,
YAC18/128: 123 ± 4 mg, pYAC128vsYAC18/128 = 0.01, N = 7
WT, 8 YAC128, 10 YAC18, 10 YAC18/128). Unexpect-
edly, the testicular weight in YAC18/128 mice was signif-
icantly less than in YAC128 mice and there was a trend
towards decreased testicular weight in YAC18 mice com-
pared to WT. This suggests the possibility that high levels
of htt expression may be detrimental in the testis.

Over-expression of wild-type huntingtin results in mild 
improvement in striatal neuropathology in YAC128 mice
YAC128 mice demonstrate clear striatal neuropathology
at 12 months of age with decreased striatal volume, stri-
atal neuronal loss, striatal neuronal atrophy and
decreased striatal DARPP-32 expression [3,28]. To deter-
mine whether the expression of wild-type htt could amel-
iorate these striatal phenotypes we examined the striata of
YAC18/128 mice. Comparing YAC18/128 mice and
YAC128 mice revealed no significant improvement in stri-
atal volume (Fig. 2A; YAC128: 11.3 ± 0.2 mm3, YAC18/
128: 11.6 ± 0.2 mm3, pYAC128vsYAC18/128 = 0.3, YAC18 =
12.5 ± 0.3 mm3; N = 17 WT, 17 YAC128, 14 YAC18, 17
YAC18/128), striatal neuronal numbers (Fig. 2B; YAC128:
1.56 ± 0.03 million neurons, YAC18/128: 1.59 ± 0.03 mil-
lion neurons, p = 0.4, YAC18: 1.64 ± 0.03 million neu-
rons; N = 17 WT, 17 YAC128, 14 YAC18, 17 YAC18/128)
or striatal DARPP-32 expression (Fig. 2C; YAC128: 828 ±
28 arbitrary units, YAC18/128: 868 ± 22 arbitrary units,
pYAC128vsYAC18/128 = 0.3, YAC18: 1012 ± 19 arbitrary units;
N = 10 WT, 12 YAC128, 10 YAC18, 8 YAC18/128) with
increased wild-type htt expression. In each case, YAC128

mice showed significant abnormalities compared to WT
mice. In contrast, increasing wild-type htt expression in
YAC128 mice resulted in a significant reduction in striatal
neuronal atrophy (Fig. 2D; YAC128: 96.2 ± 1.6 um2,
YAC18/128: 108 ± 1.9 um2, pYAC128vsYAC18/128 < 0.001,
YAC18: 110 ± 1.7 um2; N = 17 WT, 17 YAC128, 14
YAC18, 17 YAC18/128) with the striatal neuronal cross-
sectional area in YAC18/128 mice being almost restored
to wild-type (WT: 110 ± 3 um2, p = 0.6).

Discussion
Based on recent work demonstrating a neuroprotective
function of wild-type htt and suggestions that loss of wild-
type htt function contributes to HD pathogenesis, we
investigated the therapeutic potential of wild-type htt in
the YAC128 mouse model of HD. We found that over-
expression of wild-type htt in YAC128 mice resulted in a
mild improvement in striatal neuropathology with no sig-
nificant improvement in behavioural phenotypes.

The effect of over-expression of wild-type htt in YAC128
mice is summarized in table 2. A robust finding of this
study was that over-expression of wild-type htt in YAC128
mice restored striatal neuronal size. Similarly, we have
found that decreasing wild-type htt levels in YAC128 mice
results in decreased neuronal size [5]. Combined, these
results suggest that wild-type htt levels influence neuronal
size and suggest that loss of wild-type htt may contribute
to the striatal neuronal atrophy observed in HD. An alter-
nate possibility is that striatal neuronal size is more
responsive to mildly beneficial effects of treatments as this
measure has been shown to exhibit the most dramatic
improvements in therapeutic trials in mouse models of
HD [29-31]. The effect of wild-type htt on neuronal size
may be related to htt's ability to increase BDNF transcrip-
tion [17] and transport [16] since BDNF promotes the sur-
vival and differentiation of striatal neurons.

In contrast to the significant improvement in striatal neu-
ronal size, there was no significant effect of wild-type htt

Table 1: Effect of modulating wild-type huntingtin levels on survival in YAC128 mice.

