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Abstract

Background: The mammalian thalamus relays sensory information from the periphery to the cerebral cortex for
cognitive processing via the thalamocortical tract. The thalamocortical tract forms during embryonic development
controlled by mechanisms that are not fully understood. B-catenin is a nuclear and cytosolic protein that
transduces signals from secreted signaling molecules to regulate both cell motility via the cytoskeleton and gene
expression in the nucleus. In this study we tested whether B-catenin is likely to play a role in thalamocortical
connectivity by examining its expression and activity in developing thalamic neurons and their axons.

Results: At embryonic day (E)15.5, the time when thalamocortical axonal projections are forming, we found that
the thalamus is a site of particularly high B-catenin mRNA and protein expression. As well as being expressed at
high levels in thalamic cell bodies, B-catenin protein is enriched in the axons and growth cones of thalamic axons
and its growth cone concentration is sensitive to Netrin-1. Using mice carrying the B-catenin reporter BAT-gal we
find high levels of reporter activity in the thalamus. Further, Netrin-1 induces BAT-gal reporter expression and
upregulates levels of endogenous transcripts encoding B-actin and L1 proteins in cultured thalamic cells. We found
that B-catenin mRNA is enriched in thalamic axons and its 3'UTR is phylogenetically conserved and is able to direct
heterologous mMRNAs along the thalamic axon, where they can be translated.

Conclusion: We provide evidence that B-catenin protein is likely to be an important player in thalamocortcial
development. It is abundant both in the nucleus and in the growth cones of post-mitotic thalamic cells during the
development of thalamocortical connectivity and -catenin mRNA is targeted to thalamic axons and growth cones
where it could potentially be translated. B-catenin is involved in transducing the Netrin-1 signal to thalamic cells
suggesting a mechanism by which Netrin-1 guides thalamocortical development.
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Background

The adult thalamus is a complex structure in the centre
of the brain, comprising clusters of functionally related
cells organised into a large number of nuclei. Thalamic
nuclei form precise reciprocal connections with their
targets in the cerebral cortex providing it with most of
its sensory innervation via thalamocortical axons. In
mice axons grow from the thalamus into the ventral
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telencephalon at around embryonic day (E)12-13 and
then on to the cerebral cortex which they first reach at
around E13-14 [1-7]. The development of the thalamus
and its connections relies on intercellular communica-
tion mediated by secreted signalling proteins including
Wnt, Slit, and Netrin proteins [8-19].

Whnt signalling components are expressed in complex
patterns in the developing thalamus itself and in the ter-
ritory encountered by thalamocortical axons. Wnt sig-
nalling is known to be important for thalamic
development as targeted disruption of Wnt proteins or
their receptors result in severe thalamic development
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and connectivity defects [9,20-23]. B-catenin is an intra-
cellular protein that can affect both cytoskeletal
dynamics involved in cell motility and gene expression
in the nucleus in response to extracellular signals
including Wnt proteins [24-35]. An intriguing feature of
the adult thalamus is the expression of high levels of -
catenin protein. In fact the thalamus is unique within
the adult CNS in having sufficiently high levels of
nuclear B-catenin to be easily detectable with immuno-
histochemistry and B-catenin mediated TCF/LEF tran-
scription plays a key role in defining the
electrophysiological properties of thalamic cells [36,37].
While the manipulation of B-catenin activity has pro-
vided insights into the function of B-catenin in neural
progenitor cells there are as yet no tractable transgenic
models which allow the role of B-catenin to be studied
in post-mitotic neurons [38-43].

In this study we address the role of B-catenin in the
thalamus and its axons at the time the thalamocortical
tract is starting to form. First we use in situ hybridisa-
tion, immunohistochemistry, and a BAT-gal reporter
transgene to show that B-catenin is expressed at high
levels both in cell bodies and in axons in the developing
thalamus and that -catenin mediated transcription is
very active in thalamic cells at this time. Netrin-1 is
known to be a key regulator of thalamocortical develop-
ment [14,15]. While the relationship between the Wnt
response and f-catenin is well established, -catenin’s
relationship with Netrin-1 is not, so we next used in
vitro assays to show that Netrin-1 treatment causes an
increase in levels of B-catenin protein in thalamic
growth cones and induces B-catenin dependent gene
expression in thalamic cells. Local translation of mRNAs
in growth cones is a well established mechanism to
facilitate rapid changes in growth cone protein levels in
response to guidance cues including Netrin-1 so we
hypothesised that thalamic axons might contain -cate-
nin mRNA [44-56]. We performed an unbiased screen
for mRNAs present in thalamic axons, recovered B-cate-
nin transcripts at high frequency and identified other
transcripts in thalamic axons. Using a combination of in
situ hybridisation, GFP reporter transgenes, and quanti-
tative RT-PCR we showed that f-catenin mRNA is
enriched in thalamic axons and sequence elements in its
highly conserved 3’'UTR enhance protein expression
along the thalamic axon..

