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D2-like receptor activation does not initiate a
brain docosahexaenoic acid signal in
unanesthetized rats
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Abstract

Background: The polyunsaturated fatty acid, docosahexaenoic acid (DHA), participates in neurotransmission
involving activation of calcium-independent phospholipase A2 (iPLA2), which is coupled to muscarinic, cholinergic
and serotonergic neuroreceptors. Drug induced activation of iPLA2 can be measured in vivo with quantitative
autoradiography using 14C-DHA as a probe. The present study used this approach to address whether a DHA signal is
produced following dompaminergic (D)2-like receptor activation with quinpirole in rat brain. Unanesthetized rats were
infused intravenously with 14C-DHA one minute after saline or quinpirole infusion, and serial blood samples were
collected over a 20-minute period to obtain plasma. The animals were euthanized with sodium pentobarbital and their
brains excised, coronally dissected and subjected to quantitative autoradiography to derive the regional incorporation
coefficient, k*, a marker of DHA signaling. Plasma labeled and unlabeled unesterified DHA concentrations were
measured.

Results: The incorporation coefficient (k*) for DHA did not differ significantly between quinpirole-treated and control
rats in any of 81 identified brain regions. Plasma labeled DHA concentration over the 20-minute collection period (input
function) and unlabeled unesterified DHA concentration did not differ significantly between the two groups.

Conclusion: These findings demonstrate that D2-like receptor initiated signaling does not involve DHA as a second
messenger, and likely does not involve iPLA2 activation.

Keywords: Dopamine, Quinpirole, Neurotransmission, Docosahexaenoic acid, Release, Signaling, Metabolism,
Intracellular calcium, Calcium-independent phospholipase A2 (iPLA2), Calcium-dependent phospholipase A2 (cPLA2),
Arachidonic acid
Background
Neurotransmission underlies cognition and behavior, and
when disturbed leads to changes in these functional
parameters [1]. The polyunsaturated fatty acids (PUFAs),
docosahexaenoic acid (22:6n-3, DHA) and arachidonic acid
(20:4n-6, AA) are important second messengers in brain,
where they participate in neurotransmission [2]. Agonist
binding to certain neuroreceptors can release AA or DHA
from the stereospecifically numbered-2 (sn-2) position of
membrane phospholipids via activation of AA-selective
group IVA calcium-dependent cytosolic phospholipase A2

(cPLA2) or DHA-selective group VIA calcium-independent
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phospholipase A2 (iPLA2) [3]. cPLA2 and iPLA2 are post-
synaptically located [4,5].
In the intact brain and in vitro, AA-preferring cPLA2

type IVA has been shown to be coupled to serotonergic
5-HT2A/2C receptors [6,7], cholinergic muscarinic M1,3,5

receptors [8-10], dopaminergic (D)2-like receptors [11-14],
and ionotropic N-methyl-D-aspartate (NMDA) receptors
[15,16]. iPLA2, which is DHA-preferring, can be activated
by agonist stimulation of cholinergic muscarinic M1,3,5

and serotonergic 5-HT2A/2C receptors, but not of NMDA
receptors [9,16,17].
The regulation of G-protein mediated activation of

cPLA2 or iPLA2 depends on extracellular and intracellular
calcium concentrations. cPLA2 is activated by extracellular
Ca2+ entry into the cell and iPLA2 by intracellular calcium
release from the endoplasmic reticulum via phospholipase
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C (PLC) (reviewed in [18]). PLC, when activated, converts
membrane phosphatidylinositol 4,5-bisphosphate (PIP2) to
diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3).
IP3 binding to IP3 receptors stimulates the release of intra-
cellular Ca2+ [19,20] and of calcium influx factor [21] from
the endoplasmic/sarcoplasmic reticulum (ER/SR). The cal-
cium influx factor contributes to the activation of iPLA2 by
dissociating calmodulin from the active site of iPLA2

