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Electrical stimulation modulates Wnt signaling
and regulates genes for the motor endplate and
calcium binding in muscle of rats with spinal cord
transection
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Abstract

Background: Spinal cord injury (SCI) results in muscle atrophy and a shift of slow oxidative to fast glycolytic fibers.
Electrical stimulation (ES) at least partially restores muscle mass and fiber type distribution. The objective of this
study was to was to characterize the early molecular adaptations that occur in rat soleus muscle after initiating
isometric resistance exercise by ES for one hour per day for 1, 3 or 7 days when ES was begun 16 weeks after SCI.
Additionally, changes in mRNA levels after ES were compared with those induced in soleus at the same time points
after gastrocnemius tenotomy (GA).

Results: ES increased expression of Hey1 and Pitx2 suggesting increased Notch and Wnt signaling, respectively, but
did not normalize RCAN1.4, a measure of calcineurin/NFAT signaling, or PGC-18 mRNA levels. ES increased PGC-1a
expression but not that of slow myofibrillar genes. Microarray analysis showed that after ES, genes coding for
calcium binding proteins and nicotinic acetylcholine receptors were increased, and the expression of genes
involved in blood vessel formation and morphogenesis was altered. Of the 165 genes altered by ES only 16 were
also differentially expressed after GA, of which 12 were altered in the same direction by ES and GA. In contrast to
ES, GA induced expression of genes related to oxidative phosphorylation.

Conclusions: Notch and Wnt signaling may be involved in ES-induced increases in the mass of paralyzed muscle.

innervated muscle.

Molecular adaptations of paralyzed soleus to resistance exercise are delayed or defective compared to normally
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Background

Spinal cord injury (SCI) causes substantial loss of skel-
etal muscle mass, endurance, fiber cross sectional area,
and strength (for reviews, see [1-3]). Reduced resistance
to fatigue is associated with a shift in muscle fiber type
from slow to mixed or fast twitch fibers which are less
able to generate ATP by oxidative phosphorylation to
support repetitive contractions, and are thus more
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quickly fatigued [1-3]. The fiber type of an individual
muscle cell is determined by its specific content of con-
tractile isoforms and the mix of enzymes involved in
ATP generation. Determinants of fiber type include sig-
naling through calcineurin/NFAT in concert with activa-
tion of the transcriptional coregulator PGC-la [4].
PGC-1a is also a master regulator of mitochondrial bio-
genesis and oxidative phosphorylation [4]. Following SCI
in male rats, nuclear levels of PGC-1a are reduced, as is
expression of slow-twitch fiber type genes and genes for
enzymes needed for oxidation of fats and carbohydrates
to generate ATP [5].
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Neuromuscular activity induced by electrical stimula-
tion (ES) of nerves is capable of reducing or reversing at
least some adverse effects of SCI on muscle. In rats with
spinal isolation (SI), implanted microstimulators prevent
muscle loss when stimulation of muscle contraction is
provided [6]. SI is a variant of SCI in which reflex arcs
below the level of the spinal cord transection are
disrupted through additional surgeries that include cut-
ting thoracic and lumbar dorsal nerve roots. Similarly,
ES prevents loss of muscle in individuals with SCI [7],
and exercise using functional ES (FES)-induced muscle
contractions increases muscle mass, force of muscle
contraction, and muscle endurance and reverses at least
partially slow to fast fiber type changes [8-14].

Very little is known about the molecular adaptations
that underlie the effects of ES to restore a more normal
function to chronically paralyzed muscle or how such
adaptations compare to those of a normally innervated
muscle exercised in a similar manner. Adaptation of
skeletal muscle to exercise has been shown to involve
molecular responses that include the activation of sev-
eral fundamental signaling networks. Signaling through
Notch has been implicated in muscle hypertrophy in re-
sponse to testosterone or resistance exercise [15-17]. In
rodents, hypertrophy in response to muscle overloading
was associated with and requires increased Wnt/f3-
catenin signaling [18,19]. In slow-twitch, but not fast-
twitch muscle, hypertrophy has been suggested by
some studies to also involve signaling through the
calcium-dependent calcineurin/NFAT pathway [20,21].
Expression of PGC-1a and downstream genes for mito-
chondrial biogenesis is increased rapidly after exercise
[22,23]. A study of gene expression changes in 2 individ-
uals with SCI in whom ES had been used to train the
soleus muscle for 6 years showed that ES increased ex-
pression of slow-twitch fiber genes and genes encoding
PGC-1a and proteins involved in metabolism of carbo-
hydrates and lipids to generate ATP [24]. While one
might expect rapid increases in expression of such genes
after initiating ES, in patients with SCI, 4 weeks of ES
did not alter fiber types in the tibialis anterior muscle
[25]; it is not clear whether this finding reflects a delay
in activation of signaling by which programs for expres-
sion of such gene expression or a defect in the ability of
neuromuscular activity to activate the molecular signals
necessary to upregulate these genes. The possibility that
there are fundamental impairments in response of para-
lyzed muscle to training using ES after SCI has not been
systematically explored.