Results

Expression of B-catenin in the developing thalamus

To assess the role of B-catenin in thalamocortical devel-
opment we first studied the localisation of -catenin
mRNA and protein in the thalamus at the time when it
is projecting axons. In situ hybridisation for B-catenin at
E15.5 revealed higher mRNA levels in the thalamus
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compared to much lower levels in adjacent prethalamus
and ventral telencephalon (Figure 1A). Next we used
immunohistochemistry to examine the cellular distribu-
tion of B-catenin protein in thalamic cells and their
axons. Within the thalamus there are numerous heavily
stained cell bodies and axon fascicles (Figure 1C, inset
shows a blow-up of a cell body). In the prethalamus
(Figure 1D) and internal capsule (Figure 1E) of the same
section, axon fascicles are heavily stained but cell bodies
are much more weakly stained (insets in Figure 1D, E
show blow-ups of cell bodies in these areas). Immuno-
fluorescence on cultured thalamic neurons shows that
there are relatively high levels of $-catenin in the cell
body and at the growth cone with lower levels in the
intervening axon (Figure 1F, arrow points to growth
cone).

The BAT-gal reporter transgene comprises multiple
TCE/LEF binding sites coupled to a bacterial LacZ gene
and provides a convenient readout of f-catenin
mediated transcription [57]. At E15.5 the BAT-gal trans-
gene reports at very high levels in the thalamus and
much lower levels in the prethalamus, ventral telence-
phalon, and cerebral cortex through which thalamic
axons navigate (Figure 1G).

In conclusion, at the time the thalamus is projecting
axons towards the cerebral cortex at E15.5, thalamic
cells contain high levels of B-catenin mRNA and protein
and are the site of particularly vigorous B-catenin
mediated transcription.

Netrin-1 induces changes in mRNAs and in B-catenin
protein levels in thalamic cells

Netrin-1 mRNA is present both in the thalamus, where
thalamocortical cell bodies reside, and in the internal
capsule, which thalamic axons grow through (Figure
2A), so both thalamic cells and their axons are likely to
encounter Netrin-1 protein.

First, we hypothesised that the high levels of B-catenin
mediated transcription we observed in the thalamus of
BAT-gal embryos (Figure 1G) are contributed to by
Netrin-1. We used qRT-PCR to measure levels of LacZ
mRNA in thalamic cultures prepared from BAT-gal
embryos. As shown in Figure 2B there was a significant
increase in LacZ mRNA in cultures exposed to Netrin-1
for 90 minutes compared to untreated controls, showing
that Netrin-1 can induce B-catenin mediated transcrip-
tion in thalamic cells. L1 regulates thalamocortical axon
fasciculation in the internal capsule and L1 mRNA is
upregulated in response to f-catenin signalling in other
systems, expression of B-actin can be regulated by
Netrin-1 in Xenopus retinal growth cones, and Epha4 is
required for ordered thalamocortcial axon navigation in
the internal capsule and has not been linked with either
B-catenin or Netrin-1 function [58-61]. We found
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Figure 1 B-catenin expression and activity in the developing thalamocortical tract at E15.5. (A) In situ hybridisation for B-catenin mRNA
on coronal section of E15.5 mouse embryo (black signal). (B-E) DAB immunohistochemistry for B-catenin protein. (B) Diagram indicating boxed
areas shown at high magnification in (C-E) and illustrating a thalamic cell body in the thalamus (T) with its axon growing through the
prethalamus (pT) and into the internal capsule (ic) and towards the cerebral cortex (cc). Higher magnification of (C) thalamus, (D) prethalamus,
and (E) internal capsule, insets show a blown-up cell body. Note that although axonal staining is strong in all areas cell body staining is relatively
much stronger in the thalamus. (F) B-catenin/neurofilament double immunofluorescence on a cultured thalamic neuron with arrow indicating a

growth cone. (G) LacZ histochemistry on a BAT-gal reporter embryo. Scale bars: A&G, 500 pm; C-E, 100 um; F, 10 pm.

significant increases in the thalamic levels of S-actin and
L1 mRNAs but not Epha4 mRNA following Netrin-1
treatment for 90 minutes (Figure 2C).

We next asked whether Netrin-1 treatment affects
growth cone P-catenin. In order to monitor the
response of thalamic cells to Netrin-1 we employed a
culture system in which thalamic explants were cul-
tured on glass coverslips and allowed to extend axons.
An example of a cultured thalamic explant, immunos-
tained with B-catenin, is shown in Figure 2D. Cultures
were exposed to Netrin-1 (400 ng/ml), a concentration
that has previously been shown to stimulate thalamic
axon growth [14]. Thalamic axons were exposed to
Netrin-1 for various time intervals (10 minutes, 1
hour, or 24 hours) and processed for P-catenin

immunofluorescence. An example of a growth cone
stained for PB-catenin is shown in Figure 2E. The total
pixel intensity of B-catenin indirect immunofluores-
cence was measured for each growth cone and values
for growth cones treated with Netrin-1 were then nor-
malised against untreated control growth cones to
show fold changes in the B-catenin signal (Figure 2F).
Ten minutes of exposure to Netrin-1 caused a 22%
increase in B-catenin signal. After 1-hour exposure to
Netrin-1, the B-catenin signal in the growth cones was
reduced by 19%. One day after adding Netrin-1 values
were similar to those in untreated growth cones. This
experiment demonstrates rapid and dynamic fluctua-
tions in growth cone P-catenin concentration in
response to the thalamocortical guidance cue Netrin-1.
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Figure 2 Effect of Netrin-1 on thalamic cells and axons. (A) In situ hybridisation for Netrin-1 mRNA (purple signal) on a coronal E14.5
forebrain section. (B,C) mRNA levels measured after 90 minutes exposure to Netrin-1 expressed relative to untreated controls. (B) LacZ mRNA
levels in cultured BAT-gal thalamic explants. (C) B-actin, Epha4, and LT mRNA levels in cultured thalamic explants. Transcript levels were
measured using qRT-PCR and normalised to GAPDH with n = 3 for each condition. (D) Cultured thalamic explant immunostained for B-catenin
with higher magnification of a growth cone in box shown in (E). (F) Growth cone B-catenin staining pixel intensity measured after 10 minutes, 1
hour, or 24 hours exposure to Netrin-1 expressed relative to untreated controls. For each condition values represent means for n = 84-95 growth
cones randomly selected from 3 independent cultures each including thalamic tissue from several embryos Students t-test p values for + Netrin-
1 comparion indicated above histogram bars at each time-point. Scale bars: A = 200 um; D, 100 pm; E, 5 pm.

