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Abstract

mice, using an MPTP-induced model of PD.

disease

Background: 1-Methyl-4-phenyl-1,2,3 6-tetrahydropyridine (MPTP) induces Parkinson’s disease (PD)-like
neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) via its oxidized product,
1-methyl-4-phenylpyridinium (MPP+), which is transported by the dopamine (DA) transporter into DA nerve terminals.
DA receptor subtype 3 (D3 receptor) participates in neurotransmitter transport, gene regulation in the DA system,
physiological accommodation via G protein-coupled superfamily receptors and other physiological processes in the
nervous system. This study investigated the possible correlation between D3 receptors and MPTP-induced
neurotoxicity. A series of behavioral experiments and histological analyses were conducted in D3 receptor-deficient

Results: After the fourth MPTP injection, wild-type animals that received 15 mg/kg per day displayed significant
neurotoxin-related bradykinesia. D3 receptor-deficient mice displayed attenuated MPTP-induced locomotor activity
changes. Consistent with the behavioral observations, further neurohistological assessment showed that MPTP-induced
neuronal damage in the SNpc was reduced in D3 receptor-deficient mice.

Conclusions: Our study indicates that the D3 receptor might be an essential molecule in MPTP-induced PD
and provides a new molecular mechanism for MPTP neurotoxicity.
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Background

MPTP targets the basal ganglia and/or the substantia
nigra, inducing most of the biochemical, pathological, and
clinical features akin to Parkinson’s disease (PD) in both
human and non-human primates [1]. MPTP, which is
lipid-soluble, readily penetrates the blood—brain barrier
and enters the brain cells. Because it is amphiphilic, it is
captured in acidic organelles, mostly lysosomes, of astro-
cytes [2]. MPTP itself does not appear to be toxic, but its
oxidized product, 1-methyl-4-phenylpyridinium (MPP+),
is toxic. Astrocytes and serotonergic neurons contain mo-
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noamine oxidase B (MAQO-B), which converts MPTP to
MPP + [1,2]. The toxic oxidation product reaches the
extracellular fluid and is transported by the dopamine
(DA) transporter into DA nerve terminals [1,2]. Inhibition
of either MAO-B or the DA transporter protects against
MPTP-generated MPP+toxicity [1-4]. It has been sug-
gested that MPP+toxicity is dependent on a mitochondrial
concentrating mechanism via selective uptake [1,2]. Energy-
driven mitochondrial uptake of MPP + results in suffi-
ciently high concentrations of the toxin to interfere with
mitochondrial respiration [1,2]. Blockade of mitochondrial
respiration has two cytotoxic consequences. First, it im-
pairs ATP formation, resulting in the inhibition of energy-
dependent processes such as Ca** transport. This result in
an elevation of intracellular Ca®*, leading to the activation
of Ca®*-dependent enzymes and resulting in cellular
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damage. Second, MPP-+appears to support the occurrence
of oxidative stress [1,2].

DA receptor agonists are currently useful medications
for PD, and are even regarded as a first choice to delay
levodopa therapy [5-7]. This pharmacological evidence
suggests that DA and DA receptors participate in the
genesis of the behavioral and neurochemical Parkinson-
ian phenotype [8]. On the basis of biochemical, pharma-
cological, and physiological criteria, DA receptors have
been classified into two subfamilies: D1 (which includes
D1 and D5 subtypes) and D2 (which includes D2, D3,
and D4 subtypes) [8-12]. All DA receptors share three
major structural characteristics: (1) seven hydropho-
bic transmembrane stretches, (2) significant amino acid
sequence identity among different subfamilies within
these transmembrane regions, and post-translational
modifications such as glycosylation and phosphoryl-
ation, and (3) conserved amino acid residues that are in-
volved in the interaction with G-proteins and binding
agonists. Genes encoding members of the DA receptor
family are part of a larger superfamily of genes com-
prising the G protein-coupled superfamily receptors
(GPCRs) [8-12]. Scientists have attempted to clarify the
significance of the specific effects of DA receptors on
DA-related neuronal physiology and pathophysiology
using genetically modified mice. D3 receptor-deficient
mice do not exhibit Parkinsonism, while D3 mutant
mice exhibit hyperactivity in novel and exploratory en-
vironments and increased rearing behavior [13-15]. Ad-
ministration of cocaine results in increased mRNA
levels of c-fos and dynorphin in the dorsal and ventral
striatum of D3-receptor knockout mice, indicating that
the D3 receptor plays a role in gene regulation in the
DA system [16]. Moreover, research has indicated that
the constitutive inactivation of D3 receptors leads to a
decrease in agonist-promoted D1 receptor activity
[17,18]. Different quantitative expression profiles of
parkin, the causative gene for autosomal recessive ju-
venile PD, were observed in D3 knockout mice com-
pared with control mice. The parkin protein has an E3
ubiquitin-ligase activity, and loss of parkin function may
result in accumulation of unnecessary molecules that
lead to the degeneration of neurons. Parkin showed a
higher intensity in D3 receptor knockout mice com-
pared with wild-type mice [19].

