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Background: We have previously reported evidence of cell proliferation and increased neurogenesis in rat
organotypic hippocampal slice cultures (OHSC) after a transient excitotoxic injury to the hippocampal CA1 area
induced by low concentrations of the AMPA/kainate agonist domoic acid (DOM). An increased baseline rate of
neurogenesis may contribute to recovery from DOM-induced mild injury but the intracellular mechanism(s)
responsible for neuronal proliferation remain unclear. The current study investigated the key intracellular pathways
responsible for DOM-induced neurogenesis in OHSC including the effects of transient excitotoxicity on the
expression of brain-derived neurotrophic factor (BDNF), a well-known regulator of progenitor cell mitosis.

Results: Application of a low concentration of DOM (2 uM) for 24 h followed by recovery induced a significant and
long lasting increase in BDNF protein levels expressed by both neurons and microglial cells. Furthermore, the mild
DOM toxicity stimulated both PKA and MEK-dependent intracellular signaling cascades and induced a significant
increase in BDNF- transcription factor CREB activation and BDNF-receptor TrkB expression. Coexposure to specific
inhibitors of PKA and MEK phosphorylation resulted in a significant decrease in the neurogenic marker

Conclusions: Our results suggest that transient excitotoxic insult induced by DOM produces BDNF and CREB
overexpression via MEK and PKA pathways and that both pathways mediate, at least in part, the increased neural
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Background

Domoic acid (DOM) is an AMPA/kainate receptor
ligand that elicits a very rapid and potent neurotoxic
response, and as such, has been used as a reliable re-
search tool to investigate excitotoxic damage in vivo
[1-4] and in vitro [5-7]. The hippocampus, among other
brain regions, has been identified as a specific target site
having high sensitivity to DOM-induced toxicity [8,9]
and, at lower doses, to DOM-induced structural plasti-
city relevant to temporal lobe epilepsy [10,11]. We have
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previously reported that mild excitotoxicity produced by
low concentrations of DOM was reversible and accom-
panied by a corresponding increase in the baseline rate
of neurogenesis in organotypic hippocampal slice cul-
tures (OHSC) [7]. However, the intracellular mecha-
nisms responsible for cell proliferation and neurogenesis
after transient excitotoxic insult remain unclear.

BDNF is a member of the neurotrophin family that
plays important roles in many developmentally regulated
processes, such as cell survival, differentiation and syn-
aptic plasticity of neurons as well as neurogenesis. Some
studies reveal that different forms of excitatory cellular
stimulation can enhance BDNF synthesis and secretion
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[12-14] and, accordingly, low doses of DOM during
postnatal development have been proven to induce sig-
nificant increases in hippocampal BDNF expression as
well as in its high-affinity receptor, the tropomyosin-
related kinase B (TrkB) in the resulting adult animals
[10,11]. One of the most well know transcriptional regu-
lators of BDNF gene expression is the cyclic AMP re-
sponsive element binding protein (CREB); activation of
which can be mediated by the cAMP-dependent protein
kinase (PKA), the mitogen-activated protein kinase
(MAPK) pathway or the Ca**/calmodulin-dependent
protein kinases (CaMKs), among others, depending on
the activating signal and cell type [15-17]. These kinases
have been reported to mediate cell proliferation and
neurogenesis as well as neurite outgrowth, synaptic
transmission and neuronal survival in a number of
model systems [18-25] and specifically to promote
hippocampal neurogenesis both in vivo [26,27] and
in vitro [28,29].

OHSC preserve normal hippocampal anatomical struc-
ture and functional properties in vitro for several weeks
[30] and provide an alternative model to the hippocam-
pus in vivo that is accessible to extensive manipulation
[31]. As all types of neurons and glia are preserved with
their specific morphologies and localizations, the hippo-
campal neuronal network organization is very similar to
that of the living animal [32-34]. Accordingly, in the
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current experiments we tested the hypothesis that tran-
sient exposure to a low concentration of DOM would
enhance BDNF expression in cultured hippocampal
slices. Further, we aimed to utilize this in vitro system
to investigate the activation of key intracellular path-
ways mediating neuronal proliferation after a mild
excitotoxic insult.

Results

DOM induced overexpression of BDNF and TrkB

To examine whether DOM treatment increases BDNF
expression in OHSC, preparations were treated with 2
puM DOM for 24 h (insult), changed to a DOM-free
medium and subjected to immunoblot analysis at diffe-
rent times after exposure as summarized in Figure 1A.
No significant changes in BDNF levels were found im-
mediately after DOM insult (Figure 1B); however, 12 h
post-insult, BDNF levels were significantly increased
(~1.5 fold) as compared with non-treated slices. DOM
treatment induced a maximum increase in BDNF ex-
pression 3 days post-insult (~2.7 fold) compared to age-
matched control slices and this increase was maintained
up to 14 days post-insult (Figure 1B).

