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normal development of their ultrasonic
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Abstract

Background: Transgenic mice have become an important tool to elucidate the genetic foundation of the human
language faculty. While learning is an essential prerequisite for the acquisition of human speech, it is still a matter
of debate whether auditory learning plays any role in the development of species-specific vocalizations in mice. To
study the influence of auditory input on call development, we compared the occurrence and structure of
ultrasonic vocalizations from deaf otoferlin-knockout mice, a model for human deafness DFNB9, to those of hearing

wild-type and heterozygous littermates.

Results: We found that the occurrence and structure of ultrasonic vocalizations recorded from deaf otoferlin-
knockout mice and hearing wild-type and heterozygous littermates do not differ. Isolation calls from 16 deaf and
15 hearing pups show the same ontogenetic development in terms of the usage and structure of their
vocalizations as their hearing conspecifics. Similarly, adult courtship ‘songs’ produced by 12 deaf and 16 hearing
males did not differ in the latency to call, rhythm of calling or acoustic structure.

Conclusion: The results indicate that auditory experience is not a prerequisite for the development of species-
specific vocalizations in mice. Thus, mouse models are of only limited suitability to study the evolution of vocal
learning, a crucial component in the development of human speech. Nevertheless, ultrasonic vocalizations of mice
constitute a valuable readout in studies of the genetic foundations of social and communicative behavior.
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Background

Comparative analyses of the vocal behavior of nonhu-
man primates and humans have allowed to identify the
derived features of the human language faculty, such as
volitional control over vocal production, symbolic
understanding, and recursion [1,2]. Moreover, screening
studies have revealed the association of a series of genes
with specific language disorders [3]. Advances in genetic
engineering now allow the study of particular genes
associated with language disorders in mouse models [4].
Mouse ultrasonic vocalizations (USVs) are the target
variable in many of these studies; they also turned out
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to be a valuable readout in studies addressing the
genetic foundation of social behavior [1,5]. The interest
in mice as model for vocal learning was further spurred
by the finding that adult male mice produce elaborate
ultrasonic ‘songs’ in encounters with females, implying
that learning might play a role in the ontogenetic devel-
opment of these vocalizations [6]. A cross-fostering
study on C57BL/6 and BALB/c mice however showed
that males kept singing songs with the typical character-
istics of their genetic parents, both in terms of the acous-
tic structure and temporal characteristics [7]. On the
other hand, a developmental study on CBA/CaJ mice
revealed substantial changes in their vocalizations with
age [8], but it remained unclear to which extent learning
is involved in these developmental changes. Clarifying
this question is essential to judge the suitability of mice
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models for specific developmental and evolutionary, as
well as clinical studies.

To shed light on the question whether mice require
auditory input of their own species-specific vocalizations
for a normal development of their calls, we analyzed the
recordings of calls from mice that serve as a model of
human deafness DFNB9. These mice have deficits in oto-
ferlin, a synaptic vesicle protein at the cochlear inner hair
cell [9]. Vesicle exocytosis is disrupted in animals lacking
otoferlin, resulting in profound deafness [9,10]. We
recorded pup’s isolation calls before and after they
reached hearing ability. Previous studies showed that
neonatal mice are deaf and they only begin to hear at an
age of approximately 10-12 days [11,12]. In addition, we
recorded songs of deaf and normally hearing adult males
during their courtship encounters. If mice fall within the
pattern of most terrestrial mammals, they should not
require auditory input for species-specific vocal develop-
ment [13,14]. All terrestrial mammals seem to lack the
ability of vocal production learning, with the exception of
elephants [15]. In case mice have developed the ability of
vocal production learning, we expected to find significant
differences between deaf and hearing mice. In case that
auditory input is essential, deaf mice should produce
structurally altered calls after hearing onset.

Results

Pup isolation calls

The number of calls given by isolated pups increased
from P4-5 to P8-9 and then decreased again at P15-16
(Figure 1). Accordingly, we found significant variation in
relation to age (F,g; = 18.1, P = 0.000), but no significant
differences between deaf and normally hearing animals
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Figure 1 Age related changes in pup isolation calls. A: Number
of pup isolation calls (mean + se.m.).
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(Fy,83 = 0.48, P = 0.49), and no significant interaction
(Fpg1 = 0.08, P = 0.93).