Although research has been conducted to demonstrate
the role of the D3 receptor in PD-related neuropathol-
ogy, no investigation has been performed to identify the
role of the D3 receptor in MPTP-induced nervous le-
sions and pathology. In this study, we demonstrate that
D3 receptor-deficient mice display attenuated MPTP-
induced neurotoxicity. Our study contributes to further
understanding of MPTP-induced PD and may lead to a
new treatment approach for control of this disease.
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Methods
Mice and MPTP treatment
Littermate D3 receptor-deficient (D3-/-) male mice
(Ensemble number: ENSMUSG00000022705) and wild-
type mice (provided by Dr. Xu M., University of Chicago),
weighing 30—-40 g and 2-3 months old were used in this
study. The mice were developed by gene-targeting tech-
niques, maintained on a 129/C57 mixed background, as
described previously [14], and derived from heterozygous
matings. DNA was isolated from mouse tail biopsies, and
the D3-/- knockout genotype was confirmed by PCR
using the forward primer (NeoF: 5'CATTCTGCACGCT
TCAAAAGCG3’) and reverse primer (NeoR: 5'TTT
CTCGGCAGGAGCAAGGTG3’). The PCR protocol was
as follows: after denaturing at 94°C for 2 min, all reactions
were followed by 30 cycles (94°C for 30 s, 60°C for 30 s,
and 72°C for 30 s) using the Basic PCR mix (Biovisualab,
Shanghai, China). Mice were individually housed on ar-
rival in a stress-minimized specific pathogen-free facility
with free access to food and water. After adaptation to a
standard 12-h light/dark cycle (lights on from 6:00 AM to
6:00 PM) for 3-4 weeks, the animals were randomly
assigned to four groups: wild-type mice injected with sa-
line, wild-type mice injected with MPTP, D3-/- mice
injected with saline, and D3—/- mice injected with MPTP.
To establish an MPTP-induced acute mouse model for
PD, animals received nine intraperitoneal injections of
MPTP (5 or 15 mg/kg/day; Sigma, St. Louis, MO) or an
equal volume of saline as a control [20]. All animal ex-
periments were conducted in accordance with inter-
nationally recognized guidelines for animal experiments
(“Animal Research: Reporting In Vivo Experiments”
(ARRIVE) guidelines) and were approved by the Animal
Ethics Committee of Shanghai Jiao Tong University
School of Medicine (reference number 2010-0018).

Behavioral assessment

Locomotor activity was assessed by the following four
experiments: the open-field test, rotarod test, pole test,
and beam test. All animals were trained twice before
each recorded test. All experiments were performed be-
tween 13:00 and 17:00, and mice were acclimated to the
experimental environment for 30 min prior to training
or testing.

The open-field test was performed in a plastic case
(lengthxwidthxheight: 30 x 20 x 20 c¢m) lit by a 40 W
lamp. The base of the case was marked into six grids,
and all mice were placed in the same corner to start the
test. The case was thoroughly cleaned before each test.
Each mouse was tested either three or four times during
the experiment. Each test lasted 15 min, and locomotion
was recorded at the 5-, 10-, and 15-min time points.
Each grid over which the mouse stepped was recorded
as one horizontal motion, and each time point at which
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the mouse’s forelegs were uplifted was recorded as one
vertical motion.