Sex Genotype Deaths Total Mice Percent Surviving

Males WT 4 46 91%
YAC18/128 3 11 73%

YAC128 12 48 75%
YAC128-/- 11 15 27%

Females WT 5 42 88%
YAC18/128 0 4 100%

YAC128 5 66 92%
YAC128-/- 3 19 84%

YAC128-/- mice express mutant htt and no wild-type htt. YAC128 mice express mutant htt and 2 copies of wild-type htt. YAC18/128 express 
mutant htt and increased levels of wild-type htt.
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over-expression on open field activity, striatal volume,
striatal neuronal counts or striatal DARPP-32 levels in
YAC128 mice, despite a trend towards improvement. In
parallel with these experiments we examined the effect of
eliminating wild-type htt expression in YAC128 mice and
found that there was a trend towards decreased striatal
volume, striatal neuronal counts and striatal DARPP-32
expression which did not reach significance [5] (see Addi-
tional file 1 for summary). It is possible that the 12 month
time point chosen to assess neuropathology in these
experiments was too late in the disease process and that
differences in severity were masked by a ceiling effect or
that we have missed differences in the onset of striatal
neuropathology.

In our previous study we observed a significant increase of
both rotarod performance and survival when wild-type
htt levels were increased in YAC128 -/- mice to wild-type
levels [5]. In this experiment, we did not observe any fur-
ther improvement in either rotarod performance or sur-
vival with the over-expression of wild-type htt suggesting
that there may be ceiling effect for the amount that wild-
type htt can improve these outcome measures. While this
study did not have enough power to demonstrate a signif-
icant improvement in survival, the fact that the percentage
of mice surviving to 12 months was similar to YAC128
mice suggests that the over-expression of wild-type hunt-
ingtin does not have a dramatic effect on survival in
YAC128 mice. The survival deficit in the YAC128 and

Over-expression of wild-type htt results in mild improvements in striatal neuropathology in YAC128 miceFigure 2
Over-expression of wild-type htt results in mild improvements in striatal neuropathology in YAC128 mice. 
Comparison of striatal phenotypes between YAC128 and YAC18/128 mice revealed that over-expression of wild-type htt 
resulted in no significant change in striatal volume (panel A: YAC128: 11.3 ± 0.2 mm2, YAC18/128: 11.6 ± 0.2 mm2, p = 0.3), 
striatal neuronal counts (panel B: YAC128: 1.56 ± 0.03 million neurons, YAC18/128: 1.59 ± 0.03 million neurons, p = 0.4) or 
striatal DARPP-32 expression (panel C: YAC128: 828 ± 28 arbitrary units, YAC18/128: 868 ± 22 arbitrary units, p = 0.3). In 
contrast, over-expression of wild-type htt resulted in a significant improvement in striatal neuronal cross-sectional area (panel 
D: YAC128: 96.2 ± 1.6 um2, YAC18/128: 108 ± 1.9 um2, p < 0.001). For each outcome measure, YAC128 mice show a signifi-
cant deficit compared to WT mice. N = 17 WT, 17 YAC128, 14 YAC18, 17 YAC18/128 except for striatal DARPP-32 expres-
sion where N = 10 WT, 12 YAC128, 10 YAC18, 8 YAC18/128. Error bars show standard error of the mean. ** p < 0.01. *** 
p < 0.001.
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YAC18/128 mice were only observed in male mice thus
confirming our previous observations [5]. Unexpectedly,
we found that increasing wild-type huntingtin expression
in YAC128 mice resulted in further decreases in testicular
mass. Combined with a trend towards decreased testicular
mass in YAC18 mice, this suggests the possibility that
expression of htt beyond a certain threshold may result in
testicular atrophy which is exacerbated by the presence of
mutant htt. It is also possible that the human origin of the
over-expressed htt contributes to the testicular phenotype.
Unfortunately, we are not aware of a mouse model that
over-expresses wild-type mouse htt at high levels that
would permit testing of this hypothesis.

In this study, we used the YAC128 mouse model of HD
which transgenically expresses mutant huntingtin at
approximately 75% of endogenous levels [3]. These mice
have two intact copies of the wild-type HD gene and we
have previously shown that they express wild-type htt at
the same level as WT mice [5]. As such, YAC128 mice
express higher levels of wild-type htt protein than patients
with HD. The fact that the levels of wild-type htt are
already increased in YAC128 mice may diminish the ther-
apeutic benefit we observe in YAC18/128 mice by further
over-expressing wild-type htt. To more directly assess the
therapeutic benefit of wild-type htt in HD, one could
over-express mouse wild-type htt in a knockin mouse
model of HD to assess the effect of wild-type htt on early
disease phenotypes in these mice.