The two-step cluster analysis identified a two cluster
solution as the best categorization of pup isolation calls,
which is equivalent to a vocal repertoire of two (major)
call types (CT). Cluster 1 (CT1) encompassed 14.1% and is
defined by calls with high sudden frequency jumps (PF
jump = 29.9 + 15.9 kHz (mean + s.d.)), high maximum
peak frequency (PF max = 93.9 + 10.6 kHz) and a long call
duration (51.6 + 19.4 ms). The second cluster (CT2 =
85.9%) consisted of calls with shorter call duration (30.3
14.5 ms). It was not possible to establish reliable categories
in relation to the modulation of the peak frequency, i.e.
whether it is descending, flat or ascending. Exemplary
spectrograms of CT1 and CT2 are presented in Figure 2A.

We next conducted a discriminant function analysis
(DFA) to distinguish between calls given by Otof knock-
out or control subjects. While the DFA assigned 96.7%
of the calls to the correct call type (cross-validated =
96.5%), it was not possible to assign calls in relation to
the pups’ hearing ability (correct assignment = 55.8%;
cross-validated = 54.8%).

The analysis of the acoustic properties of calls revealed
significant age-related changes in nearly all acoustic para-
meters of CT2, and in a few acoustic parameters of CT1.
Importantly, we found no significant differences in rela-
tion to the hearing ability of the pups or their mothers
(Tables 1 and 2). Because mouse pups do not begin to
hear before postnatal day 9 we conducted a separate ana-
lysis for P15-16. In line with the above results, we found
no significant differences in the acoustic structure
between deaf and normally hearing mice (Table 3).

Male mouse courtship vocalizations

Deaf males tended to produce a higher number of calls
than normally hearing ones during their courtship
encounters (mean * s.e.m., 192.7 + 19.1 calls/min for deaf
and 119.5 + 26.3 calls/min per minute for hearing animals;
Mann-Whitney U-Test U = 55, P = 0.057). We found no
significant differences in the latency to call (deaf: 25.6 +
6.7 s, hearing: 20.1 + 4.8 s; U = 78.5, P = 0.42) or in the
mean interval duration measured from the start of the call
to the start of the subsequent call (deaf: 0.30 + 0.04 s,
hearing: 0.96 + .66 s, U = 78, P = 0.46).

A two-step cluster analysis identified a three cluster
solution as the best possible solution. Cluster 1 (CT1) is
defined by high sudden frequency jumps (PF jump: 25.3 +
16.1 kHz (mean + s.d.)), a high maximum peak frequency
(PF max: 92.6 + 15.8 kHz) and a long call duration (75.6 +
36.1 ms). The second cluster (CT2) consisted of calls with
a descending or flat peak frequency (according to this we
found a low coefficient for maximum location of peak fre-
quency; PF max loc = 0.22 + 0.18), and mean call duration
(47.2 + 23.6 ms). The third call cluster (CT3) contained
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Figure 2 Examples of vocal types.

calls with increasing peak frequency (PF max loc = 0.80 +
0.15) and a short call duration (25 + 9.4 ms). Exemplary
spectrograms are presented in Figure 2B. In total, 17.7% of
male courtship vocalization belonged to CT1, 49.9% to
CT2, and 32.4% to CT3.

The DFA assigned 94.3% of the calls to the correct call
type (cross-validated = 93.9%), but only 54.2% of calls
(cross-validated = 54.1%) to the correct category in relation
to hearing ability. Along the same lines, we found no signif-
icant differences in the structure of call types between deaf

Table 1 Description of call parameter used in the analysis

and normally hearing males (Table 4 Figure 3). To ensure
that the results of the statistical analyses are not simply an
artifact by the chosen number of call types, we repeated
the statistical analyses for different cluster solutions. The
choice of a varying number of clusters did not affect the
results (Additional file 1).