The primary goal of this investigation was to gain
insight into the early molecular adaptations that occur
after initiating isometric resistance exercise in rats with
SCI. Isometric exercise was provided by ES that was
begun 16 weeks after SCI and performed daily for 1, 3
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or 7 days in female rats with a complete transection of
the spinal cord at T10. Properties of muscle from these
animals were compared to those for animals with SCI
that were not trained with ES and with animals that had
sham SCI surgery. Real-time PCR was used to examine
changes in expression levels of selected genes involved
in Notch, Wnt and calcineurin signaling, as well as
genes for PGC-1a and slow-twitch myofibrillar genes. In
addition, an unbiased assessment of changes in gene
expression was performed using high density oligo-
nucleotide DNA microarrays. We used soleus muscle
for these studies as it is a slow-twitch muscle that
might be expected to show large alterations in these
pathways, and for which effects of long-term ES on gene
expression in humans have been reported [24]. To
provide insight as to how exercise responses of a para-
lyzed muscle differ from a normal one, gene expression
changes induced by ES were compared to those that
occur when a normally innervated soleus is overloaded
by a distal tenotomy of a synergist, the gastrocnemius
(GA) [26,27]. Design of the experiments is shown in
Figure 1.

Results

Effects of SCI, ES and GA on body and muscle weights
When compared to animals that underwent a sham SCI
procedure (Sham-SCI), body weights were increased by
6.7% for the SCI group that did not receive ES (SCI) and
by 8.8% for the SCI group trained with ES (SCI-ES) for
7 days (Table 1). These trends were also present for pre-
operative body weights and thus most likely reflect dif-
ferences in the size of the animals in the cohorts used.

SCI reduced plantaris muscle weights by 42% and soleus
muscle weights by 43% (Table 1). The weights of the
plantaris and soleus muscles from the SCI-ES animals at
1, 3 or 7 days of ES were not significantly different from
those for the SCI animals and remained significantly re-
duced compared to Sham-SCI animals (Table 1). After
7 days of ES, when effects of ES on muscle weight might
be expected to be the greatest, the weights of the left
and right plantaris from SCI-ES animals were 0.072 +
0.005 and 0.059 + 0.002; this difference was not significant
(p<0.067). The weight of the left soleus was greater
than that of the right soleus for SCI-ES animals at 7 days
(p<0.0017). The increase in soleus muscle weight after
7 days of ES indicates that some muscle hypertrophy
occurred with the ES paradigm used.

In the GA model, body weights were similar for Sham-
GA and GA groups; two-way ANOVA for muscle
weights showed a main effect of GA for plantaris (p <
0.01) and soleus (p<0.01) but not for time. Plantaris
weight was increased by 11% at 3 days after GA, and
appeared to be 9.9% greater at 7 days although this
change did not reach significance. At 7 days after GA,
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soleus muscle mass was also increased (p <0.01) by ap-
proximately 28% compared to soleus from Sham-GA
animals at the same time point.

Genome-wide analysis of the effects of SCl on muscle
gene expression

Microarray analysis revealed 404 genes that were altered
by at least 1.5 fold in soleus at 17 weeks after SCI, of

which 219 were upregulated and 185 were downregulated.
Among the 10 most upregulated genes were the
Wnt inhibitors sFRP2 and sFRP4, as well as periostin
(Postn), which is a protein linked to angiogenesis and
cell mobility, and ciliary neurotrophic factor receptor
(Cnftr) (Figure 2A). Highly downregulated genes in-
cluded Ankrd2 (Figure 2A), as well as the calcineurin
inhibitors RCAN1 and RCAN2, the slow-twitch myosin
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Treatment Number of animals Pre Op weight (g) Final weight (g) Left soleus (g/g) Left plantaris (g9/g)
SHAM-SCI 13 2329+95 2380+ 145 0.049 = 0.005 0.100+0.017
Scl 8 2415+137 2543 +236° 0.028 + 0.009° 0.057 +0.014°
1 day ES 5 2314+10.2 2599+22.1 0.035 +0.009° 0.049 + 0.006°
3 Day ES 4 227+7.2 2553+£89 0.037 +0.005° 0.074+0.011°
7 Day ES 5 2404 +11.3 259.0 + 29.6° 0.032 +0.003° 0.072+0012°
1 Day GA 8 2538+183 251.90+ 200 0.050+0.005 0.090+0.012
1 Day Sham GA 7 260.1 £ 16.7 256.7£16.0 0.047 £0.003 0.087+£0.013
3 Day GA 8 279.1+£20.7 2733+18.1 0.051 +0.006 0.090 + 0.006"
3 Day Sham GA 8 2825+220 2758+217 0.048 +0.009 0.081 +0.005
7 Day GA 8 2680125 2590£123 0.055 + 0.009° 0.089+0.015
7 Day Sham GA 8 2795+233 2770+198 0.043 +0.004 0.081 +0.005

Muscle weights are normalized relative to preoperative body weights and are shown as mean + SEM. 2 p <0.05 versus Sham-SCI. ® p < 0.05 versus the Sham-GA
group at the same time point. Abbreviations: SCl spinal cord injured, ES electrical stimulation, GA gastrocnemius ablation, Op operative.

heavy chain gene MyH7b, and the calcium binding pro-
tein calsequestrin 2 (Additional file 1: Table S1).

GeneGo analysis of genes altered by SCI was
performed to identify functionally enriched biological
themes represented by these genes. Among the most
highly enriched themes were angiogenesis and blood
vessel morphogenesis, protein folding, and Wnt signal-
ing (Figure 2B). All genes categorized as being involved
in protein folding were downregulated, and to a similar
extent (Figure 2B). Most genes for Wnt signaling (7 out
of 9) were upregulated with marked increases observed
for sFRP2 and sFRP4 as noted above; Wntl6, was
downregulated (Figure 2B). The majority of genes for
angiogenesis and blood vessel morphogenesis were also
upregulated (13 out of 16) (Figure 2B). Among GeneGo
Pathway and Metabolic networks, glutathione and lipid
metabolism were also enriched.