The results of this study are congruent with comparisons
of homozygous and heterozygous HD patients and HD
mouse models which suggest that mutant htt has a greater
influence on the disease phenotype than wild-type htt.
Examination of disease severity in patients homozygous
and heterozygous for mutations in the HD gene have
reported either no difference or that homozygous HD
patients are more severely affected [32-37]. Two inde-
pendent studies have also examined the phenotype of
mice that are homozygous for a targeted expansion of the
HD gene (HD knock-in mice). In both cases, homozygous

HD knock-in mice exhibited a more severe phenotype
than heterozygous HD knock-in mice, but the differences
were mild [38,39]. These studies suggest that mutant htt
maintains many of the critical functions of wild-type htt
as replacement of wild-type htt with mutant htt has only
a mild effect on phenotype. However, it has been shown
that polyglutamine expansion disrupts htt's neuroprotec-
tive function [12,23], at least part of htt's role in transcrip-
tion [17] and transport [16], and also affects the
interaction of htt with its interaction partners [24]. Since
increasing mutant htt expression alone is known to result
in a more severe phenotype in mice [40], it suggests that
the increase in phenotypic severity between heterozygous
and homozygous patients and animal models is mainly
caused by the increase in mutant htt levels which is in line
with our findings that increasing levels of wild-type htt
has only a small impact on the disease phenotype.

These findings are surprising given the importance of htt
function and its demonstrated neuroprotective abilities.
Htt is essential for embryonic development and decreases
in htt expression alone lead to abnormal phenotypes [6-
8,10,11,41]. Further, htt has been shown to protect cells
from death both in vitro and in the testis and in the brain
[12-14,23]. While htt has been shown to specifically pro-
tect against polyglutamine toxicity both in vitro [13] and
in the testis [5,14], our findings here indicate a milder
protective effect against mutant htt toxicity in the brain.
Given that wild-type htt exhibits protection against excito-
toxic neurotoxins [23], our finding that wild-type htt
mildly improves striatal neuropathology in YAC128 mice
is not inconsistent with excitotoxicity contributing to the
pathogenesis of HD.

Conclusion
Overall, our results demonstrate that the over-expression
of wild-type htt in YAC128 mice results in a mild
improvement in striatal neuropathology. Based on the
clear effect of htt over-expression on striatal neuronal size,
it appears that htt function may be important in maintain-
ing neuronal health. Despite the protective function of

Table 2: Effect of over-expression of wild-type huntingtin on HD-like phenotypes in the YAC128 mouse model of HD.

Phenotype Percent Difference 
YAC128 Compared to 

WT

Percent Difference 
YAC18/128 Compared 

to WT

Percent Rescue with 
WT htt Expression

Significance

Rotarod -36% -41% None p = 0.5
Activity – 2 Months +6% +2% 74% P = 0.5
Activity – 12 Months -10% -6% 47% P = 0.5
Striatal Volume -9% -7% 21% p = 0.3
Striatal Neuronal Counts -6% -3% 38% p = 0.4
Striatal DARPP-32 
Expression

-18% -14% 22% p = 0.3

Striatal Neuronal Size -12% -2% 87% p < 0.001
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wild-type htt, our results suggest that mutant htt toxicity is
primarily responsible for the pathognomic striatal neu-
ropathology in HD and that treatment of HD with wild-
type htt may not be sufficient to ameliorate the symptoms
of the disease.

Methods
Mice
YAC18 and YAC128 mice that express human wild-type or
mutant htt from a yeast artificial chromosome and wild-
type littermates were used for these experiments [3,22].
For YAC18 mice, we used the high-expressing line 212
which expresses wild-type htt at 2–3 times endogenous
levels [22]. Mice were maintained on the FVB/N (Charles
River, Wilmington, MA) background strain. Mice were
group housed with a normal light-dark cycle (lights on at
6:00 AM, lights off at 8:00 PM) in a clean facility and given
free access to food and water. All experiments were carried
out in accordance with protocols approved by the UBC
Committee on Animal Care and the Canadian Council on
Animal Care. The results shown are the combined results
from male and female mice. We examined the data for
both sexes separately and found no differences from the
combined results.