Discussion
We found no significant differences in calling rate or
acoustic structure of mouse ultrasonic vocalizations in

Acoustic parameters Description

Duration [ms]

Time between onset and offset of call

Amplitude gap [ms]

Duration of breaks in amplitude within call

PF start [HZ]

Start frequency of peak frequency

PF max [Hz] Maximum peak frequency

PF jump [Hz] Maximum difference of peak frequency between successive bins

PF max loc Location of PF max in relation to total call duration (1/duration) * location]

PF jump loc Location of maximum PF jump in relation to total call duration [(1/duration) * location]

Slope of trend

Factor of linear trend of peak frequency
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Table 2 Results of statistical tests (P values) of pup
isolation calls in relation to hearing ability (deaf,
normally hearing) and age (P4-5, P8-9, P15-16)
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Table 4 Results of statistical tests (P values) of acoustic
differences of male courtship vocalizations in relation to
hearing ability (deaf, normally hearing)

Acoustic parameters Call type 1 Call type 2
(14.1% of calls) (85.9% of calls)
hearing age hearing age

Duration [ms] 0.767 0.195 0.979 0.000
Amplitude gap [ms] 0.708 0.248 0.979 0.661
PF start [kHz] 0.767 0.008 0.220 0.000
PF max [kHz] 0.767 0.619 0.192 0.000
PF max loc [rel] 0.708 0.619 0979 0.000
PF jump [kHz] 0.767 0.012 0979 0.000
PF jump loc [rel] 0.767 0619 0.979 0.000
Slope of trend 0.859 0.326 0979 0.000

Significant differences are marked bold. P values are corrected for multiple
testing using a Simes correction

relation to hearing ability. This was true for pup isola-
tions calls as well as adult male ‘courtship songs’. The
ontogenetic changes found in both deaf and hearing
pups are similar to those reported for other hearing
strains [16,17]. Apparently, auditory experience is not a
prerequisite for the normal development of species-spe-
cific vocalizations in mice.

Our results are in line with findings on cross-fostered
male mice courtship songs. Cross-fostered male mice did
not adapt the sound characteristic of their social parents,
but produced sound sequences with the acoustic structure
and temporal pattern typical of their genetic parents [10].
Other studies which suggested that learning might have
an influence on the development of male song structure,
had demonstrated developmental changes [8] and a high
complexity of male songs [6]. However, neither criterion is
a demonstration of learning per se. Alternatively, develop-
mental changes may be attributed to maturation, while
complexity could be an outcome of selective pressures or
simply be a by-product of nonlinear phenomena in sound
production [18].

Table 3 Acoustic differences of mouse pup vocalizations
at age P15-16 in relation to hearing ability (deaf,
normally hearing)

Acoustic parameters deaf hearing P values
Duration [ms] 238 + 152 321 +185 0.121
Amplitude gap [ms] 090 + 2.64 085 + 296 0915
PF start [kHz] 81.1 + 140 76.5 £ 95 0.076
PF max [kHz] 86.6 + 14.7 832 +£ 1024 0.152
PF max loc [rel] 051 +0.32 049 + 0.32 0627
PF jump [kHZ] 30£70 51+70 0.234
PF jump loc [rel] 041 + 0.30 039 = 0.29 0.550
Slope of trend 0.08 + 0.29 0.06 + 0.23 0.655

Scores show mean and s.d., P values are not corrected for multiple testing

Acoustic CcT1 CT2 CT3
parameters
(17.7% of (49.9% of (32.4% of
calls) calls) calls)
Duration [ms] 0.810 0.520 0.216
Amplitude gap [ms] 0.810 0.724 0.236
PF start [kHz] 0.810 0.341 0216
PF max [kHz] 0.810 0.362 0.542
PF jump [kHz] 0.810 0.341 0542
PF max loc 0.640 0914 0.542
PF jump loc 0.810 0.341 0216
Slope of trend 0810 0.962 0.542