ES effects on selected signaling genes in soleus muscle

To learn how ES altered expression of genes that partici-
pate in programs necessary for muscle hypertrophy and
for control of muscle fiber type and oxidative metabol-
ism, the effects of ES on mRNA levels for transcripts of
such genes was examined by qPCR. Stimulation of so-
leus by ES in humans for 6 years increased expression of
PGC-1a and genes for oxidative metabolism as well as
altered slow myosin heavy chain isoforms expression
[24]. To evaluate early effects of ES on levels of such
transcripts, mRNA levels for PGC-1a and PGC-18, as
well as several genes typical of slow-twitch fibers, were
determined by qPCR. PGC-1a mRNA levels appeared to
be reduced by SCI, although not significantly, and were
increased by ES (Figure 3A). PGC-1f3 mRNA levels were
reduced by SCI by 52% and were not increased at 7 days
after initiating ES. The slow-twitch fiber genes MyH?7,
Tnn I-slow and Tnn C-slow were reduced by SCI by

70-95%, but these genes were not increased by ES at
7 days (Figure 3A). Expression of the calcineurin/
NFAT-sensitive transcript RCAN1.4 was reduced by
SCI and, unexpectedly, was not altered by ES at 7 days
(Figure 3A). Expression of RCAN2 was reduced by
SCI 91% and was also unaffected by ES at 7 days
(Figure 3A); a similar pattern was observed for RCAN]1,
although these differences did not reach significance
(F=3.16, p 0.068, ANOVA).

Both Notch and Wnt signaling pathways have been
implicated in muscle growth and repair during adult-
hood [16-18,28]. To test how 7 days of ES altered Notch
and Wnt signaling after SCI, expression of several genes
involved in these signaling pathways in soleus muscle
was examined using qPCR. SCI did not alter expression
of Pitx2 or Lefl, which are Wnt-responsive genes
[29,30], but Pitx2 expression was increased by ES for
7 days (Figure 3B). Expression of the Wnt co-receptor
LRP5 followed the same pattern, being unchanged after
SCIL, and increased at 7 days after starting ES (Figure 3B).
Expression of the Wnt inhibitors sFRP1 and sFRP2 was
increased after SCI and appeared to be reduced by 7 days
of ES, although these changes did not reach significance
(Figure 3B). Expression of the Notch target gene Heyl
was upregulated by approximately 1.5-fold after SCI, and
further increased by 7 days of ES, suggesting increases in
Notch signaling; expression of another Notch target
gene, Hes1, was not significantly altered (Figure 3B).

Genome-wide analysis of the effects of ES gene
expression in soleus muscle

To gain further insight into early responses of soleus to
ES, gene expression profiles in soleus were examined
across time by microarray analysis. A total of 165 differ-
ent genes were altered by at least 1.5 fold at one or more
time points after initiating ES. The largest number of
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genes (129) was altered at 1 day, of which 90 were
upregulated and 39 were downregulated. At both 3 and
7 days after initiating ES, 29 genes were regulated. Cor-
relation between microarray and qPCR results was cal-
culated for the SCI and SCI-ES7 groups for RCANI,
RCAN2, and sFRP2. These mRNAs were chosen

because each was significantly altered by both micro-
array and qPCR approaches. Expression changes showed
good agreement between the two techniques (R* 0.76,
p <0.025).

Among the most altered genes was Ankrdl, which was
upregulated at 1 day after starting ES (Figure 4A). Other



Wu et al. BMC Neuroscience 2013, 14:81
http://www.biomedcentral.com/1471-2202/14/81

Page 6 of 15

Il Sham-SCI
A 20 1 sci
) [ SCI-ES 7 Days
1.5+
> b
c
(1]
S 104
1
e
- a aad aa aa a2 a
W 054 aa
0.0~
s R R | S,
N N N~
<) o ‘b\o 6\0 é‘\Q\ é GV'é' Cy'é
P Y \ & @
< N & & &
’ <&
B
20+
o 157
o
c
2
o 107 a 2
1
L) b
S b a
5- b "
a
0 -
N ) N QR ) N N N
‘\ ~ 4 4 R O ) )
[ &
NV & QQ' QQ' \g' & Q\e’ Q@‘
9 ) <
Figure 3 Assessment by gPCR of the effects of ES for 7 days on mRNA levels of PGC-1a-responsive genes, and genes involved in
signaling for calcineurin, Wnt/B-catenin and Notch. A. mRNA levels for fiber-type related genes. B. mRNA levels for Wnt signaling genes.
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genes upregulated at 1 day after starting ES included the
nicotinic acetylcholine receptor subunit D (Chrnd), and
the calcium binding protein S100a9 (Figure 4A). Several
genes upregulated by SCI were downregulated after initi-
ating ES, including Dclkl, GADD45a, and Ostalpha, a
solute transporter (Figure 4A).

To gain further insights into the functional implica-
tions of the gene expression changes elicited in soleus
by ES, an analysis of enrichment in biological themes
represented by the genes altered in soleus by ES was
performed. Pathways that were highly represented
among genes regulated by ES included fatty acid omega
oxidation, mitochondrial fatty acid beta-oxidation, and

CoA-biosynthesis. GeneGo Process networks included
muscle contraction, neuromuscular junction, blood ves-
sel morphogenesis, and calcium transport. All together,
11 genes were included in these processes, of which 10
were upregulated at 1 day, and one was downregulated
(Figure 5B). Calcium transport and muscle contraction
genes were upregulated at 1 day and had returned to
near normal levels by 7 days (Figure 5B); a similar pat-
tern of altered expression was observed for the blood
vessel morphogenesis genes a-1 adrenergic receptor and
CRH receptor 2 (Figure 5B). Neuromuscular junction
genes were upregulated at 1 day and downregulated by
7 days (Figure 5B).
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Comparison of alterations to the transcriptome in the
soleus muscle over time after ES or GA

To gain insight as to how gene expression changes stim-
ulated by ES of muscle paralyzed by SCI compared to
those induced by overload of the soleus by GA, gene ex-
pression was assessed over time in soleus muscle at 1, 3
and 7 days after GA. Following GA, 468 genes were al-
tered by at least 1.5 fold at one time point or more, with
the greatest number of altered genes, 309, being ob-
served at 3 days after GA; of these 309 genes, 140 were
downregulated and 169 upregulated.