Behavioural analysis
Motor coordination was assessed on an accelerating
rotarod (UGO Basile, Comerio, Italy) as previously
described [5]. After training at 2 months, mice were tested
bimonthly from 2 to 12 months of age with a maximum
score for each trial of 300 seconds. Open field activity was
assessed in an automated open field apparatus (San Diego
Instruments, San Diego, California). Activity was meas-
ured at 2 months and at 12 months during a ten minute
open field trial. Activity was measured as the number of
beam crosses in the trial. Clean cages were used for each
trial. For behavioural assessment we used 8 WT (5 F, 3 M),
9 YAC128 (5 F, 4 M), 16 YAC18 (9 F, 7 M) and 8 YAC18/
128 (3 F, 5 M) mice.

Western blotting
Protein levels were measured from homogenized whole
brain lysates from a total of 3 mice per genotype. A low-
bis acrylamide gel was run with 100 μg of total protein per
sample for a total of 600 volt-hours. Proteins were trans-
ferred to a membrane at 24 volts for 1.5 hours. Blots were
then probed with antibodies for either total htt
(MAB2166, Chemicon, Temecula, California) or specifi-
cally human htt [HD650, (Slow et al., 2003a)] followed
by an anti-mouse, peroxidase-conjugated secondary anti-
body before enhanced chemiluminescent detection. Pro-
tein levels were quantified using Quantity One software
(Biorad, Hercules, CA).

Neuropathology
Neuropathology was carried out on 17 WT (11 F, 6 M), 17
YAC128 (10 F, 7 M), 14 YAC18 (8 F, 6 M) and 17 YAC18/
128 (8 F, 9 M) mice. Mice were perfused with 3% parafor-
maldehyde in phosphate buffered saline. Brains and testis
were post-fixed in 3% paraformaldehyde for 24 hours and
then equilibrated with PBS prior to weighing. Subse-
quently, brains were infiltrated with sucrose (25% in
PBS), frozen and sectioned on a cryostat (Microm HM 500
M, Richard-Allan Scientific, Calamazoo, Michigan).

A series of 25 μm coronal sections spaced 200 μm apart
were stained with NeuN primary antibody (1:100 dilution
in 5% NGS, 0.1% T-X-100, PBS; Chemicon) overnight at
room temperature, biotinylated anti-mouse secondary
antibody (1:200 dilution in 1% NGS, 0.1% T-X-100, PBS)
for 2 hours at room temperature and incubated in ABC
reagent (ABC Elite kit, Vector) for 2 hours at room temper-
ature before detection with metal-enhanced DAB solution
(Pierce, Rockford, Illinois).

Striatal volume was determined using Stereoinvestigator
software (Microbrightfield, Williston, Virginia). Briefly,
the perimeter of the striatum was traced using a 2.5X
objective in each section of the coronal series and the soft-
ware calculated the volume of the entire structure. Subse-
quently, neuronal profiles in a 25 μm × 25 μm counting
frame were counted with a 550 μm by 550 μm grid for all
grids the fell within the outlined areas. The counts were
then extrapolated to estimate the total number of neurons
in the striatum. To determine neuronal cross-sectional
areas, a single matched section from each animal was
stained with an Alexa488-conjugated NeuN antibody
(Chemicon). Mounted sections were analyzed using Ster-
eoinvestigator to outline the perimeter of all clearly
defined neurons within a 550 μm × 550 μm grid of 25 μm
× 25 μm counting frames with the 100X objective. On
average 32 neurons per mouse were assessed for a total of
more than 450 neurons per genotype.

For measurement of DARPP-32 expression, sections were
stained with rabbit anti-DARPP-32 antibody (Chemicon
AB 1656, 1:1000). After 3 washes with PBS, sections were
incubated in Cy3-conjugated goat anti-rabbit antibody
(1:500; Jackson ImmunoResearch Inc., West Grove, Penn-
sylvania). Pictures of mounted sections were taken using
MetaMorph Imaging System (Molecular Devices, Down-
ingtown, Pennsylvania) and the intensity of the fluores-
cent stain within the striatum was measured. 10 WT, 12
YAC128, 10 YAC18 and 8 YAC18/128 were used for this
analysis.

Immunohistochemistry for markers of neuronal health
was performed as described above using the following
antibodies: synaptophysin (1:100; BD Transduction Lab-
Page 7 of 9
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oratories, Mississauga, Ontario), calbindin (1:2000; pro-
vided by Ken Bainbridge, University of British Columbia,
Canada), EM48 (1:500; provided by Xiao-Jiang Li, Emory
University, U.S.A) and 8-hydroxy-2-deoxyguanosine
(1:500; Japan Institute for the Control of Aging, Fukuroi
City, Japan).