Identification of B-catenin mRNA in thalamic axons

Our data so far suggest a possible role for B-catenin in
thalamic axon navigation. The rapid changes in 3-cate-
nin protein levels in growth cones exposed to Netrin-1
suggest rapid B-catenin protein synthesis, perhaps fol-
lowed by its degradation or movement away from the
growth cone, in response to guidance cues. We next
turned our attention to the distribution of f-catenin
mRNA in the thalamocortical system, particularly in the
axons and growth cones where mRNAs might be locally
translated. As shown in Figure 1A, B-catenin mRNA is
expressed at high levels by thalamic cells so we were
interested to know whether the B-catenin transcript is

present in axons and, to place our findings in context,
how the distribution of B-catenin mRNA related to that
of other transcripts. We therefore isolated and analysed
a set of mRNAs found in the axons of embryonic thala-
mic neurons. In brain sections thalamic axons are clo-
sely associated with other cells and axons so we
performed this analysis in cultures where thalamic
axons can be unambiguously identified and isolated.
Thalamic explants were placed in culture for 3 days
allowing long axons to grow out (Figure 3A) and then
RNA was prepared either (1) from thalamic explants
which comprise cell bodies, axons, and growth cones or
(2) from axons and growth cones alone (dissected
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Figure 3 Distribution of mRNAs in cultured thalamic cells, explants, and their axons. (A) Photomicrograph of cultured thalamic explant
(on left) with axons growing from it stained with an antibody against neurofilament. Broken lines outline the regions cut out to obtain samples
for RNA extraction. (B) A portion of a gel showing PCR amplified products from mRNAs taken from area 1 ‘Cells’ (left lane) and area 2 ‘Axons’
(right lane). (C) Axon:Cell ratios for 8 mMRNAs measured by gRT-PCR. Each point shows mean + SEM for 3 samples. (D) in situ hybridisation for -
catenin mRNA (black signal) on a dissociated thalamic neuron. (E-G) Quantification of hybridisation signal density for (E) B-catenin mRNA, (F) B-
actin mRNA, and (G) 78S rRNA with antisense probe signal in red and background signal in green. Lines used for densitometric analysis were
drawn along the axon connecting the cell body (cb- 0% along the line) and growth cone (gc- 100% along the line) as indicated in (D). The B-
catenin antisense probe (n = 12) and B-actin antisense probe (n = 11) are compared against a f-catenin sense probe (n = 15), whereas the 78S
oligoprobe (n = 6) is compared against a Scrambled oligoprobe (n = 7). The sense and scrambled control probes are used to define background
signal levels. An asterisk above a data point indicates significant difference from background (Student’s t-test, p < 0.05). Note that each transcript
has a distinct distribution profile along the axon. Abbreviations: cell body (cb); growth cone (gc); axon (a). Scale bars: A, 100 um; E, 10 pm.

regions 1 ‘cells’ & 2 ‘axons’ indicated in Figure 3A). Ran- The remaining 16% of sequences mapped to regions
domly-primed ¢cDNA was generated from these two annotated in the ENSEMBL database as non-genic and
RNA samples and Figure 3B shows a portion of a gel ~ we did not investigate them further although, given that
separating the amplified products. newly transcribed regions of the genome are still being
Thalamic axonal cDNA was used to generate a plas-  discovered, it is quite possible that they have functional
mid library from which clones were randomly selected  significance [62].
for sequencing. Sequence data was recovered from 87 Of the 73 clones that mapped to transcribed regions,
clones. BLAST analysis of these sequences against the = 30% contained transcripts for mitochondrial 16S rRNA,
mouse genome sequence revealed that the vast majority —a component of the mitochondrial ribosome encoded by
of them (84%) mapped to transcribed regions (introns the mitochondrial genome [63], whose presence in
and exons of protein coding genes and ribosomal RNA).  axons is predictable because they contain mitochondria.
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Table 1 Identities of thalamic axonal mRNAs.
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ENSEMBL ID MGl gene symbol (Full name) Location of recovered clone within gene.
ENSMUSG00000000751 Rpal (replication protein AT) Exon 5'UTR
ENSMUSG00000039643 Npm1 (Nucleophosmin 1) Exon ORF
ENSMUSG00000004032 Gstmb5 (glutathione S-transferase, Mu 5) Exon 3'UTR
ENSMUSG00000021643 Serf1 (small EDRK-rich factor 1) Exon 3'UTR
ENSMUSG00000028248 Sfrs 18 (serine/arginine-rich splicing factor 18) Exon 3'UTR
ENSMUSG00000003660 Snrnp200 (small nuclear ribonucleoprotein 200 kDa (U5)) Exon 3'UTR
ENSMUSG00000005312 Ubgin1 (Ubiquilin 1) Exon 5'UTR
ENSMUSG00000005873 Reep5 (receptor expression- enhancing protein 5) Exon 5'UTR
ENSMUSG00000006932 Ctnnb1 (B-catenin) Exon 3'UTR
ENSMUSG00000008859 Rala (v-ral simian leukemia viral oncogene homolog A) Exon ORF
ENSMUSG00000027220 Syt13 (Synaptotagmin 13) Exon 3'UTR
ENSMUSG00000028961 Pgd (6-phosphogluconate dehydrogenase) Exon 5'UTR
ENSMUSG00000029580 Actb (B-actin) Exon 5'UTR
ENSMUSG00000030744 Rps3 (Ribosomal protein S3) Exon 5'UTR
ENSMUSG00000036693 Nop14 (NOP14 nucleolar protein homolog (yeast)) Exon ORF
ENSMUSG00000038871 Bgpm (2,3-bisphosphoglycerate mutase) Exon 3'UTR
ENSMUSG00000040225 Bat2I2 (HLA-B associated transcript 2-like 2) Exon ORF
ENSMUSG00000048120 Entpd] (ectonucleoside triphosphate diphosphohydrolase 1) Exon 3'UTR