Genes regulated by GA were strikingly different from
those regulated by ES. Only 16 of 468 genes regulated
by GA were also regulated by ES (Figure 5A), and all but
3 of these genes were altered at 1 day after initiating
these muscle overload paradigms. In addition, fewer
genes were altered by ES than GA at every time point.
Overall, ES altered approximately 65% fewer genes. Of
the 10 genes most highly upregulated by GA, only 3

were among the 10 most altered genes by ES, specifically
Ankrdl, ATF3 and s100a9 (Figure 4A and 4B). Similar
changes in expression level and temporal profile were
observed for S100a9 and ATF3 for GA and ES, with an
increase at 1 day and subsequent return toward baseline
expression values at 3 and 7 days (Figure 4A and 4B). By
contrast, after GA, Ankrdl levels were increased at all
times (Figure 4B), whereas Ankrdl levels increased at
1 day after ES then declined (Figure 4A).

Biological processes and pathways represented by dif-
ferentially expressed genes were also compared for ES
and GA. After GA, GeneGo Process networks that were
most greatly enriched were related to muscle contrac-
tion, negative regulation of cell cycle progression, and
lipid and carbohydrate metabolism (Figure 5C), a result
quite different from the list of enriched pathways ob-
served after ES (Figure 5B). After GA, genes related to
oxidative reduction represented another enriched func-
tional category, which included genes such as PGC-1a.
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skeletal muscle mass and presumed remodeling of capil-
Gene expression changes after complete spinal cord lary beds that must also occur. Blood flow to the lower
transection extremities is reduced after SCI reflecting diminished
In female rats at 17 weeks after SCI there were was en-  skeletal muscle mass [2]. Capillary density of the tibialis
richment in genes involved in angiogenesis and blood anterior after SCI is similar to or somewhat less than
vessel morphogenesis, protein folding and Wnt signal-  that for able-bodied controls [25], indicating that after
ing. Alterations in genes involved in the formation of SCI substantial remodeling of capillary networks must
blood vessels might be expected given the decrease in  have occured during atrophy after SCI. The decrease in

Discussion
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expression of genes supporting normal protein folding
might also be explained as a reflection of an atrophying
muscle that requires less de-novo synthesis of proteins.

More surprising was the enrichment in genes for Wnt
signaling, particularly the marked upregulation of the
Wnt inhibitors sFRP1, sFRP2 and sFRP4. The elevations
in expression of Wnt inhibitors must be interpreted to-
gether with changes of Pitx2, a Wnt responsive gene
[29]. That Pitx2 expression was unaltered at 17 weeks
after SCI may indicate that Wnt signaling overall was
unchanged by SCIL. One must also consider that Wnts
function primarily as autocrine and paracrine regulators
and that inhibition of Wnt signaling in specific microen-
vironments, such as the satellite cell niche, may not be
reflected by Pitx2 levels in whole muscle. Although de-
creased Wnt signaling has not been shown to accelerate
disuse atrophy of muscle, one might suggest that dimin-
ished Wnt signaling is detrimental to maintaining muscle
mass, because Wnt signaling has been implicated in
muscle hypertrophy. Specifically, 3-catenin, through which
canonical Wnt signaling regulates gene expression, has
been found in a transgenic mouse model to be necessary
for overload-induced muscle hypertrophy [18,19]. Findings
that signaling by Wnt7a through Fzd7 activates Akt/
mTOR signaling [28] suggests there is also {3-catenin inde-
pendent Wnt signaling that underlies the anabolic activity
of Wnts. Wnt signaling is also critical to fate commitment
and differentiation of myogenic precursors, and essential
for the repair of injured skeletal muscle in adulthood
[31,32], and one may view the hypertrophic response of
atrophied muscle as a reparative process following SCI.

Calcineurin activity has been shown to be exquisitely
sensitive to neuromuscular activity [20,33]. As such,
it was not surprising that levels of the NFAT-sensitive
transcript RCAN1.4 were greatly reduced after SCI.
An unexpected finding was that expression of the
calcineurin inhibitors RCAN1 and RCAN2 was also di-
minished after SCI. One interpretation of this result is
that expression of these genes is regulated in part by
calcineurin in an inhibitory feedback loop, such that ex-
pression levels of RCAN1 and RCAN2 fall when
calcineurin activity is low. In contrast to these findings
in muscle after SCI, RCAN2 expression rises by 35 days
after sciatic nerve transection in gastrocnemius muscle
[34]. Why RCAN2 expression differs in these two model
systems is not clear, although gender may be one factor.
Another may be a difference in spontaneous action po-
tentials in motor neurons, which are electrically silent
after nerve transection, whereas there is some evidence
that motor neurons are periodically activated after SCI,
presumably through spinal reflex arcs [35].