[22,23]. This PLC-mediated activation of iPLA2 results in
the hydrolysis of DHA from membrane phospholipid. DAG
can also be further hydrolyzed to release DHA, although
this pathway likely contributes minimally to DHA release.
Intracellular calcium release associated with activation

of the PLC pathway regulates vesicle transport and neuro-
transmitter release at synaptic terminals [19,24]. Muscar-
inic M1,3,5 and serotonergic 5-HT2A/2C neurotransmission
is coupled to iPLA2 via the PLC pathway, as is dopamin-
ergic neurotransmission, although the directionality of this
coupling is not agreed on. Activation of D2-like receptors
in isolated neurons or dissected brain structures was re-
ported to increase [19,20,25,26] or decrease [27,28] intra-
cellular calcium release or IP3 concentration [29]. A
reduction in intracellular calcium release would not acti-
vate iPLA2, whereas an increase would activate iPLA2 and
increase DHA release.
In the present study, we wished to see if activation of

brain D2-like receptors in unanesthetized rats would also
lead to a DHA signal, as it does an AA signal [11,12].
Stimulation of dopaminergic receptors by the agonists
quinpirole or apomorphine produced an AA signal that
could be blocked by the D2 receptor antagonists raclo-
pride or butaclamol in unanesthetized rats [11,12,14].
To test this, we used an established in vivo kinetic

method in awake rats [16], to quantify the DHA signal
in response to the D2-like receptor agonist quinpirole,
compared with vehicle. With this method, radiolabeled
DHA is infused to steady state levels in plasma, and
brain radioactivity is measured with quantitative auto-
radiography to derive the regional incorporation coeffi-
cient, k*. We found that D2-like receptor activation with
quinpirole did not change the DHA incorporation coeffi-
cient (k*) into brain compared to vehicle-treated con-
trols, suggesting that D2-like receptor activation does
not involve DHA release as a second messenger.

Methods
Animals and diets
Experiments were conducted following the “Guide for the
Care and Use of Laboratory Animals” (National Institutes
of Health Publication No. 86–23) and were approved by
the Animal Care and Use Committee of Eunice Kennedy
Shriver National Institute of Child Health and Human
Development. Two-month-old male Fischer CDF 344 rats
(Charles River Laboratories, Wilmington, MA) were
acclimated for one month in an animal facility with regu-
lated temperature, humidity and 12-h dark/light cycle.
Rats were maintained on the Rodent NIH-31 auto 18–4
diet (Zeigler Bros, Gardens, PA), which contained (as% of
total fatty acid) 20.1% saturated, 22.5% monounsaturated,
47.9% linoleic, 5.1% α-linolenic, 0.02% arachidonic, 2.0%
eicosapentaenoic, and 2.3% docosahexaenoic acid [30].
Water and food were provided ad libitum.

Tracer purification and drug preparation
Radiolabeled [1-14C]DHA dissolved in ethanol (53 mCi/
mmol, Moravek Biochemicals, Brea, CA) was purified on
60 A° thin-layer chromatography (TLC) silica plates
(~5 mg per 3 cm lane on each plate) alongside phospho-
lipid, cholesterol, cholesteryl ester, triglyceride and unes-
terified fatty acid standards using diethyl ether: heptane:
acetic acid (60:40:3 v/v) as a solvent. The [1-14C]DHA was
purified because the stock tracer bottles used for this
study had been opened in the past, a factor which was
previously found to reduce tracer purity over time despite
storing it in a −80°C freezer, due to loss of the preservative
argon gas blanket in the stock bottle once opened. The
plate was sprayed with 0.03% 6-p-toluidine-2-naphtha-
lene-sulfonic acid in 50 mM Tris–HCl buffer (pH7.4)
(w/v), and the unesterified fatty acid band containing
[1-14C]DHA was identified under UV light, scraped and
purified from the silica particles by the Folch method (in
30 ml 2:1 v/v chloroform/methanol and 7.5 ml 0.5 M
KCl). The chloroform extract was dried under nitrogen,
reconstituted twice with 10 ml ethanol, centrifuged to re-
move additional silica particles, and pipetted to a new
50 ml Pyrex tube. The ethanol extract was reconstituted
in 5 ml of ethanol. Radioactive purity measured in a
portion of the ethanol extract with HPLC using aceto-
nitrile/water (90/10%) as a solvent (constant flow rate of
2 ml/min), confirmed that 93% of the radioactivity eluted
at the same time as the unesterified DHA (unlabeled)
standard. On the day of the experiment, a portion of the
ethanol extract was dried under nitrogen and resuspended
in HEPES buffer, pH 7.4, containing 50 mg/ml fatty acid-
free bovine serum albumin (Sigma-Aldrich, St Louis, MO).
An acute 1 mg/kg i.v. dose of (−)-quinpirole hydro-