Because BDNF signals primarily through its high-
affinity receptor TrkB, expression levels of the TrkB pro-
tein were measured in both control and DOM-treated
OHSC (Figure 1C). DOM insult led to a sustained
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Figure 1 Transient DOM exposure induces both BDNF and TrkB over-expression in OHSC. (A) Experimental design and timeline:

13 days-in-vitro (DIV) slices were treated with 2 uM DOM for 24 h (insult) and then changed to a DOM-free medium. Protein samples were
collected at the indicated days post insult (DPI). The fluorescent marker of cellular damage propidium iodide (Pl, 2 uM) was present in the
medium during and after DOM treatment. (B, C) The effects of transient DOM exposure on BDNF and TrkB expression at different time-points
post-insult were analyzed by immunoblot as described in Materials and Methods. The blots correspond to representative experiments and values
are the means + SEM of at least three experiments performed from different cultures (*P < 0.05 vs. C).
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increase in the expression of TrkB that was first detected
at 24 hours post insult and was sustained throughout
the 14 day period (~1.8 fold).

To determine which cell types overexpressed BDNF
following transient DOM treatment, we performed
double immunostaining for BDNF and the microglial
marker CD11b (Figure 2A), the neuronal marker NeuN
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(Figure 2B) or the astroglial marker GFAP (Figure 2C).
Under resting conditions microglial cells expressed basal
levels of BDNF and had highly ramified fine processes,
but when activated by the excitotoxin, they changed
to an amoeboid phagocytic-like morphology and over-
expressed BDNF (Figure 2A). This can be seen in
Figure 2A (Merge) as double-labelling in the lower left
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Figure 2 Immunohistochemical visualization of BDNF in microglia, neurons and astroglial cells in CA1 area, following excitotoxic
insult. (A) Representative fluorescence photomicrographs of CD11b-positive microglial cells (red), BDNF (green), DAPI and merge images. Upper
row: control culture, in which BDNF-positive microglial cells have resting-like morphology. Lower row: culture exposed to DOM for 24 h and then
transferred to a DOM-free medium for 7 days showed highly activated and BDNF-expressing microglia (lower left quadrant). (B) Representative
fluorescence photomicrographs of NeuN-positive neurons (red), BDNF (green), DAPI and merge images. Most BDNF immunoreactivity in both
control and DOM-treated group was observed in NeuN-positive cells. (C) Representative photomicrographs of GFAP-positive astroglial cells (red),
BDNF (green), DAPI and merge images. No significant changes were observed in the number of astrocytes expressing BDNF in presence or

absence of the DOM insult.
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quadrant of the image whereas BDNF expression from
other cell type(s) (presumably neurons) is apparent in
the upper right quadrant of the same image. Similarly,
BDNF immunoreactivity in both control and DOM-
treated groups was also observed in NeuN-positive cells
(Figure 2B) while only a reduced number of GFAP-
positive cells expressed the neurotrophin (Figure 2C).

DOM activates ERK1/2, PKA and CaMKII signaling
pathways in hippocampal slices
Next, to examine the cellular pathways activated by
DOM, phosphorylation of ERK1/2, PKA and CaMKII
was examined by Western blot analysis. DOM insult (2
uM, 24 h) led to an increased phosphorylation of ERK1/
2 (p-ERK), with significant activation relative to baseline
levels starting O h post-insult (HPI), reaching peak levels
at 12 HPI (~2 fold) and being sustained throughout the
72 h period (Figure 3A). Phospho-PKA (p-PKA) activa-
tion was also significantly increased in OHSC following
DOM insult (Figure 3B). Protein phosphorylation was
significantly increased immediately following the insult
(0 HPI), and reached peak expression at 12 HPI (~1.8
fold). These results indicate that both ERK and PKA
reached peak activation prior to maximal increases in
BDNF and TrkB receptor expression (Figure 1).
Phospho-CaMKII (p-CaMKII) levels also increased
significantly over the 24 h period (Figure 3C). P-CaMKII
levels were significantly increased relative to control
levels with peak activation starting at 12 HPI (~1.5 fold).

Inhibitors of MEK and PKA pathways suppress
DOM-stimulated increases in BDNF expression
To examine if the ERK, the PKA or the CaMKII pathways
are involved in DOM-induced BDNF overexpression in
OHSC, we treated the cultures with the MAPKK (Raf)/

Page 4 of 13

ERK kinase (MEK) inhibitor PD98059, the PKA inhibitor
H89 or the CaMKII inhibitor KN93. To confirm that
CaMKII, PKA and ERK pathways are reliably inhibited by
the compounds listed above at the concentration used, we
measured the levels of activation of the corresponding pro-
teins after the application of these agents. The slices were
exposed to the inhibitors 1 h before DOM treatment. The
results are summarized in Additional file 1. Interestingly,
DOM-stimulated CaMKII activation was prevented by the
MEK inhibitor PD98059 (Additional file 1). Coincubation
of DOM and PD98059, but not H89 (data not shown) de-
creased CaMKII phosphorylation relative to that elicited by
DOM. DOM-induced activation of ERK was prevented by
neither KN93 nor H89 (data not shown). Hippocampal
slices co-incubated with H89 or PD98059 elicited p-PKA
levels that were not significantly lower than those measured
by DOM alone (data not shown).