PGC-1la mRNA was not reduced at 17 weeks after
SCI, while PGC-18 was reduced; marked reductions in
mRNA levels for MyH7, Tnn C-slow and Tnn I-slow

Page 9 of 15

were also observed. Consistent with these findings, in a
previous report examining changes in gastrocnemius
muscle at 56 days after SCI, decreases were observed for
PGC-183 protein, and for expression of mRNA and pro-
teins for slow myofibrillar components [5]. However, in
contrast to the current study, mRNA levels for PGC-1a
were reduced in gastrocnemius muscle by greater than
50% at 56 days after SCI in male rats associated with a
similar reduction in PGC-la protein in whole muscle
and nearly complete loss of PGC-1a from nuclear frac-
tions obtained by subcellular fractionation [5]. Differ-
ences in PGC-la mRNA levels between these two
studies may relate to differences in muscle studied, be-
cause levels of PGC-la are elevated in slow twitch
muscle such as soleus compared to fast twitch muscles
[36]. Reasons for the differences in effects of SCI on
PGC-1a levels after SCI between males and females
could also be gender-related. In male rats, administra-
tion of a replacement dose of testosterone combined
with nandrolone markedly increased PGC-la mRNA
and protein in muscle of SCI rats [5], indicating that
PGC-1a is an androgen responsive gene.

Effects of ES on gene expression in soleus muscle

The current study showed that over the first 7 days after
initiating ES in a female rat model of SCI, alterations in
soleus gene expression were notable for genes were in-
volved in the Notch and Wnt signaling pathways, neuro-
muscular junctions, vascular remodeling, and calcium
transport, and for a lack of change in PGC-1a or of slow
myofibrillar proteins. Several studies of the effects of ES
on gene expression of individuals with SCI have been
conducted. Twenty four hours after resistance exercise
in humans with SCI, increased levels for IGFBP4,
MyoD, myogenin, p21-Wafl, and IGF-1 were observed
[37,38]. In separate studies of individuals with SCI,
prolonged periods of exercise training using ES pro-
moted gains in skeletal muscle mass and strength that
were associated with increased expression of citrate
synthase, GLUT1 and GLUT4 [39]; improved insulin
sensitivity was reported in one study [39] and a trend
toward improvements in insulin responsiveness was
found in a second [40].

The finding in the present study that ES did not alter
expression of slow myofibrillar proteins in soleus was
unexpected because in normally innervated muscle,
neuromuscular activity rapidly increases expression
levels of genes for mitochondrial proteins [23], and be-
cause in humans, long-term studies of ES have shown
increased expression of slow-twitch fiber genes and
genes encoding proteins involved in metabolism of
carbohydrates and lipids to generate ATP [24]. Expression
of slow fiber genes is upregulated by calcineurin/NFAT
signaling and PGC-1a [4] but neither PGC-1a expression
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nor calcineurin/NFAT signaling assessed by RCAN1.4
levels appeared to have changed after ES, suggesting one
explanation for the lack of effect of ES on such genes. Our
data do not permit one to exclude the possibility that
RCANI1.4 mRNA has a short half-life, which could pre-
clude detection of transient rises in levels of this transcript
at the time tissues were harvested, which was approxi-
mately 24 hours after the last session of ES. Evidence of a
delay in fiber type changes after initiating ES has also been
reported in humans in whom 4 weeks of ES did not alter
fiber types in the tibialis anterior muscle [25]. Why
upregulation of slow myofibrillar genes is delayed when
muscle is exercised after SCI by ES is unclear. One possi-
bility is that during the early period after initiating ES, ES
injured muscle fibers, as discussed further below. Such
injury might limit the ability of muscle fibers to respond
appropriately to increased neuromuscular activity. It is also
possible that one or more factors necessary for full activity
of PGC-1a and/or calcineurin/NFAT in upregulating such
genes is absent early after initiating ES, or not fully
activated by 7 days of ES.

Recent observations that activation of mTOR, a
requisite step for muscle hypertrophy, may not involve
growth factor/PI3 kinase/Akt signaling [41-43] has led
to the exciting question of what other signals might
stimulate overload-induced hypertrophy. In this regard,
a novel aspect of the above findings was that in the so-
leus muscle of rats with SCI, expression of both Heyl
and Pitx2 was elevated after 7 days of ES, suggesting that
there were increases in both Notch and Wnt/3-catenin
signaling. Signaling through Notch and Wnt is necessary
for muscle repair after injury [31,32], and has been im-
plicated in signaling for muscle hypertrophy in some ex-
perimental models but not others. Increased expression
of Notch has been implicated in muscle hypertrophy
resulting from testosterone in mice and humans [16,17].
Expression of a Notch-responsive gene, Hey2, was found
to be increased in female rats at 4 and 24 hours after a
bout of resistance exercise but was unaltered in male
rats [15]. As noted above, activation of f3-catenin and
upregulation of Wnt signaling genes has been found to
be associated with overload-induced muscle hypertrophy
[18,28], although specifically how Wnt signals to stimu-
late hypertrophy remains unknown.

A quite unexpected effect of ES was the upregulation
of genes encoding proteins that form the neuromuscular
junction, specifically subunits of the nicotinic acetylcho-
line receptor (e.g., Chrnd). One interpretation of this
finding is that by 17 weeks after SCI, an insufficient
number or density of such receptors is present at motor
endplates to support normal neuromuscular transmis-
sion, the failure of which is one potential mechanism for
reduced contractile response to neural inputs. Skeletal
muscle membrane potential has been reported to be
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reduced over the first 30 days after spinal cord transec-
tion in rats, associated with diffusion of nicotinic acetyl-
choline receptors away from motor endplates [44].
Alternative explanations should certainly be considered
and may include aborization of axons and subsequent
formation of additional neuromuscular junctions.