Statistical analysis
Overall effects of genotype were determined by one way
ANOVA. Repeated measures ANOVA analysis was used for
analysis of differences in rotarod performance. The signif-
icance of differences between YAC128 and YAC18/128
mice was determined by either the Tukey post-hoc test fol-
lowing ANOVA or a student's t-test.

Authors' contributions
JVR conceived the study, designed the experiment, com-
pleted the neuropathological assessment of the mice
except for the striatal DARPP-32 levels, carried out the
Western blot for human htt, prepared the figures for the
manuscript and wrote the manuscript. JP carried out the
behavioural analysis including rotarod and open field
testing. ZM completed the western blot for total htt. MRH
and BRL contributed to the conception and design of the
experiment and were also involved in editing the manu-
script. All of the authors have read and approved the final
manuscript.

Additional material

Acknowledgements
We would like to thank Daniel Rogers, Nagat Bissada, Kuljeet Vaid and Ge 
Lu for their technical assistance. This work was supported by grants from 
the Huntington's Disease Society of America, the High Q Foundation and 
the Huntington Society of Canada. JVR has been supported by the Canadian 
Institutes of Health Research, the Michael Smith Foundation for Health 
Research and the Huntington Society of Canada. BRL and MRH are sup-
ported by the Canadian Institutes of Health Research, the Huntington Soci-
ety of Canada, the Hereditary Disease Foundation and the Canadian 
Genetic Diseases Network. MRH is a Killam University Professor and holds 
a Canada Research Chair in Human Genetics.

References
1. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singa-

raja R, et al.: A YAC mouse model for Huntington's disease
with full-length mutant huntingtin, cytoplasmic toxicity, and
selective striatal neurodegeneration.  Neuron 1999, 23:181-192.

2. Reddy PH, Williams M, Charles V, Garrett L, Pike-Buchanan L, Whet-
sell WO Jr, et al.: Behavioural abnormalities and selective neu-
ronal loss in HD transgenic mice expressing mutated full-
length HD cDNA.  Nat Genet 1998, 20:198-202.

3. Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng
Y, et al.: Selective striatal neuronal loss in a YAC128 mouse
model of Huntington disease.  Hum Mol Genet 2003,
12:1555-1567.

4. Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione
S: Loss of normal huntingtin function: new developments in
Huntington's disease research.  Trends Neurosci 2001,
24:182-188.

5. Van Raamsdonk JM, Pearson J, Rogers DA, Bissada N, Vogl AW, Hay-
den MR, et al.: Loss of wild-type huntingtin influences motor
dysfunction and survival in the YAC128 mouse model of
Huntington disease.  Hum Mol Genet 2005, 14:1379-1392.

6. Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT, McNeil
SM, et al.: Inactivation of the mouse Huntington's disease gene
homolog Hdh.  Science 1995, 269:407-410.

7. Nasir J, Floresco SB, O'Kusky JR, Diewert VM, Richman JM, Zeisler J,
et al.: Targeted disruption of the Huntington's disease gene
results in embryonic lethality and behavioral and morpho-
logical changes in heterozygotes.  Cell 1995, 81:811-823.

8. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A:
Increased apoptosis and early embryonic lethality in mice
nullizygous for the Huntington's disease gene homologue.
Nat Genet 1995, 11:155-163.

9. O'Kusky JR, Nasir J, Cicchetti F, Parent A, Hayden MR: Neuronal
degeneration in the basal ganglia and loss of pallido-subtha-
lamic synapses in mice with targeted disruption of the Hunt-
ington's disease gene.  Brain Res 1999, 818:468-479.

10. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner
AL, et al.: Huntingtin is required for neurogenesis and is not
impaired by the Huntington's disease CAG expansion.  Nat
Genet 1997, 17:404-410.

11. Dragatsis I, Levine MS, Zeitlin S: Inactivation of Hdh in the brain
and testis results in progressive neurodegeneration and ste-
rility in mice.  Nat Genet 2000, 26:300-306.

12. Rigamonti D, Bauer JH, De Fraja C, Conti L, Sipione S, Sciorati C, et
al.: Wild-type huntingtin protects from apoptosis upstream
of caspase-3.  J Neurosci 2000, 20:3705-3713.