To test whether the ERK pathway is involved in
DOM-induced BDNF overexpression in OHSC the MEK
inhibitor PD98059 was added to the cultured slices 1 h
before DOM treatment (Figure 4A). Western blot ana-
lysis demonstrated that PD98059, when coincubated
with DOM, significantly decreased DOM-stimulated
upregulation of BDNF expression (~ 65% reduction). We
then used a similar approach to examine the involve-
ment of the PKA pathway on the overexpression of
BDNF after DOM insult. Although not as effective as
PD98059, the PKA inhibitor H89 reduced by approxi-
mately 45% the DOM-stimulated upregulation of BDNF
(Figure 4B). Taken together, these results suggest that
the DOM-induced rise in BDNF levels is largely both
ERK and PKA-dependent. On the other hand, the
CaMKII inhibitor KN93 failed to suppress or reduce the
increased expression of BDNF induced by the transient
injury (Figure 4C).

A * B * C *
f 1 2 — = —
é 2 é E 1.5
o S 15 L%
=515 1 =z s O
32 i £2 1
C‘ i 1 o x
=] 4 = =
& 2 =
< Q
0.5 & 0.5 0.5
C 0 12 24 72 HPI C 0 12 24 HPI C 0 12 24 HPI
p-ERK1/2 - - == p-PKA - i p-CaMKI] "= w——— —
ERKI? e e e PKA R CaMKIT | s’ s |
B-aCti i — e e Bractil ———— B-aCTN e
Figure 3 Transient DOM exposure induces ERK, PKA and CaMKII activation in OHSC. Cultures were treated with 2 uM DOM for 24 h (insult)
and then changed to a DOM-free medium; lysates were collected at different hours post-insult (HPI) and analyzed by Western Blots for the active,
phosphorylated form of ERK (A, p-ERK, PKA) (B, p-PKA) or CaMKII (C, p-CaMKIl). The blots were then reprobed for total ERK, PKA or CaMKII protein
and finally for 3-actin. The blots correspond to representative experiments and values are the means + SEM of at least three experiments
performed from different cultures (*P < 0.01 vs. Q).
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Figure 4 MEK and PKA inhibition reduces the up-regulation of
BDNF induced by DOM insult. Organotypic slices were cultured in
the presence of the MEK inhibitor PD98059 (A), the PKA inhibitor
H89 (B) or the CaMKIl inhibitor KN93 (C) for 1 hour and then treated
with 2 uM DOM for 24 h (insult). Lysates were collected immediately
after the 24 h DOM-treatment (0 hours post-insult, HPI) or after 24 h
resting in the DOM-free medium (24 HPI), analyzed by
immunobloting using a BONF antibody and the membranes were
reprobed with 3-actin as a loading control. The blots correspond to
representative experiments and values are the means + SEM of at
least three experiments performed from different cultures (#P < 0.01
vs. — PD98059, H89 or KN93 within the same group; *P < 0.01

vs - PD98059, H89 or KN93 within C group).

DOM stimulates hippocampal CREB activation

Both BDNF and TrkB gene expression are known to be
upregulated through phosphorylation of the transcrip-
tion factor CREB [35-39]. Since CREB activation has
been proven to enhance hippocampal neurogenesis
[40,41], as has a low concentration of DOM [7], we
investigated whether phosphorylated CREB (p-CREB)
was up-regulated in OHSC by DOM insult. The total
amount of CREB and p-CREB in control and DOM-
treated slices was determined by Western blotting
(Figure 5A). Organotypic slices were exposed to 2 pM
DOM and returned to DOM-free culture medium after
24 h (insult). We found that the insult increased CREB
phosphorylation in a time-dependent manner. The in-
crease was first detected immediately after termination
of the DOM insult (0 hours post-insult (HPI)) and
reached peak activation 24 HPI (~2 fold), remaining ele-
vated until the end of the experiment (72 HPI).

There is ample evidence that the MAPK signaling
pathway is involved in the phosphorylation of CREB to
promote neuronal survival and protection [42,43]. In the
current study, the MEK inhibitor PD98059 significantly
decreased p-CREB levels (70% decrease) compared
to the increase elicited by DOM alone (Figure 5B).
The observed increase in p-CREB immunoreactivity in
OHSC after DOM insult was also down-regulated
when DOM was combined with the PKA inhibitor H89
(35% decrease, Figure 5C). On the other hand, when
coincubated with DOM, KN93, a well-known CaMKII
inhibitor, failed to block the increase in p-CREB at either
time-point evaluated (Figure 5D). None of these treat-
ments altered the protein expression of CREB.