chloride dissolved in 0.9% saline (Sigma-Aldrich) was
chosen because it produces widespread significant incre-
ments in the incorporation coefficient, k*, for AA in the
brain of unanesthetized rats, which can be blocked by
the D2-like receptor antagonists, butaclamol or raclo-
pride, without causing convulsions [12,14,31].

Surgical procedures and tracer infusion
A total of 16 rats were randomized to saline or quinpir-
ole treatment (n = 8 per treatment). Rats were anesthe-
tized with halothane (2–3% v/v in O2) and polyethylene
(PE 50) catheters were surgically inserted into the right
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femoral artery and vein (4 rats per day, 2 saline and 2
quinpirole) [31]. The wound was closed with surgical
clips and the rat was wrapped loosely, with its upper
body remaining free, in a fast-setting plaster cast taped
to a wooden block. Each surgery lasted 20–25 min. Rats
were allowed to recover from anesthesia for 3–4 h in an
environment maintained at 25°C. Rectal temperature
was maintained at 36.5-37.5°C using a feedback-heating
device and rectal thermometer. Arterial blood pressure
and heart rate were measured with a blood pressure re-
corder (CyQ 103/302; Cybersense, Nicholasville, KY).
One minute after an i.v. injection of quinpirole or saline,
[1-14C]DHA (170 μCi/kg, 2 ml) was infused into the
femoral vein for 5 min at a rate of 400 μl/min, using an
infusion pump (Harvard Apparatus Model 22, Natick,
MA). Blood was collected at baseline and after [1-14C]
DHA infusion (time of collection: 0, 0.2, 0.35, 0.75, 1.5,
3.0, 4.0, 4.9, 5.5, 6.5, 7.5, 10.0, and 19.0 min). Twenty
min after beginning tracer infusion, the rat was eutha-
nized with an overdose of Nembutal® (90 mg/kg, i.v.)
and decapitated. The brain was removed, frozen in 2-
methylbutane maintained at −40°C in dry ice, and stored
at −80°C until sectioned.

Chemical analysis
Blood samples, collected before, during or after [1-14C]
DHA infusion, were centrifuged immediately at 18,000 g
for 30 s at room temperature. Total lipids were ex-
tracted from plasma (30 μl) using a modified Folch pro-
cedure [32]. One hundred μl of the lower organic phase
was used to determine the radiolabeled unesterified
plasma [1-14C]DHA concentration by liquid scintillation
counting.
Concentrations of unlabeled, unesterified fatty acids

were determined from 100 μl of ice-thawed arterial
plasma collected at 20 minutes. Unesterified heptadeca-
noic acid (17:0) was added as an internal standard to the
plasma and total lipids were extracted with the Folch
method. The total lipid extract was separated by thin
layer chromatography on 60 A° silica gel plates
(Whatman, Clifton, NJ) alongside phospholipid, unester-
ified fatty acids, triglyceride and cholesteryl ester stan-
dards using the solvent system heptane: diethylether:
glacial acetic acid (60:40:3, v/v/v). The plates were
sprayed with 0.03% 6-p-toluidine-2-naphthalene-sulfonic
acid in 50 mM Tris–HCl buffer (pH7.4) (w/v), and the
unesterified fatty acids band was identified under UV
light, scraped and methylated with 1% H2SO4 (by vol) in
anhydrous methanol (3 h at 70°C) after adding 0.2 ml
toluene. The fatty acid methyl esters were extracted with
3 ml heptane after terminating the reaction with 1.5 ml
water [33], reconstituted in 25 μl of isooctane and quan-
tified by gas chromatography as described [30]. The in-
jection volume was 2 μl.
Quantitative autoradiography
Quantitative autoradiography was performed on a total of
81 brain regions from autoradiographs of coronal brain
sections. The regions were identified from a stereotaxic
rat brain atlas [34], and were sampled in both hemi-
spheres. The average of bilateral measurements for each
region from three consecutive brain sections was used to
calculate regional radioactivity (nCi/g wet brain) by digital
quantitative densitometry, using the public domain 1.62
Analysis NIH Image program. Regional brain incorpor-
ation coefficient k* (ml plasma/s/g wet brain) of [1-14C]
DHA were calculated as follows [35]:

k� ¼ c�brain 20minð ÞZ 20

0
c�plasmadt

ð1Þ

where c�brain (nCi/g wet brain wt) is brain radioactivity
20 min after infusion, c�plasma (nCi/ml plasma) is arterial

unesterified [1-14C]DHA concentration, and t (min) is
time after beginning [1-14C]DHA infusion. Integrated
plasma radioactivity (integral of c*plasma.dt), which corre-
sponds to the input function, was determined by trapez-
oidal integration and used to calculate k*.
The regional rate of incorporation of unesterified DHA

from plasma into brain phospholipids, Jin (nmol/s/g), was
calculated as follows [30,36,37]:

J in ¼ k�cplasma ð2Þ
where cplasma is the plasma concentration (nmol/ml) of

unlabeled unesterified DHA. Since negligible amounts of
DHA (<1%) can be synthesized de novo by the brain
from its precursor, alpha-linolenic acid [30,36], Jin repre-
sents the metabolic loss of DHA by the brain [35].

Statistical analysis
All data are presented as mean ± SD. An unpaired t-test
was used to assess significant changes in body weight,
baseline body temperature, arterial blood pressure and
heart rate, input function, the incorporation coefficient
(k*) and the incorporation rate, Jin. A paired t-test was
applied to compare mean body temperature, blood pres-
sure and heart rate in the same animal before and after
saline or quinpirole injection. Statistical significance was
accepted at p < 0.05.

Results
Physiological parameters
One control rat died after surgery and prior to infusion
with saline due to unknown causes. During the brain sli-
cing, one control and one quinpirole brains were not sec-
tioned uniformly, resulting in a saturated, unquantifiable
signal, and a sample size of 6 saline and 7 quinpirole.
Physiological parameters, plasma input function and fatty



Figure 1 14C-DHA plasma radioactivity over 20 minutes in rats
administered acute 1 mg/kg i.v. dose of (−)-quinpirole
hydrochloride dissolved in 0.9% saline or vehicle consisting of 0.9%
saline. Solid line represents saline treated rats; dashed line represents
quinpirole treated rats. Values are mean± SD of n = 6 saline and 7
quinpirole treated rats per group.
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acid concentrations were therefore obtained from 6 saline
and 7 quinpirole treated rats.
Table 1 shows bodyweight, body temperature, arterial

blood pressure, heart rate and orofacial activity, before
and after saline or quinpirole treatment. Body weight did
not differ significantly between the groups. Baseline body
temperature was within physiological range (36.5-37.5°C)
for both groups. Baseline body temperature, heart rate
and systolic and diastolic blood pressure did not differ sig-
nificantly (P > 0.05 by unpaired t-test).
Heart rate and systolic and diastolic blood pressures

did not significantly change after saline or quinpirole in-
jection, compared to baseline (P > 0.05 by paired t-test).
Body temperature did not change also after saline injec-
tion, but was significantly reduced by 0.6°C after quin-
pirole injection (P < 0.01 by paired t-test; Table 1).
All quinpirole-treated rats but not controls exhibited

orofacial head- and sniffing activity between 2 to 10 mi-
nutes after quinpirole injection, as reported [16]. No
convulsions were observed in either group.

Plasma input function
The plasma [1-14C]DHA-time curve is shown in Figure 1.
Mean integral radioactivity over time, which represents the
input function, did not differ significantly between saline
and quinpirole treated rats (quinpirole, 183834 ± 51257
nCi/ml/s, n = 7 versus saline, 184872 ± 49596 nCi/ml/s,
n = 6), consistent with our previous report [38].