ENSMUSG00000021087 Rtn1 (Reticulon 1)

Intron 1-2/7 (12989 bp)

ENSMUSG00000024109 Nrxn1 (Neurexin 1cx)

Intron 9-10/17 (23196 bp)

ENSMUSG00000031536 PolB (DNA polymerasef3)

Intron 10-11/14 (2779 bp)

ENSMUSG00000025609 MkiInT (muskelin 1), Intron 12-13/18 (11278 bp)
ENSMUSG00000027840 Wnt2b Intron 4-5/5 (3807 bp)
ENSMUSG00000035394 Ccdcl1 (Coiled-coil domain containing 11) Intron 7-8/9 (27462 bp)

ENSEMBL identifier, MGI gene symbol and common name or description are given for each mRNA along with whether the sequence recovered from the
thalamic axon c¢DNA library mapped to an exon [broken down into 5’ or 3’ untranslated region (UTR) or open reading frame (ORF)] or an intron [identified by the

flanking exons/total number of exons in that gene and the intron size].

Most of the remaining 51 clones mapped to exons of
protein coding transcripts. Table 1 lists protein coding
genes for which cloned sequences mapped to exons.
Some genes were represented by more than one clone,
notably Ribosomal protein S3 (RPS3) (6 clones), 3-cate-
nin (5 clones) and B-actin (4 clones). Also in Table 1
are clones recovered from the axonal library that
mapped to predicted intronic regions (Wnt2b, Neurexin
1o, reticulon 1, DNA polymerasef3, muskelinl, Coiled-
coil domain containing 11). These might be alternatively
spliced exons not in the ENSEMBL database (highly
likely for Reticulon-1 mRNA which we independently
confirmed to be in thalamic axons using qRT-PCR- see
Figure 3C) or might correspond to distinct overlapping
genes.

In conclusion, our unbiased screen recovered [3-cate-
nin mRNA from thalamic axons. The high frequency of
B-catenin clone recovery is suggestive of high abundance
in thalamic axons. Tellingly, the recovery frequency was
similar to that for B-actin mRNA, which has well estab-
lished function in axon navigation in other systems [59].

The wide range of physiological functions encoded by
the other thalamic axonal mRNAs listed in Table 1 mir-
rors that of mRNAs found in mouse retinal and cortical
axons [64,65].

Localisation of B-catenin mRNA in the axon

In order to shed light on the distribution of transcripts
between the cell body and the axon we performed a
careful quantitative analysis using qRT-PCR to calculate
the ratio of B-catenin mRNA in thalamic axons to that
in the thalamic explants from which the axons project
(the axon/cell ratio in Figure 3C). To place our findings
in context we included five other transcripts recovered
in our screen (o-tubulin, f-actin, Map-2, Ral-A, reticu-
lon-1, RPS3, and synaptotagmin-13) and o-tubulin and
Map2 which are known to be enriched or depleted in
the axonal compartment in other systems [66-68]. 18S
rRNA is a commonly used loading control for qRT-PCR
experiments and is found in axons. Transcript levels
were normalised to 18S rRNA levels in their own com-
partment. This ratio allowed us to assess the relative
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distribution of each transcript between axons and cells
in the explant. The wide variation in axon:cell transcript
ratios argues that the distribution of these transcripts
between axon and cell body compartments is unlikely to
be accounted for by a common mechanism, for example
passive diffusion from soma to axon, as this would pre-
dict a relatively constant ratio. Critically, a high axon:
cell ratio suggests that a transcript is actively targeted to
the axonal compartment and consistent with this Map2
mRNA (which is targeted to the somato-dendritic com-
partment in other systems) had the lowest ratio while -
actin and a-tubulin mRNAs (which are axonally tar-
geted in other systems) had ratios about 10-fold higher
(note the log-scale in X-axis of Figure 3C) which are
comparable to those of B-catenin, Reticulon-1, and
synaptotagmin-13. The greatest axonal enrichment was
seen in the mRNA encoding the ribosomal protein
RPS3.