13. Ho LW, Brown R, Maxwell M, Wyttenbach A, Rubinsztein DC: Wild
type Huntingtin reduces the cellular toxicity of mutant
Huntingtin in mammalian cell models of Huntington's dis-
ease.  J Med Genet 2001, 38:450-452.

14. Leavitt BR, Guttman JA, Hodgson JG, Kimel GH, Singaraja R, Vogl
AW, et al.: Wild-type huntingtin reduces the cellular toxicity
of mutant huntingtin in vivo.  Am J Hum Genet 2001, 68:313-324.

15. Hackam AS, Yassa AS, Singaraja R, Metzler M, Gutekunst CA, Gan L,
et al.: Huntingtin interacting protein 1 induces apoptosis via a
novel caspase-dependent death effector domain.  J Biol Chem
2000, 275:41299-41308.

16. Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H,
Cordelieres FP, et al.: Huntingtin controls neurotrophic sup-
port and survival of neurons by enhancing BDNF vesicular
transport along microtubules.  Cell 2004, 118:127-138.

17. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti
L, et al.: Loss of huntingtin-mediated BDNF gene transcrip-
tion in Huntington's disease.  Science 2001, 293:493-498.

18. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, et
al.: Huntingtin interacts with REST/NRSF to modulate the
transcription of NRSE-controlled neuronal genes.  Nat Genet
2003, 35:76-83.

19. Hansson O, Petersen A, Leist M, Nicotera P, Castilho RF, Brundin P:
Transgenic mice expressing a Huntington's disease mutation
are resistant to quinolinic acid-induced striatal excitotoxic-
ity.  Proc Natl Acad Sci USA 1999, 96:8727-8732.

20. Bezprozvanny I, Hayden MR: Deranged neuronal calcium signal-
ing and Huntington disease.  Biochem Biophys Res Commun 2004,
322:1310-1317.

21. Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira
AH: Biochemical abnormalities and excitotoxicity in Hunt-
ington's disease brain.  Ann Neurol 1999, 45:25-32.

22. Hodgson JG, Smith DJ, McCutcheon K, Koide HB, Nishiyama K, Dinu-
los MB, et al.: Human huntingtin derived from YAC transgenes

Additional File 1
Supplemental Table 1. This table summarizes the effect of increasing or 
decreasing wild-type huntingtin levels on phenotypic severity in the 
YAC128 mouse model of Huntington disease
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-7-80-S1.eps]
Page 8 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2202-7-80-S1.eps
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10402204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10402204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10402204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9771716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9771716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9771716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12812983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12812983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11182459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11182459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15829505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15829505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15829505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7618107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7618107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7774020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7774020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7774020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7550343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7550343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10082833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10082833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10082833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9398841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9398841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11062468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11062468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11062468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10804212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10804212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11432963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11432963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11432963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11007801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11007801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15242649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15242649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15242649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11408619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11408619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12881722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12881722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10411943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10411943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10411943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15336977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15336977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9894873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9894873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8968738


BMC Neuroscience 2006, 7:80 http://www.biomedcentral.com/1471-2202/7/80
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

compensates for loss of murine huntingtin by rescue of the
embryonic lethal phenotype.  Hum Mol Genet 1996, 5:1875-1885.

23. Leavitt BR, van Raamsdonk JM, Shehadeh J, Fernandes HB, Murphy Z,
Graham RK, Raymond LA, Hayden MR: Wild-type huntingtin pro-
tects neurons from excitotoxicity.  J Neurochem  2006,
96(4):1121-9.

24. Li SH, Li XJ: Huntingtin-protein interactions and the patho-
genesis of Huntington's disease.  Trends Genet 2004, 20:146-154.

25. Van Raamsdonk JM, Pearson J, Slow EJ, Hossain SM, Leavitt BR, Hay-
den MR: Cognitive dysfunction precedes neuropathology and
motor abnormalities in the YAC128 mouse model of Hunt-
ington's disease.  J Neurosci 2005, 25:4169-4180.

26. Van Raamsdonk JM, Gibson WT, Pearson J, Murphy Z, Lu G, Leavitt
BR, et al.: Body weight is modulated by levels of full-length
Huntingtin.  Hum Mol Genet 2006, 15:1513-1523.

27. Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham
KC, et al.: Huntingtin is ubiquitinated and interacts with a spe-
cific ubiquitin-conjugating enzyme.  J Biol Chem 1996,
271:19385-19394.