P values are corrected for multiple testing using a Simes correction

While we found no differences in relation to hearing
ability within our mouse strain, there is now evidence
accumulating that genetic differences between mouse
strains may affect calling rate, call duration and frequency
characteristics of isolation calls [17,19]. Mice homozygous
for non-functional FoxP2 alleles produced significantly
fewer isolation calls than their wild-type littermates,
whereas heterozygous mouse pups produced nearly the
same amount of vocalizations as their wild-type littermates
[20,21]. However, homozygous mouse pups exhibit severe
developmental deficits and die around 3 weeks after birth,
implying that the reduction in ultrasonic vocalization
might not represent specific effects of FoxP2 on these
vocalizations [20]. In addition heterozygous mouse pups
did not differ significantly from wild-types in the structure
of their ultrasounds [20,21], implying that functional
FoxP2 alleles are not important for the production of spe-
cies-specific ultrasounds as long as a normal development
is guaranteed. In addition, androgenic hormones can have
a profound influence on male courtship vocalizations
[5,22]. Further, it was shown that different kinds of female
odors lead to significant changes in the structure of court-
ship vocalization [23,24]. In sum, both genetic and envir-
onmental features may alter the occurrence and structure
of mouse USVs, but auditory input does not appear to
play a substantial role. It seems promising though to study
the influence of hearing on the development of social
behavior. Vocalizations have an important function in reg-
ulating the social relationships between animals, and it
seems probable that deaf mice develop disrupted social
relationships.

A critical issue of studies revealing no differences
between categories is the question whether the used
method is adequate to reveal possible differences. The dis-
criminant function analysis has a long history in bioacous-
tics research and had regular shown that this procedure is



Hammerschmidt et al. BMC Neuroscience 2012, 13:40
http://www.biomedcentral.com/1471-2202/13/40

Page 5 of 9

kHz
1254 M 1995
100+

754 . ) & e
e £ N Py /i ; \\

504
25+

kHz
15| M1996

100
2
504 TS
251

kHz

1] m2098
100 1
s =I5
504

Frequency [kHz]

& o P . h ~

25+

0.2 0.4 0.6 0.8

1.0 1.2 1.4 1.6 1.8 s

kHz
125
1001
75 & M s M/ i
501 '
251

T4 S UL AW X

0.2 0.4 0.6 0.8
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able to detect subtle differences. A recent example is a
study on crested gibbons where the authors found subtle
differences in songs of close related populations, which are
not detectable by ear [25]. A second study on chiffchaff
calls is a good example because the call structure of these
calls is comparable to the whistle like structure of mouse
ultrasounds. The discriminant function analyses revealed
the individual signature as well as micro-geographical var-
iation among the different recording sites [26]. In both
cases the correct assignment was above 90% with chance
levels around 5%. In our study the correct assignment to
deaf and normal hearing mice was app. 55% and a change

level of 50%. There are many other studies showing that a
discriminant function analysis is a powerful tool to reveal
existing differences. A further critical issue of the present
study may be the low number of call categories revealed
by the acoustic analysis. This number, however, was based
on a reproducible procedure which determines the opti-
mal number of clusters by comparing different solutions
using the Bayesian Information Criterion (BIC). Moreover,
using cluster solutions with higher number of categories
did not affect the results (Additional file 1). Notably,
increasing the number of clusters leads to the occurrence
of call types that are produced by one individual only. In
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other words, apart from the general call types identified
with the current procedure, the remaining variation is lar-
gely due to individual differences but not to sub-categories
that can be found across individuals.

Taken together, our results suggest that neither expo-
sure to auditory input from others, nor auditory feedback
of the subject’s own vocalizations is important for the
development of species-specific vocalizations. Auditory
experience with the species-specific vocalizations as well
as auditory feed-back was shown to be important in
human speech [1] and bird song [27], both learned
modes of production. Therefore, it is questionable
whether mice constitute a suitable model to study the
genetic foundation of vocal learning.

Conclusions

Deaf mice revealed the same ontogenetic development in
terms of the number, usage and structure of their pup
vocalizations as their hearing conspecifics. Similarly,
there were no differences in male courtship songs in rela-
tion to hearing ability. Apparently, mice do not require
auditory input for normal vocal development. These find-
ings question the utility of mouse models to elucidate the
foundations of vocal learning, a key component in the
development of human speech. Nevertheless, ultrasonic
vocalizations of mice constitute a valuable readout in stu-
dies of the genetic foundations of social and communica-
tive behavior, such as autism spectrum disorders [19,28].

Methods

Otoferlin knock-out animals were generated as described
in [29]. We analyzed the vocal behavior from 16 Otof
knock-out (Otof’", deaf) and 15 heterozygous (Otof™’",
hearing) pups at postnatal age of four or five days (P4-5),
eight or nine days (P8-9) and 15 or 16 days (P15-16) while
isolated from their mothers. Pups were bred using Otof’~
females with Otof*’” males and thus raised by deaf females.
All mice were of mixed background (129 ola and C57N).
Litters and mothers were kept in standard cages, one litter
per cage. For identification, pups were marked with tattoos
on the paws one day after birth.