To determine the location of 3-catenin mRNA within
the growing thalamic axons we used in situ hybridisa-
tion on cultured E15.5 thalamic cells. An example of a
thalamic neuron stained for f3-catenin mRNA is shown
in Figure 3D where strong staining is apparent in the
cell body and in the growth cone with weaker staining
in the intervening axon. Densitometric analysis was car-
ried out for f-catenin mRNA (Figure 3E). The upper
red line in Figure 3E shows quantification of the -cate-
nin in situ signal along thalamic axons from their cell
bodies to their growth cones. It shows that the signal is
highest in the cell bodies and the growth cones (left and
right hand end of the trace respectively) and resembles
the distribution of B-catenin protein (Figure 1F). As a
control the signal was measured in thalamic neurons
reacted with a sense B-catenin DIG labelled RNA tran-
script (lower green line in Figure 3E). The anti-sense
signal is significantly above background in the cell body
and at the end of the axon indicating that S-catenin
mRNA is specifically enriched towards the growth cone.
An identical analysis of -actin mRNA (Figure 3F) and
18S rRNA (Figure 3G) showed them to be more evenly
distributed along the length of the axon. B-catenin
mRNA is therefore subject to idiosyncratic positioning
within the thalamic axon relative to at least two other
axonal transcripts.

Sequence and functional analysis of the B-catenin 3'UTR

Protein coding mRNAs comprise an open reading frame
(ORF) flanked by 5" and 3’ UTRs with sequence ele-
ments responsible for subcellular localisation frequently
residing in the 3'UTR so we next looked for evidence of
phylogenetic conservation of B-catenin mRNA 3'UTR
sequences. Mouse f3-catenin genomic sequence starting
from the stop codon and extending 10 kb in the 3’
(downstream) direction was compared to a variety of
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equivalent 10 kb vertebrate f-catenin genomic
sequences using a M-LAGAN alignment algorithm. This
revealed regions of striking sequence similarity within
placental and marsupial mammalian species (C. famil-
iaris, B. Taurus, H. sapiens, M. mulatta, P. troglodytes,
M. domestica, R. norvegicus, E. caballus, &O. anatinus)
with three closely adjacent peaks of conservation (Figure
6A). This conservation extended to birds (G. gallus)
and, although diminished, two peaks were still apparent
in fish (D. rerio & T. rubripes - note that T. rubripes has
two B-catenin genes). Notably this conserved region
spanned ~1 kb from the translation stop codon (asterisk
in Figure 4A) to the polyadenylation signal (PolyA in
Figure 4A) coinciding with the B-catenin 3'UTR. This
conservation is almost as high as that seen in the -
catenin protein coding ORF (not shown) suggesting that
functionally important sequences reside in the 3’'UTR.
We hypothesised that one conserved function of the
B-catenin 3’'UTR is to direct protein expression to the
axon. To test this hypothesis in thalamic axons we gen-
erated a reporter plasmid construct, pKR6 (Figure 4B),
comprising a myristoylated destabilised GFP (myr-
d1EGFP) cDNA fused at its 3’ end to B-catenin genomic
sequences encompassing the translation stop codon,
3’'UTR, polyadenylation signal, and 300 bp of down-
stream sequence. Another construct, pKR7 (Figure 4B),
was generated with the majority of the 3’UTR deleted
leaving only a stub comprising the polyadenylation sig-
nal and sequence downstream of the 3’'UTR. This is a
well established method to report on de novo translation
because myrd1EGFP protein contains a myristoylation
sequence (Myr) to limit its diffusion from the site of
translation and has a half-life of only one hour [53].
Transcription was driven by the powerful ubiquitous
CAGG promoter [69]. If the hypothesis is correct then
the chimeric GFP:-catenin 3’UTR mRNA produced by
transcription of pKR6 should be targeted to and trans-
lated in axons. Reporter plasmids were introduced into
thalamic explants by electroporation and the explants
cultured for 2 days. Cultures were then processed for
GFP immunofluorescence (examples of images shown in
Figure 4C, D). Two parameters were quantified from
these images: (1) the GFP fluorescence of the cell body
and (2) the distance from the cell body where GFP
fluorescence could be found in the axon. Comparison of
cell body values showed that pKR6 and pKR7 had indis-
tinguishable GFP levels indicating that the majority of
the fB-catenin 3UTR is not needed for expression within
the cell body (Figure 4E). The cell body GFP levels mea-
sured for pKR6 and pKR7 are subsaturating as a myr-
d1EGFP:SV40 3’'UTR construct in an otherwise identical
experiment yielded over 2-fold the cell body GFP values
in Figure 4E (data not shown). The B-catenin 3'UTR
contributes to axonal expression of GFP as the pKR6
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Figure 4 Sequence and functional analysis of the B-catenin 3'UTR’. (A) Evolutionary conservation of the B-catenin 3'UTR in vertebrates.
Individual plots show conservation between the indicated species and the mouse based on comparisons between genomic sequence starting
at the B-catenin stop codon (asterisk) at the 5" limit of the 3'UTR and continuing 10 kb in the 5" direction encompassing the entire 3'UTR and
downstream untranscribed sequence. The position of the polyadenylation signal in the mouse sequence, which approximates to the 3’ limit of
the 3'UTR, is marked poly A. Conservation score calculated as an averaged windowed identity (window size = 100 bp). Curves only show
conservation score range 50-100%. Position indicates kilo bases from stop codon in mouse B-catenin. (Alignments calculated with M-LAGAN). (B-
F) B-catenin 3'UTR directs GFP expression to the axon. (B) Diagram of GFP plasmid reporter constructs. CAGG promoter (unfilled box) myrd1EGFP
cDNA (green box). pKR6: The myrd1EGFP stop codon (TGA) attached to B-catenin genomic sequence spanning from just 3'to the translation
stop codon (TAA), through the 3'UTR (black) to approximately 300 bp 5'f the polyadenylation signal sequence (ATTAAA). pKR7 is identical to
pKR6 except that most of the 3'UTR is deleted. (C, D) Examples of thalamic neurons electroporated with GFP reporter constructs and cultured for
2 days, GFP immunostaining gives black signal in these images (C) pKR6, (D) pKR7. Neurons are growing within a tissue explant so cell bodies
(cb) and axons (a) are only visible if GFP is expressed in them. The red lines illustrate lines drawn to measure the distance GFP signal could be
detected along an axon. Note that the red line in C extends to a growth cone. (E) Densitometric analysis of GFP signal intensity (in arbitrary
units (AU)) in cell bodies following transfection with pKR6 and pKR7. (F) Distance GFP signal could be traced from the cell body along the axon.
Transfecting thalamic explants with pTP6 to express a tau tagged GFP which completely fills axons gave a value for total axon length of 158 +
14 pum. Mann-Whitney Rank sum test P-values for pairwise comparisons shown above bars, error bars are + SEM. GFP values were taken from 84
and 30 (pKR6) and 116 and 30 (pKR?) cell bodies and axons respectively or 30 axons (pTP6) randomly selected from 3 independent cultures
each including thalamic tissue from several embryos. Scale bars in C, D, 10 um.
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construct containing the full §-catenin 3'UTR sequence
frequently drove GFP expression all the way along the
axon to a growth cone (Figure 4C) and almost twice as
far along the axon as the pKR7 construct from which
most of the B-catenin 3'UTR was deleted (Figure 4F). In
order to estimate the proportion of the axon these dis-
tances correspond to we performed an otherwise identi-
cal experiment using pTP6 which expresses a tau-tagged
GEFP (neither destabilised nor myrisoylated) which effi-
ciently fills thalamic axons [70] giving a value for total
axon length of 158 + 14 um. This allowed us to calcu-
late that, on average, pKR6 drove detectable GFP signal
67% along the axon compared to 43% for pKR7. These
data are not consistent with axonal GFP expression pas-
sively reflecting GFP expression levels in the cell body
as pKR6 and pKR7 have similar cell body GEP levels but
pKR6 drives GFP significantly further along the length
of the axon.. In conclusion the 3'UTR of -catenin
mRNA is sufficient to enhance the expression of a het-
erologous reporter protein in thalamic axons so is pre-
sumably able to do the same for endogenous 3-catenin
protein.