Neurogenesis is up-regulated via activation of both the
PKA and the MEK pathway

As described above, blocking the MEK pathway with
PD98059 or the PKA pathway with H89 significantly at-
tenuated DOM-induced overexpression of BDNF, but
neither antagonist alone was able to restore immunore-
activity to control levels (Figure 4). Concurrent exposure
of cultured slices to PD98059 and H89 1h before DOM
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Figure 5 Inhibitors of phosphorylation of the MEK and the PKA pathways reduce DOM-stimulated CREB phosphorylation. (A) Transient
DOM application (2 uM, 24 h) to hippocampal slices significantly enhanced CREB phosphorylation (*P < 0.005 vs. Q). (b-d) Organotypic slices were
cultured in the presence of the MEK inhibitor PD98059 (B), the PKA inhibitor H89 (C) or the CaMKIl inhibitor KN93 (D) for 1 h, and then treated
with 2 uM DOM for 24 h (insult). Lysates were collected at the indicated hours post insult (HPI). Compared to DOM alone, the increased CREB
phosphorylation was reduced when DOM was coincubated with PD98059 (B) or H89 (C). However, KN93 did not inhibit the response to DOM
(d). The blots correspond to representative experiments and values are the means + SEM of at least three experiments performed from different

cultures (#P < 0.005 vs. -PD98059, H89 or KN93 within the same group; *P < 0.01 vs - PD98059, H89 or KN93 within C group).

treatment completely blocked the DOM-stimulated in-
crease in BDNF expression in OHSC (Figure 6A). When
PD98059 and H89 were combined with DOM, p-CREB
levels were also comparable to untreated controls
(Figure 6B). These data suggest that both the PKA and the
ERK pathways are stimulating p-CREB phosphorylation
and the subsequent production of BDNF in parallel.

We have reported previously that DOM insult (24 h, 2
uM) resulted in increased neurogenesis in OHSC [7]. In
order to evaluate the potential role of MEK and PKA
activation pathways, OHSC were treated with PD98059
or H89 1h prior to DOM insult. We performed
Western blot analysis for doublecortin (DCX), a micro-
tubule-associated protein widely expressed exclusively in
neural progenitor cells that, as we have reported previ-
ously using immunohistochemistry [7], was significant
upregulated after DOM insult. Analysis of lysates re-
vealed that DOM insult increased significantly DCX ex-
pression (Figure 7), confirming the previously published
immunohistochemistry results [7]. Western blots further
demonstrated that the MEK inhibitor significantly de-
creased the DOM-stimulated upregulation of DCX

expression (~ 25% reduction). On the other hand, when
coincubated with DOM, the PKA inhibitor failed to
block the DCX increase (Figure 7A). Coapplication of
PD98059 and H89 1 h before DOM treatment led to a
greater decrease in DCX levels (Figure 7B). This additive
effect suggest that PKA and ERK activate the DCX path-
way independently in OHSC after DOM insult and that
ERK is, to some degree, capable of compensating for the
inhibition of PKA.

Discussion

In a previous study, we demonstrated that a mild revers-
ible injury to the hippocampal CA1 subfield induced by
a low concentration of DOM increases neurogenesis in
both the dentate gyrus and the CA1 subfields of OHSC
[7]. Neuronal injury can lead to neural proliferation as a
compensatory mechanism for cell death in the hippo-
campus [44,45] and growth and mitogenic factors, such
as BDNF, play a prominent role in proliferation and
neurogenesis after excitotoxicity [46]. In the present
study, we investigated whether DOM alters BDNF ex-
pression after transient insult and explored the key
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Figure 6 Coexposure to MEK and PKA inhibitors suppress
DOM-stimulated BDNF overexpression and CREB
phosphorylation. Organotypic slices were cultured in the presence
of the MEK inhibitor PD98059 and the PKA inhibitor H89 for 1 h, and
then treated with 2 uM DOM for 24 h (insult). Lysates were collected
at the indicated hours post insult (HPI) and analyzed by Western
blot using BDNF and B-actin antibodies (A) or p-CREB and total
CREB antibodies (B). The blots correspond to representative
experiments and values are the means + SEM of at least four
experiments performed from different cultures. (#P < 0.001 vs. None
within the same group; *P < 0.001 vs None within C group).

\

intracellular signaling mechanisms by which DOM mo-
dulates neurogenesis. Our results showed that DOM in-
sult upregulated BDNF expression by activation of both
MAPK and PKA cascades and that these two pathways
mediate, at least in part, the increased neural prolifera-
tion resulting after mild excitotoxicity.