In addition, we analyzed the vocal behavior from 12
knock-out and 16 control males. For the adults, deaf mice
(Otof ") and heterozygous Otof*'~ mice of 1290la/C57N
mixed background were raised in groups of 2 to 5 males
per cage until they were 8-9 weeks old. Each male was put
to a separate cage in which the courtship songs were
recorded one day after isolation. For the recordings, their
cages were placed in a sound-attenuated Styrofoam box.
After three minutes, a female was introduced for three
minutes.

All experiments complied with national animal care
guidelines and were approved by the University of
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Gottingen Board for animal welfare and the animal welfar-
eoffice of the state of Lower Saxony (AZ 33.11.42502-04-
044/08).

Acoustic Recordings

Mouse pups were recorded three times at postnatal age
of four or five (P4-5), eight or nine (P8-9) and 15 or
16 days (P15-16). For each recording the cage with the
litter to be measured was taken to a bench (room tem-
perature: 21-22 C) and pups were selected randomly,
weighed and placed in a soundproofed custom made
plastic box (diameter 13.5 cm). An ultrasound micro-
phone (UltraSoundGate CM16) was placed in the lid of
the box 12 cm above the bottom and connected to a
preamplifier (UltraSoundGate 116) which was connected
to a notebook computer. We recorded the pups for 150
seconds using the recording software Avisoft Recorder
3.4 with a sampling frequency of 300 kHz (hardware
and software from Avisoft Bioacoustics, Berlin, Ger-
many). In older pups, short-term isolation from mother
did not evoke isolation calls in a predictable manner.
Therefore we put for the P15-16 pups with the plastic
box in ice water (bottom temperature = 5-6 C), and
recorded for 180 seconds. We chose such a relatively
old age to record the pups because they do not start to
hear before day 10-12 [12].

To elicit courtship songs from male mice, we isolated
males at the age of two months one day before the record-
ing in a macrolon 2 cage (36.5 x 21 x 14 c¢cm). On the
recording day we placed the males in their own cage in a
sound-attenuated styrofoam box (30 x 43 x 24 cm). After
three minutes we introduced a female for three minutes
and recorded the vocalizations with the same recording
equipment we used for the recording of the pup isolation
calls. The ultrasound microphone was placed in the lid of
the box, 24 ¢cm above the floor.

Acoustic analysis
We counted the number of calls per recording session
with AVISOFT Recorder 3.4. To separate isolation calls
from the rest of the recording we used the whistles detec-
tion algorithm with following selection criteria: possible
changes per step = 4 (4687 Hz), minimal continuity = 8
ms, possible frequency range = 40 to 150 kHz. These cri-
teria were compared with former analysis of pup vocali-
zations [4]. In addition, we visually controlled the
procedure to ensure that the automated sampling routine
selected only calls of mouse pups and no other sounds
such as toe clicking. The AVISOFT recorder software
stores the selected sounds in separate wave files, and, in
addition logs the time of call onset.

From the stored calls, we calculated spectrograms (fre-
quency range: 150 kHz, frequency resolution: 293 Hz,
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time resolution: 0.21 ms). We submitted the resulting
spectrograms to the custom software program LMA
2011 to extract a set of characteristic acoustic para-
meters. As mice typically concentrate the energy of their
USV in a single-frequency band, so-called ‘pure tone-
like sounds’ or ‘whistles’, we focused on peak frequency
of USV, i.e. the loudest frequency of a respective time
frame. Just small head movements can lead to strong
amplitude fluctuations in USVs. In addition, mice pro-
duce often soft sounds in the ultrasonic range. To
ensure correct parameter estimations, we visually con-
trolled the estimation and excluded incorrect estimated
calls from the analysis. For each call we determined the
duration of a call and the duration of amplitude gaps
within a call (sound parts whose intensity is below 10%
(at the start) and 15% (at the end of call) of the mean
maximum amplitude of a call). Furthermore, we deter-
mined start, maximum peak frequency, as well as the
greatest difference in peak frequency between two con-
secutive 0.21 ms bins. Typical whistles concentrate their
energy to one amplitude peak. Therefore, the peak fre-
quency corresponds to the fundamental frequency,
although it is difficult to prove as long as no harmonics
can be detected. In addition, we calculated the location
of the maximum frequency and the location of peak fre-
quency jump within the call. To describe the call modu-
lation we calculated the slope of a linear trend through
the peak frequencies of consecutive 0.21 ms bins. We
did the same calculation for the male vocalizations
(Table 1). In addition to estimating the number of given
calls, we estimated the latency to call.