Discussion

The dual functions of $-catenin in connecting cadherin
molecules on the cell surface to the actin cytoskeleton
and in regulating TCF/LEF mediated gene expression in
response to Wnt signalling in the nucleus make it an
interesting candidate for coordinating the development
of neural structures and connectivity [71]. While atten-
tion has focussed on the importance of Wnt/B-catenin
signalling in neural progenitors in the developing thala-
mus and elsewhere in the brain, the function of B-cate-
nin activity in post-mitotic projecting neurons remains
relatively unexplored [9,21,36,37,43]. The developing
embryonic thalamus is a site of high levels of TCF/LEF
transcription mediated by nuclear B-catenin [20,57] &
present study. While a component of thalamic TCF/LEF
transcription is likely a response to Wnt signalling, Slit
proteins which are also abundant in the thalamus and
tissues encountered by its axons can turn on TCF/LEF
transcription when sensed by their Robo receptor [8,25].
Our new finding that Netrin-1 can activate TCF/LEF
transcription adds to these options.

A key finding in this study is the rapid increase in the
levels of B-catenin protein in thalamic growth cones in
response to the axon guidance cue Netrin-1. As thala-
mic axons extend towards the cerebral cortex their
growth cones become increasingly distant from the cell
body posing a potential logistical problem if all new pro-
tein must be translocated from the cell body. A classic
mechanism to overcome this is for growth cones to
carry mRNAs that can be translated locally
[45,46,53,55,56]. As a precedent from another system, f3-
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catenin mRNA is found in migrating astrocytic filopodia
and hippocampal growth cones where its translation in
response to the neurotrophic factor NT3 is dependent
on the Cytoplasmic Polyadenylation Element-Binding
Protein (CPEBP) binding to discrete elements in its
3’'UTR [72,73]. Therefore, while we have not directly
addressed whether or not -catenin is locally translated
in thalamic growth cones in the present study, our find-
ing that B-catenin mRNA is present in thalamic axons
and that elements in its 3'UTR assist protein expression
in the thalamic axonal compartment make it a strong
possibility.