The rotarod test was used to further quantify the loco-
motor activity and degree of motor impairment. Mice
were trained at several different rod-rotation speeds. For
testing, a 60 mm-diameter rotarod was set to rotate at
10 rpm. The duration from when the mouse was put on
the rotarod until the mouse dropped off was recorded;
the upper time limit was 180 s. All participants were
tested three times, at 30-min intervals.

The pole test was performed according to the method
established by Ogawa et al. [21]. Briefly, animals were po-
sitioned with their head upward near the top of a rough-
surfaced iron pole (1 ¢cm in diameter and 50 cm high).
The time taken until they turned completely downward
(defined as a “T-turn”) and arrived on the floor was
recorded. The maximum time allowed was 120 s.

The challenging beam test was performed according
to previous studies using Parkinsonian genetic mouse
models. A 2 cm-wide and 50 cm-long beam was set up
in a bright laboratory. The mice were placed onto a
hanging terminal, and the time required for the mice to
traverse through the beam to a platform terminal was
recorded.

Histology and immunohistochemistry

At the end of the behavioral testing period, brain seg-
ments were subjected to histopathologic analysis. The
number of damaged neurons was calculated as the average
number of cells counted per field. The general criteria to
score damaged cells included hyperchromatic nuclei and
cytoplasmic vacuolation. The number of damaged neu-
rons was visually estimated on three sections from each
animal for each experimental group. Coronal sections of
the SNpc were cut on a vibratome, stained with anti-
tyrosine hydroxylase (anti-TH) antibody (polyclonal rabbit
anti-TH, 1:1000; Abcam, Cambridge, UK), followed by
biotinylated secondary antibody (goat anti-rabbit IgG;
Abcam, Cambridge, UK), and avidin-horseradish peroxid-
ase conjugate (ABC, Vector, Peterborough, UK) according
to the manufacturer’s instructions. The antibody binding
was visualized with 3,3’-diaminobenzidine (Sigma, Milan,
Italy) as the chromogen. TH-positive neurons were enu-
merated on three serial sections per animal. TH-labeled
neurons were scored as positive only if their cell bodies
included well-defined nuclear counterstaining. An inde-
pendent pathologist who was blind to the specifics of
the experiment determined the number of TH-positive
neurons.

Statistical analysis

Because the behavioral data obtained in the locomotor
activity tests were not normally distributed, comparisons
of dose-response effects were conducted with Kruskal—
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Weallis one-way analysis of variance (ANOVA). Compari-
sons between the two groups of mice at each dose were
conducted with the Mann—Whitney test. The remaining
observations were compared with the Mann—Whitney
test. p < 0.05 was considered statistically significant.

Results

D3 receptor-deficient mice and MPTP-treated mice

The D3 receptor-deficient mice genotype was confirmed
by PCR. Knockout mice displayed a 300-bp band, and
the DNA samples isolated from wild-type mice displayed
a 200-bp band using forward primer (D3F: 5'GCTC
ACCACTAGGTAGTTG3’) and reverse primer (D3R:
(5’ ACCTCTGAGCCAGATAAGC3’) (data not shown).
The D3 receptor-knockout mice appeared to be healthy
and had no gross physical abnormalities. The mutant
mice were fertile, their litter sizes were normal, and
there was no obvious sex bias in their offspring. For all
subsequent studies, male D3 mutant mice were used,
with male wild-type littermates as controls.

The MPTP-induced neurotoxicity mouse model was
established by MPTP dose grouping. After the fourth
MPTP injection and in all subsequent experiments, ani-
mals that received 15 mg/kg per injection displayed sig-
nificant bradykinesia based on the open-field test and
rotarod test. No significant behavioral change was ob-
served among the mice that received 5 mg/kg MPTP per
injection or the mice injected with an equal volume of sa-
line (data not shown). Thus, 15 mg/kg/day was established
as the adaptive dose for MPTP-induced neurotoxicity.