Recording of auditory brainstem response (ABR)

To confirm correct genotyping and exclude hearing
impairment in control animals, auditory brainstem
responses (ABR) to click stimuli were recorded from 57
out of 59 animals in the analysis. Measurements in het-
erozygous controls yielded typical ABR waveforms with
5 waves representing synchronous postsynaptic potential
generation in the auditory nerve (wave I) and brainstem
with a mean threshold of 32 + 2 dB peak equivalent
(Figure 4). Otoferlin knockout animals only showed a
small early wave component at high sound intensities
(mean threshold 100 + 2 dB), which most likely repre-
sents the summating potential, reflecting normal hair
cell transduction currents upstream of the synaptic defi-
cit. In summary, ABR recordings confirmed normally
hearing in all control animals and were consistent with
profound deafness due to abolished hair cell exocytosis
in otoferlin knockout animals.

Animals were anaesthetized intraperitoneally with a
combination of ketamine (125 mg kg-1) and xylazine (2.5
mg kg-1) and the heart rate was constantly monitored to
control the depth of anaesthesia. The core temperature
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Figure 4 ABR waveforms. Grand averages + s.e.m. of ABR
waveforms in response to 100 dB click stimuli presented at 20 Hz in
15 Otoferlin knockout animals (red) and 14 heterozygous littermates
(black) used for pup vocalization studies. Roman numbers denote
ABR wave peaks |-V according to Jewett in wild type animals, SP:
putative summating potential component observed in knockout
and control.

was maintained constant at 37°C using a rectal tempera-
ture-controlled heat blanket (Hugo Sachs Elektronik -
Harvard Apparatus GmbH, March-Hugstetten, Germany).
For stimulus generation, presentation and data acquisition
we used the TDT III Systems (Tucker-Davis-Technologies,
Ft Lauderdale, FL) run by custom-written Matlab software
(The Mathworks). Clicks of 0.03 ms duration were cali-
brated using a %" Briiel and Kjaer microphone (D 4039,
Briiel & Kjaer GmbH, Bremen, Germany) and were pre-
sented at 20 Hz in the free field ipsilaterally using a JBL
2402 speaker (JBL GmbH & Co., Neuhofen, Germany).
The difference potential between vertex and mastoid sub-
dermal needles was amplified 20 times and sampled at a
rate of 50 kHz for 20 ms, 2 x 2000 times to obtain two
mean ABRs for each sound intensity. Hearing threshold
was determined with 10 dB precision as the lowest stimu-
lus intensity that evoked a reproducible response wave-
form in both traces by visual inspection.

Statistics

We used a two-step cluster analysis (CA, SPSS 19) to
establish vocal categories. We used the log-likelihood dis-
tance measure to establish different vocal cluster (up to
15 clusters) and the Schwarz-Bayesian information criter-
ion (BIC) to decide which cluster solution showed the
best fit. We used the eight acoustic parameters described
above to calculate the CA. A higher number of para-
meters would have provided no advantage, because
highly correlating acoustic parameters render it difficult
to find appropriate cluster centers. In addition, they will
shift the result in the direction of the most highly corre-
lating parameters. The acoustic analysis program
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provided a set of further parameters. However, these
parameters obtained a high correlation with the already
chosen parameters (correlation coefficient above 0.7).
Therefore, there was no advantage to include theses para-
meters in the analysis. They only would lead to an
increase to correct for multiple testing. To confirm the
cluster solution and to estimate the contribution of dif-
ferent acoustic parameters to distinguish between the
established call categories we conducted a discriminant
function analysis (DFA, SPSS 19) with the same eight
acoustic parameters. We used a stepwise DFA. The selec-
tion criterion for an acoustic parameter to be entered
was p = 0.05 and p = 0.1 to be removed from the analysis.
The assignment of the calls was cross-validated by the
leaving-one-out method of SPSS 19.