Exposure to 2 uM DOM for 24 h (insult) followed by
recovery induced a significant and long lasting increase
in BDNF protein levels in OHSC. BDNF is a member of
the neurotrophin family widely distributed in the brain
with the highest levels in the hippocampus [47]. It has
been previously reported that excitotoxicity and seizure
activity induce an overexpression of hippocampal BDNF
at both protein and mRNA levels [48-51]. BDNF
signals primarily through its high-affinity receptor TrkB
that promotes neurogenesis, synaptic plasticity and cell
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Figure 7 Coexposure to the MEK and the PKA inhibitors
reduces DOM-stimulated DCX upregulation. (A) Organotypic
slices were cultured in the presence of the MEK inhibitor PD98059
or the PKA inhibitor H89 for 1 h, and then treated with 2 uM DOM
for 24 h (insult). Lysates were collected at the indicated hours post
insult (HPI). Compared to DOM alone, the increased DCX levels were
significantly reduced when DOM was co-incubated with PD98059.
However, H89 failed to decrease DCX up-regulation. The blots
correspond to representative experiments and values are the means
+ SEM of at least three experiments performed from different
cultures. (B) Organotypic cultures were treated with PD98059 and
H89 for 1 h, and then exposed to 2 uM DOM for 24 h. Lysates were
collected at the indicated HPI and analyzed by Western blot. The
blots correspond to representative experiments and values are the
means + SEM of at least four experiments performed from different
cultures. (#P < 0.001 vs. None within the same group; *P < 0.02 vs
None within C group).

survival [52,53], and plays an important role in the de-
velopment and plasticity of the brain [54]. Consistent
with the observed increase in BNDF expression, DOM
insult also induced TrkB upregulation. Although TrkB
phosphorylation, which was not assessed in the current
study, is required for receptor-mediated signaling,
a number of recent papers have reported that increases
in both BDNF and TrkB expression correlate with func-
tionally-relevant downstream effects both in vitro
[55,56] and in vivo [57,58]. Thus, DOM-induced changes



Pérez-Gomez and Tasker BMC Neuroscience 2013, 14:72
http://www.biomedcentral.com/1471-2202/14/72

in growth factors and/or their receptors could stimulate
the increased cell birth observed after excitotoxicity.

To determine the cellular source of increased BDNF
we performed double-label immunohistochemistry in
the CA1 hippocampal subfield. Although the response of
progenitor cells in different hippocampal regions may
vary (for review see [59]) we have shown previously that
the CA1 region is particularly sensitive to both exci-
totoxic damage by DOM and shows robust microglial
activation whereas other regions (eg. SGZ) do not [7].
Our observation that BDNF is overexpressed in CA1 not
only by neurons but also by microglial cells (Figure 2A)
is in accordance with previous studies [13,60-62], which
highlights the importance of microglial cells as a source
of BDNF following injury. Examination of the image
presented in Figure 2A (Merge) shows clear double-
labelling of BDNF and CD11b in the lower left quadrant
while cells in the upper right quadrant (presumably neu-
rons) express only BDNF. Further, the image shows that
the two cell types are in very close proximity in this re-
gion. Therefore, we suggest that under mild excitotoxic
conditions both neurons and microglia will respond with
an increase in the production and release of BDNF.

Clinical and basic evidence supports the idea that ab-
normalities in brain neuronal regeneration assisted by
BDNEF are associated with a wide range of disorders such
as neurodegenerative diseases and psychiatric or stress-
related conditions (reviewed by [63,64]). Our laboratory
has reported previously that low concentrations of DOM
administered in vivo during perinatal development cause
permanent alterations in both behaviour and hippocam-
pal structure consistent with many animal models of
temporal lobe epilepsy as well as what is found in the
human condition. Increased expression of both BDNF
[10] and its corresponding TrkB receptor [11] were
found in the hippocampus of DOM treated rats. Thus,
the changes observed in OHSC in the current study are
consistent with observations in vivo. The organotypic
hippocampal slice culture system, however, provided us
the means by which to evaluate the intracellular me-
chanism of enhanced BDNF expression initiated by tran-
sient DOM injury. Using immunobloting of specific
signaling intermediates, we followed three important
intracellular cascades: the MAPK, the PKA and the
CaMKII pathways.