D3 receptor-deficient mice displayed no change in the
time taken for the “T-turn” in the pole test

The pole test was used to examine behavioral changes in
the wild-type and D3 receptor-deficient mice treated
with MPTP. After three training sessions, the time taken
(meantSEM) from the head-upward position on the
pole until the mouse turned its head completely down-
ward, was recorded in the four cohorts: wild-type
injected with saline, wild-type injected with MPTP, D3
receptor-deficient injected with saline, and D3 receptor-
deficient injected with MPTP. The pre-injection loco-
motor activity baseline results were 4.1 +1.1, 5.2 + 1.0,
2.2+0.4, and 2.0 £0.4 s, respectively (Figure 1). When
wild-type mice were injected with MPTP, the “T-turn”
times after the fourth injection, after the eighth injec-
tion, 4 days after the final injection and 8 days after the
final injection, were 26.7 +4.9, 35.5+6.7, 304 + 6.1, and
32.4 £ 6.4 s, respectively. These times were significantly
longer than those of the wild-type mice injected with sa-
line (p<0.01 at each time point; Figure 1). These data
suggest that MPTP treatment changed the locomotor ac-
tivity of wild-type mice. Interestingly, when D3 receptor-
deficient mice were injected with an equivalent dose of
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Figure 1 Time taken for the “T-turn” in the pole test. To observe behavioral changes in wild-type and D3 receptor-deficient mice treated
with MPTP, wild-type mice injected with saline, wild-type mice injected with MPTP, D3 receptor-deficient mice injected with saline, and D3
receptor-deficient mice injected with MPTP were subjected to the pole test. All animals were trained three times before performing the test. The
time from when the animals were positioned head-upward near the top of the pole until they turned completely downward was recorded and
calculated as the mean+SEM. P < 0.05 was considered statistically significant. MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NS,
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MPTP, the “T-turn” times at the four aforementioned time
points were 1.4+0.1, 33+1.3, 43+1.5, and 28+0.7 s,
respectively. These times were close to those of the wild-
type and D3 receptor-deficient mice injected with saline
(Figure 1). The above data suggest that the D3 receptor
might weakly participate in PD-related dyskinesia and that
D3 receptor-deficient mice are protected from MPTP-
induced locomotor activity changes.

Total time taken in the pole test
The total time taken in the pole test was defined as the
duration from when the animals were positioned head-

upward near the top of the pole until they turned com-
pletely downward and landed on the floor. The average
total times (mean+SEM) of the four cohorts (wild-type
injected with saline, wild-type injected with MPTP, D3
receptor-deficient injected with saline, and D3 receptor-
deficient injected with MPTP) after training were 12.4 +
15, 175+19, 125+ 1.5, and 11.0 1.5 s, respectively
(Figure 2). When wild-type mice were injected with
MPTP, the average total times at the four time points
(after the fourth injection, after the eighth injection, 4
days after the final injection and 8 days after the final in-
jection) were 33.5+5.4, 41.8+7.0, 36.6+6.2 and 39.8 +
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Figure 2 Total time taken in the pole test. The total time taken in the pole test by wild-type mice injected with saline, wild-type mice injected
with MPTP, D3 receptor-deficient mice injected with saline, and D3 receptor-deficient mice injected with MPTP was recorded as the mean+SEM.
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6.6 s, respectively. These times were significantly longer than
those of the wild-type mice injected with saline (p < 0.01
at each time point; Figure 2). When D3 receptor-deficient
mice were injected with MPTD, the average total times at
the aforementioned four time points were 11.0 + 1.4, 14.0 +
4.3,14.5 £ 2.3 and 22.2 + 5.9 s, respectively (Figure 2). The
average total time taken by the D3 receptor-deficient mice
injected with saline was slightly longer than that of wild-
type mice at the following three time points: after the
eighth injection (19.4 + 6.7 s), 4 days after the final injec-
tion (21.7 + 6.8) and 8 days after the final injection (22.5 +
7.7). The p value at each time point was < 0.05, which
might suggest that the D3 receptor-knockout genotype al-
tered locomotor activity (Figure 2). With the exception of
the time point 8 days after the final injection (22.2 +5.9 s),
the average total time taken by the D3 receptor-deficient
mice injected with MPTP was close to that of wild-type
mice injected with saline (p = 0.04; Figure 2).