Influx of calcium across the cytoplasmic membrane
and release of calcium from the sarcoplasmic reticulum
and subsequent reuptake of calcium are critical to
excitation-contraction coupling. Failure of excitation-
contraction coupling is believed to be an important
mechanism underlying the easy fatigability observed
after SCI [45]. Information as to how calcium storage
and transport is altered in muscle after SCI is limited. In
one report, SCI was found to induce a mismatch be-
tween the slow and fast isoforms of the calcium trans-
porter SERCA and fiber type [46]. It is thus notable that
calcium transport was also an enriched GeneGo theme
over time in soleus muscle after ES. Among genes re-
lated to calcium binding and transport were those of
calsequestin 2 and S100a9. Calsequestin is thought to be
the major protein responsible for storing calcium within
the lumen of the sarcoplasmic reticulum [47,48], and re-
lease of calcium from calsequestin results in increased
cytoplasmic calcium levels, thereby initiating contrac-
tion. Two isoforms of calsequestin have been identified,
with calsequestin 2 found in slow-twitch muscle and
heart. Upregulation of calsequestin 2 in response to ES
might improve the capacity of muscle for excitation-
contraction coupling by increasing the reservoir of cal-
cium binding sites within the SR.

Comparison of gene expression changes in the soleus
muscle after ES or GA
The comparison of gene expression changes elicited in
soleus muscle by ES and GA revealed a small number
of genes regulated by both forms of exercise, but
overall showed very different profiles, and marked differ-
ences in the functional categories for which differentially
expressed genes were over-represented. Notably under-
represented among the genes regulated by ES were those
associated with slow-twitch fibers, metabolism of sub-
strates in energy metabolism and oxidative phosphoryl-
ation. One might infer that the genes regulated by both
ES and GA play critical roles in adaptation of skeletal
muscle to resistance exercise, and that the overall poor
overlap in genes differentially expressed after ES or GA
reflects early differences in the ability of muscle to adapt
to resistance exercise, or in the hitherto unexplored
mechanisms by which such adaptation occurs in the two
paradigms.

The absence of changes after ES in PGC-1a, slow-fiber
genes, and many PGC-1a target genes of energy metab-
olism suggest impairments or delays in the response of
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paralyzed and atrophied muscle to neuromuscular activ-
ity elicited in our study by ES. When considering this in-
terpretation of the data it should be noted that the
isometric exercise achieved in our study by ES for 1 hour
each day is of shorter duration than GA, which over-
loads soleus during every periods of activity; in addition,
GA produces non-isometric overloading of the soleus.
However, other reports have also found impaired exercise
responses of such genes in skeletal muscle after SCI,
supporting the view that differences observed between ES
and GA were, at least in part, attributable to underlying
properties of muscle rather than the nature of the exercise.
Studies in man suggest that changes in expression of
genes for slow-twitch fibers and energy metabolism do
not occur at 4 weeks after initiating ES [25]. Importantly,
longer periods of exercise by ES stimulate increases in
slow oxidative type I and fast oxidative type IIA fibers,
increased capacity for oxidative phosphorylation, and in-
creased contractile force associated with diminished
fatigability [1-3]. Why there is a delay in upregulation
of such genes occur is unknown.

Several reports suggest that during periods of disuse,
the normal protective mechanisms that minimize tissue
injury from the mechanical or metabolic demands of ex-
ercise are diminished or lost. A single bout of resistance
exercise in persons with SCI produced greater muscle
injury than a similar exercise in controls [49]; similarly,
studies of muscle from rats ambulating after periods of
muscle disuse due to spaceflight or hindlimb suspension
have shown increased myofiber damage and inflamma-
tion [50]. The identity of the genes involved in altering
gene expression programs to protect skeletal muscle
against the demands of exercise are not well understood
but are likely to include PGC-1la and its downstream
target genes. Loss of PGC-1a from skeletal muscle re-
duces exercise tolerance [51], and PGC-la has been
reported to favorably alter levels of antioxidants, and
thus to reduce oxidant stress [51,52].

Genes altered by both ES and GA included two with
reported roles in muscle biology: Ankrdl and ATEF3.
ATF3 is a transcription factor upregulated by cellular
stress [53] with an uncertain role in adaptation of
muscle to inactivity or exercise; it has been associated
with pathological cardiac hypertrophy and dysfunction
[54]. Ankrdl is one of 3 muscle ankyrin repeat domain
proteins (MARPs) and appears to function in part at
least by dissociating from its typical binding sites at the I
band to undergo nuclear translocation and participate in
transcriptional regulation thereby serving as a link
between the contractile apparatus and nucleus [55].
Ankrdl does not appear to be essential to normal func-
tion, because mice lacking Ankrdl appear to have a
normal phenotype, but mice lacking all MARPs have
subtle abnormalities in muscle contractile properties
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and stiffness [56]. Whether Ankrd1 is needed for proper
response to muscle overloading, or optimal recovery of
muscle after periods of inactivity, is unknown. A role for
Ankrdl in muscle pathology is suggested by findings
that dilated cardiomyopathies may be linked to Ankrdl
mutations [57,58].

Conclusions

Our findings suggest that during initial adaptations to
ES after 4 months of disuse due to complete spinal cord
transection, muscle must repair or regenerate vascula-
ture and cellular elements and structures, including
neuromuscular junctions and calcium storage machinery
of the sarcoplasmic reticulum. Wnt signaling appears to
be involved in initial responses of muscle to ES, consist-
ent with the role of this pathway in hypertrophy of nor-
mally innervated muscle [18,28]. A novel finding from
this study is upregulation of Heyl by ES, which suggests
a role for Notch in the hypertrophy of atrophied muscle
in response to exercise. The large difference in gene ex-
pression profiles observed between ES and GA may re-
flect a delay in the ability of muscle to respond to ES as
a result of relatively prolonged disuse and associated at-
rophy. It should be noted that the muscle atrophy after
SCI is a form of disuse atrophy and that findings from
this study may be pertinent to exercise responses of skeletal
muscle atrophied as a consequence of other conditions
such as bed rest, immobilization from a cast, or spaceflight.
After longer periods of ES, many expected adaptations to
exercise, such as increased PGC-1a and proteins for oxida-
tive phosphorylation, have been observed in soleus from
two subjects with SCI. Why such changes are delayed after
initiating ES is an interesting question for future studies.