DOM insult led to increased p-ERK1/2 (p-ERK); two
signaling proteins activated by the mitogen-activated
protein kinase (MAPK) pathway. ERK1/2 (ERK) promote
growth and modulate differentiation and survival via
transcriptional regulation. ERK activation in OHSC
was increased immediately following DOM exposure,
reaching peak expression at 12 h post insult. DOM also
caused a significant upregulation of p-PKA levels. In-
creases in intracellular Ca®* by activation of NMDA
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receptors, AMPA /kainate receptors, or calcium channels
increases intracellular cyclic AMP (cAMP) through acti-
vation of adenylyl cyclases that will result in the activa-
tion of PKA [65-67]. In addition to the increased p-ERK
and p-PKA our results also demonstrated significant ac-
tivation of CaMKII in OHSC. Other studies have
reported a pivotal role for both PKA and CaMKII activa-
tion after long-lasting potentiation induced by a brief
DOM treatment [68] and administration of DOM at
doses that produce no major observable behavioral
changes has been previously shown to increase signifi-
cantly CaMKII phosphorylation [69]. Therefore, these
results suggest that alterations in intracellular signaling
pathways might be a protective mechanism against
DOM-induced excitotoxic damage.

Ca**-mediated signaling pathways tightly modulate
BDNF expression mainly through the transcription fac-
tor CREB [38,70,71]. In conjunction with the observed
increase in BDNF and TrkB, DOM insult was found to
stimulate activation of CREB in hippocampal cultures.
Several studies have proven that CREB activation re-
quires serine-133 phosphorylation, which can be medi-
ated by PKA, MAPK pathway or CaMKs, among others,
depending on the activating signal and cell type [15-17].
In the current experiments, inhibitors of both MEK
and PKA attenuated the DOM-stimulated activation of
CREB as well as upregulation of BDNF. In contrast, the
CaMKII inhibitor failed to prevent or significantly de-
crease any of the protein changes observed. These data
strongly suggest that transient DOM exposure in hippo-
campal cultured slices upregulates CREB-dependent
transcription of BDNF by activating the MAPK and
PKA pathways rather than the CaMKII cascade. ERK ac-
tivation has been previously associated with the tran-
scription factor CREB in cultured hippocampal neurons
and brain slices [72,73] and as MAPK signaling is re-
quired for prolonged CREB phosphorylation [74,75], it
has been suggested that MAPK signalling might be
highly relevant for the activation of CREB-dependent
transcription. It has also been reported that PKA regula-
tion of transcription via CREB is implicated in brain
plasticity, learning and memory [76-79]. Our results
showed that the DOM-induced increases in BDNF ex-
pression and CREB phosphorylation were completely
blocked with concurrent exposure to PKA and MEK in-
hibitors. We further explored whether crosstalk between
the PKA and ERK pathways might also play a role in the
observed activation of CREB following DOM insult. Al-
though evidence of coupling between these signaling
pathways has been provided previously in vivo and
in vitro [71,80-82] no evidence was found in OHSC after
DOM insult; namely, the MEK inhibitor PD98059 failed
to modulate PKA pathway activation and no significant
changes were found in p-ERK levels after concurrent
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exposure to the PKA inhibitor H89 and DOM compared
to exposure to DOM alone. Together, these pieces of
evidence suggest that the PKA- and MEK-activated
pathways are operating in parallel in this system and
converge upon CREB, leading to BDNF overexpression.
An interesting but currently unexplained finding from
our experiments was that the DOM-induced increase in
CaMKII was attenuated with MEK inhibition. It has
been previously described that CaMKII, as an upstream
kinase, interacts with Raf, modulating the activation of
ERK proteins [83-85] but, to our knowledge, there is no
previous evidence of ERK acting as an upstream
regulator of CaMKII phosphorylation in the CNS. The
observed phenomenon and its implications should be
investigated further in a future study.

A major goal of this study was to elucidate the rela-
tionship between PKA/ MAPK pathways and the in-
creased neurogenesis we reported previously in OHSC
using both immunostaining and DCX positive cell
counts [7]. As shown in Figure 7B, analysis by Western
Blot revealed that concurrent chemical inhibition of
PKA and MEK activation specifically attenuated the in-
crease in the neuroblast cell marker DCX. In accordance
with the results obtained in the present study, these
kinases have been reported to mediate growth factor-
induced neurogenesis and neuroprotection [18]. The
extracellular signal-regulated kinase (ERK) is activated
by MEK in response to growth stimuli [19] and much
evidence exists that the ERK pathway plays a role in
progenitor cell proliferation or differentiation in a
number of model systems. For example, the ERK path-
way is involved in neurogenesis, neurite outgrowth,
and neuronal survival induced by either neurotrophic
factors [20,21] or pharmacological agents such as val-
proate [22] or lithium [86] and it has been proven that
ERK activation promotes hippocampal neurogenesis
in vivo [26,27] and in vitro [28,29]. Similarly, PKA
regulation of transcription via CREB has been associ-
ated with growth factor-dependent neurogenesis, cell
survival, synaptic transmission and cognitive function
in the nervous system [23-25].