Total time taken in the beam test

To further confirm whether the D3 receptor-deficient
mice could withstand MPTP-induced neurotoxicity, lo-
comotor activity was assessed by the beam test. After
training, the average total times taken (mean+SEM) in
the beam test by the four cohorts (wild-type injected
with saline, wild-type injected with MPTP, D3 receptor-
deficient injected with saline, and D3 receptor-deficient
injected with MPTP) were 26.0 £2.9, 28.1 £4.0, 37.9 £
12.8 and 28.9 + 4.2 s, respectively (Figure 3). When wild-
type mice were injected with MPTP, the average total
times at the four time points (after the fourth injection,
after the eighth injection, 4 days after the final injection,
and 8 days after the final injection) were 46.7 + 8.8, 66.9 +
104, 714+ 9.8 and 86.0 £ 10.9 s, respectively. These times
were significantly longer than those of the wild-type mice
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injected with saline (Figure 3). When D3 receptor-
deficient mice were injected with MPTD, the average total
times at the four aforementioned time points were 18.2 +
4.1, 337479, 47.2+9.3 and 46.6+7.8 s, respectively.
These times were significantly shorter than those of wild-
type mice injected with saline (p < 0.01 at each time point;
Figure 3). Similar to the results of the pole test, the aver-
age total time taken by the D3 receptor-deficient mice
injected with saline was slightly longer than that of wild-
type mice at the following two time points: 4 days after
the final injection (47.4 £ 11.5 s) and 8 days after the final
injection (56.6 £ 14.1 s). Taken together, the above data
further suggest that D3 receptor-deficient mice can with-
stand MPTP-induced locomotor activity changes.

Neurohistological assessment

Because MPTP may induce PD-like neurodegeneration
of dopaminergic neurons in the SNpc and because the
above data show that D3 receptor-deficient mice can
withstand MPTP neurotoxicity, we next evaluated the
neurohistological changes in the four cohorts. Tyrosine
hydroxylase (TH) is the enzyme responsible for catalyz-
ing the conversion of the amino acid L-tyrosine to L-3,4-
dihydroxyphenylalanine in the central nervous system.
Changes in TH expression are associated with neurode-
generative diseases such as Alzheimer’s disease, PD, and
Huntington’s disease. We therefore examined MPTP-
induced changes in TH expression. All mice were sub-
jected to neurohistological assessment 8 days after the
final injection. Immunohistochemical staining for TH in
the SNpc showed that the neuron density and distribution
in MPTP-treated wild-type mice were reduced and with-
ered compared with those of the wild-type mice injected
with saline. Both D3 receptor-deficient cohorts displayed
only slight or no neurological damage (Figure 4, bottom).
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Figure 4 Neurohistological assessment. Immunostaining of tyrosine hydroxylase-positive neurons in the SNpc and terminals in the striatum.
Eight days after the final MPTP injection, all mice were subject to neurohistological assessment by immunohistochemical staining for tyrosine
hydroxylase in the SNpc (bottom). Tyrosine hydroxylase-positive cells were scanned and analyzed by software; results are presented as mean
+SEM. P < 0.05 was considered statistically significant.

When these sections were scanned and analyzed by soft-
ware, the TH-positive cells of the substantia nigra sampled
from wild-type mice injected with saline, wild-type mice
injected with MPTP, D3 receptor-deficient mice injected
with saline, and D3 receptor-deficient mice injected with
MPTP comprised 30.3% + 3.8%, 11.9% + 3.1%, 23.9% + 2.1%
and 26.0% +1.6% of all neurons, respectively (Figure 4,
upper). The MPTP-induced neurological damage in D3
receptor-deficient mice was less extensive than it was in
wild-type mice, which suggests that D3 receptor defi-
ciency significantly attenuated TH-positive neuron loss in
the SNpc.