Methods

Animals

All studies and procedures with experimental animals
were approved by the Institutional Animal Care and Use
Committee at the James J. Peters Veterans Affairs Med-
ical Center. All studies were conducted in conformance
with the recommendations of the NIH Guide for the
Care and Use of Laboratory Animals. All surgeries were
conducted under anesthesia with inhaled isofluorane.
Every effort was made to minimize the suffering of animal
subjects. Female Wistar rats were obtained from Taconic
Farms (Germantown, NY) and housed in temperature
and humidity-controlled rooms with a 12:12 hour day:
night cycle. Animals were provided water and standard
rat chow ad libitum. Two experiments were performed
as outlined below.

Experiment 1: effects of gastrocnemius ablation (GA)
Rats between 22 and 23 weeks of age were anesthetized
by inhalation of isofluorane. Hair on the lower left
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hindlimb was removed with a clipper and skin was
cleaned with alcohol and betadine. The distal insertion
of the gastrocnemius muscle into the Achilles tendon
was separated from the remainder of the tendon by
blunt dissection and cut. Skin was closed with suture. A
second group of animals received a sham ablation that
was identical except that the insertion of the gastrocne-
mius into the Achilles tendon was not cut. At 1, 3 and
7 days after surgery, animals were weighed and anesthe-
tized with isofluorane prior to the removal of soleus and
plantaris muscles by careful dissection. Muscles were
weighed then snap-frozen by immersion in liquid nitro-
gen. Animals were euthanized by aortic transection
while anesthetized by inhalation of isofluorane.

Experiment 2: effects of ES on muscle gene expression
Characteristics of the ES system employed

An ES paradigm was developed wherein near-isometric
co-contraction of soleus, plantaris and tibialis anterior
was stimulated by electrodes placed adjacent to the an-
terior tibial and common peroneal nerves (Figure 1A
and 1B). In preliminary experiments, cutting the distal
insertion of the gastrocnemius prevented concurrent
contraction of this muscle from overwhelming the
opposing force of the contracting tibialis anterior. Pre-
liminary studies established that at low stimulation am-
plitudes, the ankle was extended, and that as stimulation
voltage increased, ankle flexion occurred until the ankle
was at approximately 90 degrees. Further ankle flexion
was not achieved with increases in stimulation voltage.
Preliminary studies showed that stimulation parameters
of 1.5 volts at 40 Hz consistently and reproducibly elic-
ited near-isometric co-contraction of soleus, tibialis an-
terior and plantaris. These stimulation parameters were
used for experiments.

Electrical stimulation for these studies was accomplished
using single channel implantable electrical stimulators
consisting of a microcontroller-based circuit and battery
encapsulated in silicone rubber. The devices used were de-
scribed previously [59]; a slightly larger battery was used
in this application to provide a longer lifetime. Stimulators
were equipped with a light sensor by which stimulation
patterns and stimulation amplitude could be selected
using light passing through the skin provided by a coded
series of flashes from a stroboscope triggered by a
microprocessor-controlled programming device. A light-
emitting diode in the microstimulator provided a series of
flashes visible through the skin immediately after a pro-
gramming sequence by which it could be confirmed that
the commands were correctly interpreted by the device.

Experimental design and SCI surgery
The experiment included 3 groups of animals: Sham-SCI,
SCI, and SCI-ES where ES was provided for 1, 3 or 7 days.
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At 9 weeks of age SCI and SCI-ES animals underwent
a complete spinal cord transection by the following
procedures. Animals were anesthetized by inhalation
of isofluorane and hair was removed with a clipper.
Skin over the back was cleaned with betadine and isopropyl
alcohol. After making a midline incision (2 cm) centered
over the interspace between the 9™ and 10™ vertebral
bodies, the spinal cord was visualized by removing the
vertebral processes of the 9™ and 10™ vertebrae with a
bone rongeur, and the spinal cord was transected with
microscissors. The space between transected ends of the
spinal cord was filled with surgical sponge and the wound
was closed in 2 layers with suture. Urine was expressed 3
times daily until automaticity developed, then as needed.
Baytril was administered for the first 3 to 5 days
postoperatively then as indicated for cloudy or bloody
urine or for overt wound infection. Sham-SCI animals
received an identical surgery, including a laminectomy,
except that the spinal cord was not cut.

Implantation of ES stimulators

Stimulators were implanted 14 weeks after the spinal
cord transection. Animals were anesthetized by inhal-
ation of isofluorane. The left hind limb and hip were
shaved and the underlying skin was cleaned using
betadine and isopropyl alcohol. A small incision was
made over the left hip parallel to the femur. Using blunt
dissection, the division of the left sciatic nerve was ex-
posed and a pocket was created under the skin over the
lower back for the stimulator. The stimulator was
inserted into the pocket and sutured in place. One elec-
trode was placed such that it nearly touched the anterior
tibial nerve about 8 mm distal to the division of the sci-
atic nerve. The second was placed about 2 mm away
from the common peroneal nerve and 1 cm distal to the
trifurcation of the sciatic nerve. A tenotomy of the distal
insertion of the gastrocnemius into the Achilles tendon
was then performed following the procedures outlined
above. SCI animals underwent all surgeries for implant-
ation of the stimulators, and left-sided gastrocnemius
tenotomy, but did not have stimulators implanted.