Plasma unesterified fatty acid concentrations
Plasma unesterified fatty acid concentrations, including
DHA concentration, did not differ significantly between
the groups (Additional file 1: Table S1). DHA concentra-
tion was 13 ± 2 nmol/ml (n = 6) in controls, and 17 ±
4 nmol/ml (n = 7) in quinpirole treated rats (p = 0.096).

Incorporation coefficient (k*)
Mean values of DHA incorporation coefficient k* in
acute saline- and quinpirole- treated rats are presented
Table 1 Physiological parameters before and after saline or q

Saline (n

Before

Body weight (g) 336 ± 22

Rectal temperature (°C) 36.5 ± 1.0

Heart rate (beats/min) 434 ± 36

Arterial blood pressure (mm Hg)

Systolic 182 ± 19

Diastolic 102 ± 13

Number of rats with orofacial activity1 0/6
1Orofacial activity, consisting of head tremors and sniffing was observed for 10 min
characteristic head tremors and sniffing activity within 2 minutes of drug injection.
**P < 0.01 compared to before quinpirole injection by paired t-test.
in Table 2. Regional k* values ranged between 3.4 to
15.9 ml/s/g × 10−4 in saline-treated control rats, consist-
ent with our previous report [16]. There was no signifi-
cant difference in k* between quinpirole-treated and
control rats in any of the 81 brain regions examined. A
representative autoradiogram comparing the DHA signal
following saline or quinpirole is shown in Figure 2.

Incorporation rate (Jin)
Regional rates of unesterified DHA incorporation into the
brain, calculated from the product of k* and unesterified
plasma DHA concentration (2), did not differ significantly
between the groups in the 81 regions examined (data not
shown). Mean Jin values in vehicle and quinpirole treated
rats were 58.8 ± 20.8 and 73.6 ± 22.5 nmol/s/g×10−4, re-
spectively (P >0.05 by unpaired t-test).

Discussion and conclusions
D2-like receptor activation by acute quinpirole did not
significantly change brain DHA incorporation coefficient
(k*) or rate (Jin) in any of the 81 regions studied. The
uinpirole administration to unanesthetized rats

= 6) Quinpirole (n = 7)

After Before After

331 ± 13

37.1 ± 0.2 37.2 ± 0.3 36.6 ± 0.1**

393 ± 50 441 ± 22 444 ± 20

164 ± 33 182 ± 7 178 ± 13

88 ± 25 104 ± 6 95 ± 14

0/6 0/7 7/7

utes after saline or quinpirole injection. All quinpirole-treated rats exhibited
Values are mean ± SD of n = 6 saline and 7 quinpirole treated rats per group.



Table 2 Mean values of [1-14C] docosahexaenoic acid
incorporation coefficient k*in acute saline- and
quinpirole-treated rats

Brain region Saline (n = 6) Quinpirole (n = 7)

Telencephalon

Prefrontal cortex layer I 3.42 ± 0.87 3.00 ± 0.73

Prefrontal cortex layer IV 3.76 ± 0.98 3.66 ± 1.21

Primary olfactory cortex 3.28 ± 0.85 3.77 ± 1.76

Frontal cortex (10)

Layer I 3.13 ± 0.79 3.88 ± 1.54

Layer IV 3.51 ± 1.00 4.26 ± 1.67

Frontal cortex (8)