Discussion

PD is a heterogeneous neurodegenerative disease typically
diagnosed by its cardinal motor symptoms, including
bradykinesia, hypokinesia, rigidity, resting tremor and pos-
tural instability [6]. The motor manifestations are attribut-
able to the degeneration of dopaminergic neurons within
the SNpc, resulting in DA depletion and derangement of
neuronal circuits in the basal ganglia target regions of
these neurons [8]. In terms of PD etiology, familial PD is
caused by mutations in genes, identified by linkage ana-
lyses, that are inherited in an autosomal recessive or dom-
inant manner [22]. Sporadic PD is considered to be a
complex neurodegenerative disease entity with both

genetic susceptibility and environmental factors contribut-
ing to the etiopathogenesis [23].

MPTP has been reported to cause chronic Parkinsonism
in humans and non-human primates and long-lasting stri-
atal DA depletion in mice [24]. Although there are two
major differences between MPTP-induced PD and real
PD (lack of Lewy bodies and the fact that the norepineph-
rine system is relatively well preserved in the model),
MPTP-induced acute animal models provide a feasible
model for PD study [24]. Multiple signaling pathways may
play a crucial role in the degenerative process in MPTP-
treated mice. Studies of the mechanisms of and possible
neuroprotection against MPTP neurotoxicity have been
conducted for many vyears; the DA transporter and
monoamine oxidase are currently the two main subjects
of research [1-4]. The DA transporter (also called the DA
active transporter, DAT, or SLC6A3) is a membrane-
spanning protein that pumps the neurotransmitter DA
out of the synapse and back into the cytosol, from which
other transporters sequester DA and norepinephrine into
vesicles for later storage and release. DA reuptake via
DAT provides the primary mechanism by which DA is
cleared from synapses. The neurotoxic effect of MPTP has
been tested in mice lacking the DA transporter (DAT-/-
mice) [1-4]. Striatal tissue DA content and glial fibrillary
acidic protein (GFAP) mRNA expression were assessed
as markers of MPTP neurotoxicity, and this study
showed that the DAT is a mandatory component for
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expression of MPTP toxicity in vivo [4]. Other studies
have shown that monoamine oxidase B (MAO-B) inhib-
itors attenuate MPTP toxicity in mice [25]. MPTP is
metabolized into the toxic cation MPP +by MAO-B;
thus, toxic effects of acute MPTP poisoning can be miti-
gated by the administration of monoamine oxidase in-
hibitors such as selegiline [1-4].

In this study, a 15 mg/kg dose of MPTP induced obvious
nervous damage after 4 daily intraperitoneal injections,
and this effect was maintained until 8 days after the final
injection (ninth dose). Our initial goal was to compare the
physiopathologic transformations of D1 and D3 receptor-
deficient mice with MPTP-induced motor disorders. The
current data show that D3 receptor-deficient mice display
no change or only a slight change in performance in the
pole test and beam test. In a series of behavioral assess-
ments, we also found that D3 receptor-deficient mice
could withstand the effects of MPTP. Further neurohisto-
logical study showed that dopaminergic neuron damage
was mild in D3 receptor-deficient mice. MPTP-induced
neuron damage requires at least two processes: MAO-
B-catalyzed MPP + production and MPP + transport. Al-
though we did not perform a detailed study to determine
the exact biological and biochemical role of the D3 recep-
tor in MPTP-induced pathology, our data suggest that the
D3 receptor may act directly or indirectly in MPP + trans-
port in the central nervous system and thus protect
against nerve damage. We infer that the D3 receptor or
D3 receptor-related cellular signaling plays a critical role
in MPP + —induced neurotoxicity after MMP + transport
by DA transporter. Our study suggests a new mechanism
of MPTP-related neuropathology.

Conclusions

Our study indicates that the D3 receptor is an essential
molecule in MPTP-induced PD. Our study provides a
new molecular principle for MPTP neurotoxicity and
will advance our pharmacological knowledge of D3 re-
ceptor agonists.

Abbreviations

DA: Dopamine; MPP+: 1-methyl-4-phenylpyridinium; MPTP: 1-Methyl-4-
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nigra pars compacta; TH: Tyrosine hydroxylase.
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