ES stimulation and tissue collection

Beginning at 16 weeks after SCI, that is, 2 weeks after
implanting stimulators in the ES group, ES was initiated
for 1 hour per day using stimulation at 1.5 volts and
40 Hz. Each ES cycle consisted of 2 second periods of
stimulation followed by 18 seconds rest. The ES groups
were euthanized at 1, 3 or 7 days. The SCI animals were
euthanized 21 days after the Sham-implantation surgery.
Tissues were excised, weighed and stored as described
above for the GA studies. An outline of the time course
of procedures employed is provided (Figure 1). Tissue
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collection and euthanasia were performed as described
above for Experiment 1.

Microarray analysis

Soleus muscle was selected for microarray expression
analysis because it is the major slow-twitch muscle in
the lower hindlimb, and response of soleus to isometric
contraction after SCI has been studied in significant de-
tail in man [24]. Total RNA was isolated from soleus
muscles using Trizol reagent then further purified using
RNAeasy minicolumns (Qiagen). Analysis of RNA using
an Agilent Bioanalyzer revealed that integrity of RNA
was greater than 8 for all samples. Microarray analysis
was performed using Affymetrix rat exon 1.0 ST arrays
following the manufacturer’s recommended procedures
and was performed by the Microarray Core Facility at
the Children’s National Medical Center. Baseline sub-
traction, quantile normalization and median polishing of
expression values for transcripts were performed using
the Oligo package [60] for Bioconductor [61]. Data were
then annotated and filtered in MeV 4.8 [62] to exclude
probes with intensities less than 3.0, or variance across
all arrays less than 50% (e.g., probes for which there
was little difference in expression level across groups).
Genes with significantly different expression levels across
Sham-SCI and SCI groups were identified by one-way
ANOVA. Genes significantly different between the Sham-
GA and and GA groups were identified by two-way
ANOVA. For each time point these lists of differentially
expressed genes were then filtered to exclude transcripts
that were unassigned to genes and to identify genes altered
by at least 1.5 fold for that time point (1, 3 or 7 days of ES
or GA); the same filter was applied for the comparison of
SCI and Sham-SCI groups. These filtered lists of genes
were tested for enrichment in biological themes using
GeneGo by Metacore.

Real time PCR (qPCR)

Total RNA isolated as above was subjected to on the col-
umn digestion with DNAase I, eluted, and analyzed for
RNA integrity using an Agilent Bioanalyzer 2100. RNA
integrity values were greater than 8 for all samples. cDNA
libraries were synthesized using the High Capacity
c¢DNA Reverse Transcription Kit (Applied Biosystems).
Briefly, real time PCR was performed using an Applied
Biosystems Via 7 thermocycler, and Invitrogen Tagman
2X PCR Master Mix. Invitrogen Assays on Demand
probes were used for all assays except for RCAN1.4 (previ-
ously called MCIP1.4), for which an assay was designed
by Applied Biosystems using mRNA sequence data
downloaded from the internet. The assay was based on
the fact that RCAN1.4 is unique in containing exon 4, and
can be detected in qPCR assays for the boundary between
exons 4 and 5. Samples were assayed in triplicate, and
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means of triplicates were used in subsequent calculations.
Changes in mRNA levels were calculated using the 244"
method [63], and 18S RNA was used to normalize expres-
sion values. The control group used to calculate fold-
change for the SCI-ES groups was Sham-SCI. For the GA
groups, the Sham-GA group at the same time point was
used as the control.

Statistics

The significance of differences among means for SCI,
SCI-ES and Sham-SCI animals was tested by one-way
ANOVA with a Newman-Keuls test post-hoc. The sig-
nificance of differences across time and between GA and
Sham-GA was tested using two-way ANOVA with a
Holm-Sidak’s test post hoc. A paired students t-test was
used to compare muscle weights for the left and right
hindlimb. Significance was set at p < 0.05.

Supporting data

The data sets supporting the results of this article are avail-
able in the NIH GEO repository under accession number
GSE37476 at http://www.ncbinlm.nih.gov/geo/query/acc.
cgi?targ=self&form=html&view=quick&acc=GSE37476.
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Additional file 1: Table S1. Listing of significant genes when
comparing expression for SCl and Sham-SCl groups where Group means
are Log-base 2 of expression values for 3 animals per group. Table S2.
Listing of significant genes altered by at least 1.5 fold when comparing
SCI-ES 1 Day and SCI-Sham-ES where Group means are Log-base 2 of
expression values. Table S3. Listing of significant genes altered by at
least 1.5 fold when comparing SCI-ES 3 Days and SCI-Sham-ES where
Group means are Log-base 2 of expression values. Table S4. Listing of
significant genes altered by at least 1.5 fold when comparing SCI-ES 7
Days and SCI-Sham-ES where Group means are Log-base 2 of expression
values. Table S5. Listing of significant genes altered by at least 1.5 fold
when comparing OL-1 Day and Sham-OL 1 Day where Group means are
Log-base 2 of expression values. Table S6. Listing of significant genes
altered by at least 1.5 fold when comparing OL-3 Days and Sham-OL 3
Days where Group means are Log-base 2 of expression values. Table S7.
Listing of significant genes altered by at least 1.5 fold when comparing
OL-7 Days and Sham-OL 7 Days where Group means are Log-base 2 of
expression values.
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