Phosphorylation of CREB and overexpression of BDNF
have been implicated in the regulation of the expression
of many genes and cellular processes important in brain
function [77] and the up-regulation of hippocampal cell
proliferation [40,41]. We have previously shown that
neurogenesis after DOM insult in OHSC occurred pri-
marily during the first week of exposure in both the
subgranular zone of the hippocampus and in the CAl
hippocampal subfield, with a decreasing tendency clearly
observed over the next days [7]. In the current study,
DOM insult induced a significant long lasting increase
in BDNF protein levels in OHSC that was sustained
throughout the 14 day period, although in the current
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study we did not determine if this effect was regionally
selective. BDNF is one of the most studied extrinsic fac-
tors that not only promotes neurogenesis, but also regu-
lates dendrite outgrowth [87-92], increases proximal
dendrite growth and number in pyramidal neurons
[89,91,93] and promotes synaptogenesis [94-96] and
neuronal survival during development [97]. Our results
suggest that BDNF in OHSC may be promoting neuro-
genesis as well as maturation and integration of new
neurons after DOM insult, although the specific hippo-
campal regions at which these neurons originate,
whether they in fact migrate to, or originate in, areas of
transient damage, and whether they are capable of re-
storing normal function to the resulting circuitry needs
to be determined.

Conclusions

We have demonstrated that transient excitotoxic insult
induced by DOM promotes sustained BDNF and TrkB
overexpression in OHSC as well as increased hippocam-
pal neurogenesis. Enhancement in BDNF protein levels
and over-phosphorylation of its transcription factor
CREB occurred via two distinct and independent signal-
ling cascades, MEK and PKA pathways, which may be
critical for hippocampal recovery after the transient
DOM insult due to their role in the neurogenic process.

Methods

Organotypic hippocampal slice cultures (OHSC)

OHSC were prepared from 5 to 6-day-old Sprague
Dawley rats (Charles River, Quebec, Canada) according
to the interface method of Stoppini et al. [98]. Pups were
decapitated, the brain was removed, hippocampi were
dissected and transversely sliced at a thickness of 400
pum, and transferred into ice-cold dissection buffer
containing 1% penincilin-streptomicin solution (Gibco,
NY, USA), 25 mM HEPES (Fisher Scientific, NJ, USA)
and 10 mM TRIS (Fisher Scientific) in Minimum Essen-
tial Medium (Gibco), and selected for clear hippocampal
morphology (intact CA regions and dentate gyrus). The
slices were transferred onto 0.4 um porous Millicell
membrane inserts (Millipore, MA, USA) and placed in
individual 35 mm plates with 1 ml of serum-based
medium containing 50% Minimum Essential Medium,
25% Hanks' balanced salt solution (Gibco), 12 mM
HEPES, 25% heat-inactivated horse serum (Gibco) and
1% penicillin-streptomycin solution in a humidified
chamber with 5% CO, at 37°C. Media was changed twice
a week. All animals were cared for following procedures
approved in advance by the University of Prince Edward
Island Animal Care Committee, and were in accordance
with the Canadian Council on Animal Care guidelines.
All possible efforts were made to minimize animal suf-
fering and the number of animals used.
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DOM-induced excitotoxic injury and pharmacological
treatments

At 13 days in vitro, damaged OHSC were excluded by
propidium iodide staining (5 pg/ml for 30 min) (P,
Sigma-Aldrich, MO, USA) using a Fluoroarc exciter
lamp with a Zeiss Axioplan2 microscope (Carl Zeiss
Canada Ltd, ON, Canada). PI-negative slices were ex-
posed to the indicated treatments. Cultures were ex-
posed to DOM (2 pM, BioVectra dcl, Canada) for 24 h
and then transferred to a DOM-free medium. The MEK
inhibitor PD98059 (20 uM, Cell Signaling, MA, USA),
the PKA inhibitor H89 (10 uM, Calbiochem, MA, USA)
as well as the CaMKII inhibitor KN93 (10 uM, Sigma)
were added to the culture medium 1 h before DOM and
maintained throughout the experimental period.