Layer I 3.38 ± 0.91 3.76 ± 1.77

Layer IV 3.66 ± 1.02 4.13 ± 1.91

Pyriform cortex 3.29 ± 0.60 3.12 ± 0.92

Anterior cingulate cortex 4.18 ± 0.93 5.06 ± 2.80

Motor cortex

Layer I 3.35 ± 0.71 3.60 ± 1.39

Layer II – III 3.72 ± 0.88 4.39 ± 1.74

Layer IV 4.00 ± 0.92 4.42 ± 1.59

Layer V 3.35 ± 0.79 3.64 ± 1.35

Layer VI 3.25 ± 0.61 3.50 ± 1.29

Somatosensory cortex

Layer I 3.61 ± 0.83 4.01 ± 1.57

Layer II–III 3.97 ± 0.88 4.68 ± 1.92

Layer IV 4.20 ± 1.03 4.57 ± 1.73

Layer V 4.09 ± 0.90 4.51 ± 1.72

Layer VI 3.93 ± 0.89 4.44 ± 1.72

Auditory cortex

Layer I 4.09 ± 1.36 4.51 ± 1.29

Layer IV 4.07 ± 1.23 4.11 ± 1.22

Layer VI 3.62 ± 1.21 3.82 ± 1.18

Visual cortex

Layer I 3.44 ± 1.10 4.17 ± 1.37

Layer IV 3.92 ± 1.24 4.52 ± 1.35

Layer VI 3.77 ± 1.14 4.38 ± 1.30

Preoptic area (LPO/MPO) 3.39 ± 0.76 3.48 ± 1.12

Suprachiasmatic nu 3.55 ± 0.90 3.73 ± 1.18

Globus pallidus 3.28 ± 0.71 3.83 ± 1.38

Bed nu striaterminalis 3.44 ± 0.76 3.58 ± 1.15

Olfactory tubercle 4.41 ± 1.06 4.39 ± 1.34

Diagonal band

Dorsal 4.36 ± 1.07 3.92 ± 1.31

Ventral 4.11 ± 1.05 3.80 ± 1.36

Amygdala basolat/med 3.95 ± 0.86 3.65 ± 0.96

Hippocampus

Table 2 Mean values of [1-14C] docosahexaenoic acid
incorporation coefficient k*in acute saline- and
quinpirole-treated rats (Continued)

CA1 3.91 ± 0.85 3.36 ± 0.77

CA2 4.00 ± 0.91 3.41 ± 0.80

CA3 4.11 ± 0.92 3.69 ± 0.86

Dentate gyrus 4.29 ± 0.99 4.18 ± 1.05

SLM 4.49 ± 1.01 4.91 ± 1.92

Accumbens nucleus 3.45 ± 0.83 3.33 ± 1.16

Caudate putamen

Dorsal 4.33 ± 1.00 3.67 ± 1.40

Ventral 4.35 ± 1.09 3.80 ± 1.29

Lateral 4.39 ± 1.00 3.76 ± 1.34

Medial 4.36 ± 1.04 3.68 ± 1.32

Septal nucleus lateral 3.90 ± 0.88 3.31 ± 1.20

medial 4.19 ± 1.01 3.84 ± 1.15

Diencephalon

Habenular nu lateral 5.50 ± 1.15 5.75 ± 1.85

Habenular nu medial 5.48 ± 1.67 5.12 ± 1.60

Lateral geniculate nu dorsal 4.61 ± 1.91 4.19 ± 1.16

Medial geniculate nu 4.59 ± 1.81 4.83 ± 1.61

Thalamus

Ventroposterior lateral nu 4.78 ± 2.14 4.08 ± 0.96

Ventroposterior medial nu 4.99 ± 2.15 4.31 ± 1.06

Paratenial nu 4.61 ± 0.88 4.46 ± 1.76

Anteroventral nu 5.91 ± 1.26 5.84 ± 2.41

Anteromedial nu 4.95 ± 1.11 4.61 ± 1.77

Reticular nu 4.98 ± 1.09 4.93 ± 2.08

Paraventricular nu 4.41 ± 0.87 4.23 ± 1.68

Parafascicular nu 4.88 ± 1.31 4.85 ± 1.70

Subthalamic nucleus 4.77 ± 1.47 4.93 ± 1.71

Hypothalamus

Supraoptic nu 5.09 ± 1.47 5.34 ± 1.41

Lateral 3.89 ± 0.93 3.75 ± 1.29

Anterior 3.91 ± 1.00 3.90 ± 1.25

Periventricular 3.40 ± 1.00 3.29 ± 1.05

Arcuate 4.32 ± 1.20 4.66 ± 1.79

Ventromedial 4.03 ± 1.13 4.54 ± 1.87

Posterior 4.52 ± 0.92 4.01 ± 1.43

Mammillary nucleus 3.99 ± 1.62 4.59 ± 1.48

Zone Incerta 4.36 ± 1.40 4.18 ± 1.27

Mesencephalon

Interpeduncular nucleus 5.09 ± 1.42 5.89 ± 2.18

Substantianigra 3.50 ± 0.99 4.45 ± 1.75

Pretectal area 4.07 ± 1.18 4.92 ± 1.92

Superior colliculus 4.17 ± 1.07 5.38 ± 2.28
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Table 2 Mean values of [1-14C] docosahexaenoic acid
incorporation coefficient k*in acute saline- and
quinpirole-treated rats (Continued)