Conclusions

We provide evidence that -catenin mRNA and protein
are expressed at high levels in mouse embryonic thala-
mic cells and their axons at the time connections are
being formed with the cerebral cortex. We find that
Netrin-1 induces B-catenin mediated transcriptional
activity in thalamic cells and induces rapid changes in
the growth cone levels of B-catenin protein. We find
that the 3’'UTR of B-catenin mRNA is sufficient to direct
protein expression to the axon. Taken together these
findings point to an important role for B-catenin in
post-mitotic neurons during the development of thala-
mocortical connectivity.

Methods

In situ hybridization

Antisense and sense digoxigenin-labelled RNA probes
were synthesized using a DIG transcription kit (Roche,
UK). IMAGE consortium [74] clone 13156732 was used
to generate (3-catenin probes corresponding to 932 bp of
the 3’'UTR. In situ hybridation was performed as
described previously [75]. Briefly, tissues were fixed in
4% paraformaldehyde, incubated with RNA probes over-
night at 70°C in hybdridisation buffer including 50% for-
mamide and 5xSSC, reacted with alkaline phosphatase
conjugated anti-digoxigenin antibodies (1:500 at 4°C
overnight; Roche, UK) and stained with nitro blue tetra-
zolium chloride/5-Bromo-4-chloro-3-indolyl phosphate
(NBT/BCIP; Roche, UK). Images of stained axons were
quantified using Image] software to measure the pixel
intensity along the length of the axon. To combine data
from a sample of cells the position of each pixel was
expressed as a percentage of axon length, with 0% at the
cell body and 100% at the growth cone, and intensities
binned into 5% segments.

Immunohistochemistry

Tissue was fixed in 4% paraformaldehyde at 4°C, over-
night for embryo heads or 1 hr for cultured explants or
cells, reacted with rabbit anti-neurofilament (1:500, Affi-
nity, UK) and/or mouse anti-B-catenin (1:1000, 610154
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BD Biosciences, UK) antibodies followed by DAB immu-
nohistochemistry using an ENVISION lit (Dako) or
fluorescent secondary antibodies Alexa fluor goat anti-
mouse 488 and Alexa fluor goat anti-rabbit-568 (1:200;
Invitrogen) for immunofluorescence. For GFP detection
thalamic cultures were fixed in 2% paraformaldehyde,
and processing for GFP immunohistochemistry using
rabbit anti-GFP (1:8000; Abcam 290) followed by a goat
anti-rabbit-488 nm secondary antibody (1:200;
Invitrogen).

LacZ Histochemistry

Embryonic heads were dissected and fixed overnight at 4°
C in LacZ Fix [4% paraformaldehyde, 0.02% NP40, 0.01%
sodium deoxycholate, 5 mM EGTA, 2 mM MgCl, in
phosphate buffered saline (PBS)]. Heads for thin frozen
sections were equilibrated in 30% sucrose/PBS at 4°C,
embedded in OCT and sectioned (10 pm) using a cryo-
stat. Sections were collected on poly-L-lysine coated glass
slides, rinsed several times in wash buffer (2 mM MgCl,,
0.02% NP40, 0.01% sodium deoxycholate in PBS), trans-
ferred to LacZ stain (wash buffer supplemented with 5
mM potassium ferricyanide, 5 mM potassium ferrocya-
nide and 1 mg/ml X-gal), stained for at least 20 hours at
37°C, and counterstained with Nuclear Fast Red.

Embryonic thalamus culture

(1) Netrin response and in situ hybridisation experi-
ments: E14.5 thalami from CBA embryos were diced to
give > 50 small explants/thalamus which were cultured
on poly-L-lysine (0.001%, Sigma) and fibronectin (1 mg/
ml, Sigma) coated glass coverslips for three days in
serum free medium to allow extension of neurites. Cul-
tures were then exposed to Netrin-1 by replacing 40%
of the culture medium with fresh culture medium sup-
plemented with Netrin-1 (R&D Systems) to give a final
concentration of 400 ng/ml. For Netrin-1 free cultures,
40% of the culture medium was replaced with fresh
medium. Cultures were then either processed for 3-cate-
nin immunofluorescence or RNA extracted from the
whole culture (explant + axons) for qRT-PCR analysis.
(2) Thalamic axon plasmid ¢cDNA library: Explant cul-
tures were carried out as described previously [76].
Briefly, 250 pm-thick explants of thalamus were dis-
sected from coronal slices of embryonic day 14.5 (E14.5)
TgTP6.3/CBA embryonic mouse brains and arranged on
collagen coated inserts (Costar, UK) in serum-free med-
ium and cultured for 2-3 days. (3) Thalamic cell or axon
compartment qRT-PCR: Cultures were prepared as in
(2) except the CBA embryos were used and serum-free
medium was supplemented with 10% fetal calf serum (4)
GEFP reporter experiment: Dorsal thalamus was dissected
from E14.5 CBA mouse embryonic brain and collected
in cold oxygenated Earle’s Balanced Saline Solution

Page 10 of 13

(EBSS). Thalami were mixed with 25 pl of PBS (Phos-
phate Buffered Saline) containing plasmid DNA (1 mg/
ml) and each one was cut into ~25 pieces. Two electro-
des were placed in the drop on either side of the pieces
and two consecutive square waved pulses applied (70 V
for 50 ms 3 times with 900 ms pauses), using a CUY21
EDIT (Sonidel) electroporator. Amperage obtained ran-
ged from 0.02 amps to 0.05 amps. Cold EBSS was
immediately added to the dish and the pieces were kept
on ice until culturing in a collagen mixture on glass cov-
erslips for 2 days as previously described in [77]. (5) Dis-
sociated thalamic cells were prepared using a Papain
Dissociation Kit (Worthington, UK) and cultured on
poly-L-lysine (0.001%, Sigma) and fibronectin (1 mg/ml,
Sigma) coated glass coverslips for three days in serum
free medium.