Immunohistochemistry

Cultures were washed in 0.1 M phosphate-buffered saline
(PBS), fixed in formalin for 18 h and cryoprotected in 30%
sucrose/PBS for an additional 18 h. OHSC were then fur-
ther sliced into 15 pm sections on a cryostat, mounted on
glass slides and stored at — 20°C. After culturing for up to
4 weeks OHSC thin down from the original 400 pm to
about 180 um. For cryosectioning the first two sections of
15 pm were discarded since this part contains the glial scar
[99]. For immunohistochemistry the next 4-5 15 um
cryosections were saved which resulted in collection of the
middle part of each hippocampal slice culture. The follow-
ing primary antibodies were used: mouse anti-NeuN
(1:250, Millipore #MAB377), mouse anti-GFAP (1:400,
Sigma #G9269), mouse anti-CD11b (1:100 AbD serotec,
NC, USA #MCA275R) and rabbit anti-BDNF (1:100,
Millipore #AB1779). The following secondary antibodies
were used: Alexa Fluor 488 goat anti-rabbit IgG (1:200,
Invitrogen, OR, USA #11034) and Alexa Fluor 594 goat
anti-mouse IgG (1:200, Invitrogen #11032). Negative con-
trols (i.e. buffer substitution) for all primary and secondary
antibodies were included in every run and displayed no
specific staining at any time. For double immunostaining,
cryosections were washed in PBS, blocked with 3% normal
goat serum (Vector Laboratories Inc. CA, USA) and 0.5%
bovine serum albumin (BSA) in PBS mixed with 0.1%
Triton for 1 h at room temperature and incubated with
the indicated primary antibodies in 2% goat serum /PBS +
0.1% Triton overnight. After rinsing in PBS, sections were
incubated with the corresponding secondary antibodies for
1 h and washed 4 times. Slices were incubated with 300
nM DAPI in PBS for 2 min, washed and mounted with
Citifluor (Canemco-Marivac, P.Q, Canada). Images from 12
to 15 cryoslices from 3 different preparations were acquired
using a Zeiss Axioplan 2 microscope and digital Axiocam
camera. AxioVision software was used to standardize the
images by setting all the parameters to a constant value.
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Western blotting

Slice cultures were collected and homogenized on ice
in a lysis buffer (63 mM Tris HCl, 10% SDS, 2 mM
EDTA) mixed with phosphatase inhibitor cocktail tab-
lets (Roche Diagnostics, IN, USA) and complete prote-
ase inhibitor mix (Roche Diagnostics). Protein
concentration was determined using the BCA protein
assay kit (Thermo Scientific, IL, USA). Samples were
heated to 95°C for 5 min, and equal quantities of pro-
tein extract (20 pug) were separated on 12% SDS gels.
Proteins were transferred to polyvinylidene difluoride mem-
branes (Bio-Rad Laboratories Inc., CA, USA #1620177) and
incubated with specific antibodies raised against BDNF
(Millipore #AB1779), CREB (Cell Signaling #9197), phos-
phorylated CREB (Cell Signaling #9198S), CaMKII (Santa
Cruz Biotechnology, CA, USA #sc5306), phosphory-
lated CaMKII (Santa Cruz Biotechnology #sc32289),
ERK (Cell Signaling #9102), phosphorylated ERK (Cell
Signaling #9106), PKA (Santa Cruz #sc365615), phos-
phorylated PKA (Santa Cruz #sc32968), DCX (Santa
Cruz Biotechnology #s¢32968) and TrkB (Santa Cruz
Biotechnology #sc12). The BDNF antibody reacts
against mature BDNF (14 KDa) as well as pro-BDNF (28
KDa). Results shown in this study correspond to the 14
KDa band. A control for protein loading was performed
by reprobing membranes with an antibody against -actin
(Sigma-Aldrich). No significant changes during the 2
weeks culture period without drug treatment were ob-
served for any of the measured proteins. Membranes were
incubated with secondary anti-mouse or anti-rabbit IgG
Peroxidase (Sigma-Aldrich). Immunopositive bands were
visualized using the Enhanced Chemiluminescence Plus
western blotting system from Amersham (UK). Pictures of
the bands were taken and a subsequent analysis was
performed on a Biospectrum AC Imaging System (UVP,
Upland, CA, USA) using VisionworksLS software (v 6.7.4,
UVP). Values obtained were normalized and expressed as
the ratio obtained from cultures under control conditions.

Statistical analysis

All data are given as mean + SEM and statistical signifi-
cance was evaluated by One-Way ANOVA followed by
Tukey's post hoc test using GraphPad Prism 5.0. P < 0.05
was used as a limit for statistical significance.

Additional file

Additional file 1: Specific inhibitors block the activation of their
respective intermediates. (A) PD98059 was applied to the slices 1 h
prior DOM and p-ERK, ERK and (-actin levels were determined by
Western Blot 24 hours post insult (HPI). (B) H89 was applied to the slices
1 h prior DOM and p-PKA, PKA and B-actin levels were determined by
Western Blot 24 HPI. (C) KN93 was applied to the slices 1 h prior DOM
and p-CaMKIl, CaMKIl and B-actin levels were determined by Western
Blot 24 HPI. Blots correspond to representative experiments and values
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are the means + SEM of at least three experiments performed from
different cultures (#P < 0.001 vs. -PD98059, H89 or KN93 within the same
group; *P < 0.001 vs - PD98059, H89 or KN93 within C group). (D) MEK
inhibitor reduces de up-regulation in CaMKIl activation. PD98059 was
applied to the slices 1 h prior DOM and p-CaMKIl, CaMKIl and B-actin
levels were determined by Western blot right after DOM exposure or 24
HPI. Blots correspond to representative experiments and values are the
means + SEM of four experiments performed from different cultures

(#P < 0.001 vs. -PD98059 within the same group; *P < 0.005 vs - PD98059
within C group).
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