Deep layers 4.05 ± 1.25 4.71 ± 1.12

Inferior colliculus 6.62 ± 2.06 7.01 ± 2.52

Rhombencephalon

Flocculus 5.67 ± 1.68 6.16 ± 2.24

Cerebellar gray matter 5.58 ± 1.65 6.59 ± 2.31

Molecular layer cerebellar

gray matter 6.54 ± 1.45 7.23 ± 2.96

White matter

Corpus callosum 2.74 ± 0.68 2.74 ± 1.08

Internal Capsule 3.19 ± 0.78 3.30 ± 1.02

Cerebellar white matter 4.56 ± 1.67 5.38 ± 1.83

Non-blood–brain barrier regions

Subfornical organ 4.02 ± 0.93 4.72 ± 3.10

Median eminence 5.03 ± 1.87 5.44 ± 1.73

Choroid plexus 15.89 ± 6.07 16.66 ± 6.90

k* = (ml/s/g) x 10−4. Values are mean ± S.D of n = 6 saline and 7 quinpirole.
Each region of interest was measured in sextuplicate in each rat.
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incorporation coefficient k* reflects the metabolic loss of
DHA by the brain following its release from membrane
phospholipid and Jin reflects net loss [35]. The lack of a
quinpirole effect on each parameter suggests that D2-
like receptor activation does not involve DHA release
from membrane phospholipid.
DHA release is controlled by iPLA2 [3], which is acti-

vated following displacement of bound calmodulin pro-
tein by calcium influx factor [23]. Intracellular calcium
Figure 2 Representative autoradiogram of coronal brain slices showin
0.9% saline or 1 mg/kg i.v. dose of (−)-quinpirole hydrochloride disso
increases concurrently because it is released with the
calcium influx factor from the ER/SR in response to IP3
formation following PLC stimulation [19-21]. Unlike
iPLA2, cPLA2 requires extracellular calcium for activa-
tion [3], consistent with in vivo evidence of increased
AA but not DHA incorporation into the brain following
glutamatergic NMDA receptor activation, which allows
extracellular calcium into the cell [16]. D2-like receptor
stimulation also allows extracellular calcium into the
cell, similar to NMDA [28]. Thus, the increase in AA
[12,38] but not DHA incorporation (Table 2) following
acute quinpirole confirms the independence of iPLA2 of
extracellular calcium and likely reflects selective coup-
ling of D2-like receptors to cPLA2 but not iPLA2.
Several in vitro studies reported a reduction in intracel-
lular calcium levels following dopaminergic activation
[27,28]. The lack of effect of quinpirole on k* agrees with
these observations.
This study does not rule out the possibility that intra-

cellular calcium levels increased following D2-receptor
stimulation with quinpirole, as reported in vitro [25-28].
Such elevations if present, however, were not significant
enough to produce a measurable DHA signal with our
method.
This study demonstrates that there is no DHA signal fol-

lowing activation of D2-like receptors, although there is a
signal following activation of muscarinic and serotonergic
receptors [9,17]. It is likely, therefore, that iPLA2 is acti-
vated by the latter two but not D2 receptors. The difference
in G-protein receptor coupling remains to be clarified, but
it may be related to limited intracellular calcium release
and dissociation of calmodulin from iPLA2 following
g 14C-DHA radioactivity following acute vehicle consisting of
lved in 0.9% saline.
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dopaminergic receptor stimulation, compared to muscar-
inic stimulation [39-42].
In summary, this study showed that D2-like receptor acti-

vation does not involve DHA release as a second messen-
ger. This observation, along with our previous finding that
D2-like receptor activation stimulates AA release, suggest
that D2 receptors are selectively coupled to AA but not
DHA as a second messenger.

Additional file

Additional file 1: Table S1. Plasma unesterified fatty acid
concentrations (nmol/ml) in rats treated with saline or quinpirole.
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