To ensure that the statistic results are not simply an
artifact by the chosen number of call categories, we cal-
culated for the male mouse courtship analysis call type
solution of higher order and tested them for differences
in relation to hearing ability (Additional file 1).

To test for differences in structure and number of isola-
tion calls between deaf and normally hearing pups we
used a mixed linear model (SPSS 19) with hearing ability,
recording age (P5-6, P8-9 and P15-16) as fixed factors,
and subject, weight and litter as random factor. To test the
courtship vocalization for structural differences regarding
hearing ability we used a mixed linear model (SPSS 19),
with hearing ability as fixed factors and subject as random
factor. We conducted separate tests for all vocal types. To
test the courtship vocalization for differences regarding
call number, latency to call, rhythm of calling (start/start
intervals) and call type usage we used Mann-Whitney-U
test (SPSS 19). Where it was necessary we applied a Simes
correction to correct for multiple testing. We chose Simes
correction because it belongs to the correction methods
which minimize the  error.

Additional material

Additional file 1: Significant differences (P values) in call type usage
of deaf and normally hearing mice in relation to number of call
types.

Acknowledgements

We thank Tobias Moser for the possibility to conduct the study in his lab. In
addition, we thank Christian Rudiger for his technical support with the ABR
recordings.

Author details

'Cognitive Ethology Lab, German Primate Center, Kellnerweg 4, 37077
Gottingen, Germany. “Molecular Biology of Cochlear Neurotransmission
Group, University Medical Center Gottingen, Robert-Koch-Str. 40, 37099
Géttingen, Germany. “Department of Otolaryngology, Auditory Systems
Physiology Group, University Medical Center Gottingen, Robert-Koch-Str. 40,
37099 Géttingen, Germany. “Courant Research Centre ‘Evolution of Social
Behaviour’, University of Gottingen, Kellnerweg 6, 37077 Gottingen, Germany.

Page 8 of 9

Authors’ contributions

KH and JF designed the study, KH, LE and KW recorded the data, ER
provided the animals and conducted the experiments, NS conducted the
auditory brainstem response, and KH, NS and JF wrote the paper. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 22 January 2012 Accepted: 25 April 2012
Published: 25 April 2012

References

1. Fischer J: Nothing to talk about? On the linguistic abilities of nonhuman
primates (and some other animal species). In Homo Novus - a human
without illusions. Edited by: Frey U, Willfihr K, Stérmer. New York: Springer;
2010:35-48.

2. Fitch WT: The evolution of language Cambridge: Cambridge University Press;
2010.

3. Bishop DVM: What can developmental language impairment tell us
about the genetic basis of syntax? In Biological foundations and origin of
syntax. Edited by: Bickerton D, Szathmary E. Cambridge: MIT University
Press; 2009:185-204.

4. Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T, Somel M, et al- A
humanized version of Foxp2 affects cortico-basal ganglia circuits in
mice. Cell 2009, 137:961-971.

5. Scattoni ML, Crawley J, Ricceri L: Ultrasonic vocalizations: a tool for
behavioural phenotyping of mouse models of neurodevelopmental
disorders. Neurosci Biobehav Rev 2009, 33:508-515.

6. Holy TE, Guo Z: Ultrasonic songs of male mice. PLos Biol 2005, 3:e386.

7. Kikusui T, Nakanishi K, Nakagawa R, Nagasawa M, Mogi K, Okanoya K: Cross
fostering experiments suggest that mice songs are innate. PLoS One
2011, 6:217721.

8. Grimsley JM, Monaghan JJ, Wenstrup JJ: Development of social
vocalizations in mice. PLoS One 2011, 6:217460.

9. Roux |, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul |, et al:
Otoferlin, defective in a human deafness form, is essential for exocytosis
at the auditory ribbon synapse. Cell 2006, 127:277-289.

10. Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M, Riedel D, et al:
Hearing requires otoferlin-dependent efficient replenishment of synaptic
vesicles in hair cells. Nat Neurosci 2010, 13:869-876.

11. Ehret G: Auditory processing and perception of ultrasound in house
mice. In Advances in Vertebrate Neurethology. Edited by: Ewert JP, Capranica
RR, Ingle DJ. New York: Plenum Press; 1983:911-918.