28. Van Raamsdonk JM, Pearson J, Rogers DA, Lu G, Barakauskas VE, Barr
AM, et al.: Ethyl-EPA treatment improves motor dysfunction,
but not neurodegeneration in the YAC128 mouse model of
Huntington disease.  Exp Neurol 2005, 196:266-272.

29. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, et al.: His-
tone deacetylase inhibition by sodium butyrate chemother-
apy ameliorates the neurodegenerative phenotype in
Huntington's disease mice.  J Neurosci 2003, 23:9418-9427.

30. Ferrante RJ, Ryu H, Kubilus JK, D'Mello S, Sugars KL, Lee J, et al.:
Chemotherapy for the brain: the antitumor antibiotic mith-
ramycin prolongs survival in a mouse model of Huntington's
disease.  J Neurosci 2004, 24:10335-10342.

31. Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK,
et al.: Neuroprotective effects of phenylbutyrate in the N171-
82Q transgenic mouse model of Huntington's disease.  J Biol
Chem 2005, 280:556-563.

32. Durr A, Hahn-Barma V, Brice A, Pecheux C, Dode C, Feingold J:
Homozygosity in Huntington's disease.  J Med Genet 1999,
36:172-173.

33. Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, Zeisler
J, et al.: A worldwide study of the Huntington's disease muta-
tion. The sensitivity and specificity of measuring CAG
repeats.  N Engl J Med 1994, 330:1401-1406.

34. Laccone F, Engel U, Holinski-Feder E, Weigell-Weber M, Marczinek
K, Nolte D, et al.: DNA analysis of Huntington's disease: five
years of experience in Germany, Austria, and Switzerland.
Neurology 1999, 53:801-806.

35. Myers RH, Leavitt J, Farrer LA, Jagadeesh J, McFarlane H, Mastro-
mauro CA, et al.: Homozygote for Huntington disease.  Am J
Hum Genet 1989, 45:615-618.

36. Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein
DC, et al.: Homozygosity for CAG mutation in Huntington
disease is associated with a more severe clinical course.  Brain
2003, 126:946-955.

37. Wexler NS, Young AB, Tanzi RE, Travers H, Starosta-Rubinstein S,
Penney JB, et al.: Homozygotes for Huntington's disease.  Nature
1987, 326:194-197.

38. Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS,
Crouse AB, et al.: Neurological abnormalities in a knock-in
mouse model of Huntington's disease.  Hum Mol Genet 2001,
10:137-144.

39. Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, Li XJ,
et al.: Long glutamine tracts cause nuclear localization of a
novel form of huntingtin in medium spiny striatal neurons in
HdhQ92 and HdhQ111 knock-in mice.  Hum Mol Genet 2000,
9:503-513.

40. Graham RK, Slow EJ, Deng Y, Bissada N, Lu G, Pearson J, et al.: Levels
of mutant huntingtin influence the phenotypic severity of
Huntington disease in YAC128 mouse models.  Neurobiol Dis
2006, 21:444-455.

41. Auerbach W, Hurlbert MS, Hilditch-Maguire P, Wadghiri YZ,
Wheeler VC, Cohen SI, et al.: The HD mutation causes progres-
sive lethal neurological disease in mice expressing reduced
levels of huntingtin.  Hum Mol Genet 2001, 10:2515-2523.

42. Zhang Y, Leavitt BR, van Raamsdonk JM, Dragatsis I, Goldowitz D,
Macdonald ME, Hayden MR, Friedlander RM: Huntingtin inhibits
caspase-3 activation.  EMBO J 2006. [Epub ahead of print]
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8968738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8968738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16417581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16417581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15036808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15036808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15843620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15843620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15843620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16571604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16571604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8702625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8702625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16129433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16129433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16129433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14561870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14561870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14561870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15548647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15548647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15548647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8159192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8159192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8159192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10489044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10489044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2535231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12615650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12615650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2881213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10699173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10699173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10699173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16230019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16230019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16230019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11709539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11709539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11709539
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Generation of YAC128 mice that over-express wild-type huntingtin
	Over-expression of wild-type huntingtin does not improve motor function in YAC128 mice
	Over-expression of wild-type huntingtin results in mild improvement in striatal neuropathology in YAC128 mice

	Discussion
	Conclusion
	Methods
	Mice
	Behavioural analysis
	Western blotting
	Neuropathology
	Statistical analysis

	Authors' contributions
	Additional material
	Acknowledgements
	References