12. Ehret G: Infant rodent ultrasounds - a gate to the understanding of
sound communication. Behav Genet 2005, 35:19-29.

13. Janik VM, Slater PJ: The different roles of social learning in vocal
communication. Anim Behav 2000, 60:1-11.

14. Hammerschmidt K, Fischer J: Constraints in primate vocal production. In
The Evolution of Communicative Creativity: From Fixed Signals to Contextual
Flexibility. Edited by: Griebel U, Oller K. Cambridge: The MIT Press;
2008:93-119.

15. Poole JH, Tyack PL, Stoeger-Horwath AS, StephanieWatwood SW: Elephants
are capable of vocal learning. Nature 2005, 434:455-456.

16.  Sales GD, Smith JC: Comparative studies of the ultrasonic calls of infant
murid rodents. Devolopmental Psychobiology 1978, 11:595-619.

17. Hahn ME, et al: Genetic and developmental influences on infant mouse
ultrasonic calling. Il. Developmental patterns in the calls of mice 2-12
days of age. Behav Genet 1998, 28:315-325.

18. Riede T, Arcadi AC, Owren MJ: Nonlinear acoustics in pant hoots and
screams of common chimpanzees (Pan troglodytes): Vocalizing at the
edge. J Acoust Soc Am 2007, 121:1758-1767.

19.  Scattoni ML, Gandhy SU, Ricceri L, Crawley JN: Unusual repertoire of
vocalizations in the BTBR T plus tf/J mouse model of autism. Plos One
2008, 3:23067.

20. Groszer M, Keays DA, Deacon RMJ, et al: Impaired synaptic plasticity and
motor learning in mice with a point mutation implicated in human
speech deficits. Curr Biol 2008, 18:354-362.

21. Gaub S, Groszer M, Fisher SE, Ehret G: The structure of innate
vocalizations in Foxp2-deficientmouse pups. Genes Brain Behav 2010,
9:390-401.


http://www.biomedcentral.com/content/supplementary/1471-2202-13-40-S1.DOC

Hammerschmidt et al. BMC Neuroscience 2012, 13:40
http://www.biomedcentral.com/1471-2202/13/40

22.

23.

24.

25.

26.

27.

28.

29.

Nyby JG: Auditory Communication among adults. In Handbook of mouse
auditory research: from behavior to molecular biology. Edited by: Williott JF.
Boca Raton, FL: CRC Press; 2001:3-18.

Guo Z, Holy TE: Sex selectivity of mouse ultrasonic songs. Chem Senses
2007, 32:463-473.

Musolf K, Hoffmann F, Penn DJ: Ultrasonic courtship vocalizations in wild
house mice, Mus musculus musculus. Anim Behav 2009, 79:757-764.
Thinh VN, Hallam C, Roos C, Hammerschmidt K: Concordance between

vocal and genetic diversity in crested gibbons. BMC Evol Biol 2011, 11:36.

Naguib M, Hammerschmidt K, Wirth J: Microgeographic variation, habitat
Effects and individual signature cues in calls of Chiffchaffs Phylloscopus
collybita canarensis. Ethology 2001, 107:341-355.

Bolhuis JJ, Gahr M: Neural mechanisms of birdsong memory. Nature Rev
Neurosci 2006, 7:347-357.

Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S,
Varoqueaux F, et al: Reduced social interaction and ultrasonic
communication in a mouse model of monogenic heritable autism. Proc
Natl Acad Sci USA 2008, 105:1710-1715.

Reisinger E, Bresee C, Neef J, Nair R, Reuter K, Bulankina A, et al: Probing
the functional equivalence of otoferlin and synaptotagmin 1 in
exocytosis. J Neurosci 2011, 31:4886-4895.

doi:10.1186/1471-2202-13-40

Cite this article as: Hammerschmidt et al: Mice do not require auditory
input for the normal development of their ultrasonic vocalizations. BMC
Neuroscience 2012 13:40.

Page 9 of 9

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central




	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Pup isolation calls
	Male mouse courtship vocalizations

	Discussion
	Conclusions
	Methods
	Acoustic Recordings
	Acoustic analysis
	Recording of auditory brainstem response (ABR)
	Statistics

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