Quantifying B-catenin protein in growth cones

Images of growth cones were taken using a Zeiss
LSM510 CLSM, Plan-Apochromat x63/1.4 oil objective
zoomed x3.1. Optical sections of growth cones were
taken at a constant stack separation of 0.13 pum and at
constant optical gain and laser output. Data were ana-
lysed using Image] software with each analysis being
performed on the entire stack generated from each
growth-cone image. Pixel intensities in regions contain-
ing no cells or processes were measured to give back-
ground values that were used to threshold images of
growth cones. For each growth cone, the total number
of pixels above background intensity through the stack
and the average pixel intensity for all pixels above back-
ground intensity were multiplied to give total -catenin
staining intensity. Statistical analysis was done using the
Sigmaplot software package.

Plasmid cDNA library

Samples were cut from thalamic cultures with a sterile
scalpel blade using a fluorescence dissecting microscope
to visualise GFP-expressing axons, homogenised in
RNAzol (Tel-Test, USA) and stored at -20°C before
RNA extraction and first strand cDNA synthesis, primed
using NotldT;g oligonucleotides, using a reverse tran-
scription kit (Amersham, UK). A differential display
polymerase chain reaction (DDPCR) protocol was used
to amplify segments of sequence from the cDNA sam-
ples. Three 10-mer primers DM1 (ATATCTGGAG),
DM2 (CGATCGTGCA), and DM4 (CGGTAACAAGQG)
were used separately, each in combination with an equi-
molar mixture of clamped oligo-dT primers dT;, MM
(where M is G, A, or C) in separate DDPCRs to amplify
a pool of products from each cDNA sample. **S-dATP
was included in the DDPCR reactions to allow visualisa-
tion of products on a polyacrylamide gel. DDPCR pro-
ducts produced from each of the cDNA sample types
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were pooled, cleaned using a GenElute PCR cleanup kit
(Sigma, UK), ligated into pGEMTeasy (Promega, UK)
and transformed into XL10-Gold Ultracompetent cells
(Stratagene, USA); ampicillin resistant colonies were
selected. Clones were picked at random and their DNA
was sequenced.

Quantitative PCR

Quantitative RT-PCR experiments were carried out on
cDNA samples from three different explant cultures,
obtained as described above, using Quantitect Sybr
Green PCR kits (Qiagen, UK). Primers were designed
using PerlPrimer [78] and all were intron-spanning,
except those for 18S, which has only one exon. Standard
curves plotting quantities of product generated with
each primer pair against numbers of cycles at threshold
for a series of dilutions of the starting samples all had 7*
values of 0.95 or greater [79]. The threshold was chosen
as early in the exponential phase as possible to minimize
differences due to variation in efficiency between differ-
ent primer pairs. Analyses of melting curves confirmed
that only one product was amplified by each primer
pair. The abundance of each cDNA species in each sam-
ple was calculated using Opticon software by comparing
the PCR reaction kinetics between the sample and a
dilution series of a standard cDNA pool produced from
E14.5 dorsal thalamic tissue. Oligonucleotide primer
sequences were as follows: RnI8s, 5-TCAGT-
TATGGTTCCTTTGGT-3/5-CGAAAGTTGATAGGG-
CAGAC-3’; Actb, 5-CACCACACCTTCTACAATGAG-
3/5-GTCTCAAACATGATCTGGGTC-3};

Ctnnbl, 5-CTGCTCATCCCACTAATGTC-3"/5'-
CTTTATTAACTACCACCTGGTCCT-3’; Syt13, 5-
CAGAAGTCATCAACTACGCA-3/5-TCCTCAACTA-
CACCGTTCTG-3; Rps3, 5’-CAAGAAGAGGAAG
TTTGTAGCTG-3'/5-CCCAAGAACATTCTGTGTCC-
3’ Rala, 5-TGTACGACGAGTTTGTAGAG-3'/5'-
GATCTGACTTGTTACCAACC-3’; Rtnl, 5-GAGCA-
GATCCAGAAGTACAC-3"/5-GAAACCACAGCCA-
TAAGCAG-3’; Tubala, 5-CAGATGCCAAGTGAC
AAGAC-3'/5-GTGCGAACTTCATCGATGAC-3’;
Mtap2, 5’-CTTCGGCTTATTAACCAACCA-3/5-GGC
TGTCAATCTTCACATTACC-3’; GAPDH: 5-GGGT
GTGAACCACGAGAAAT-3'/5-CCTTCCACAATGC-
CAAAGTT-3; LacZ 5-CGAAATCCCGAATCTC-
TATCGTGC-3’/5-GATCATCGGTCAGACGATT-
CATTG-3; EphA4, 5-CCATCAAAATGGACCGGTAT-
3/5-CATCTGCTGCATCTGGGTTC-3; L1, 5-GTTCA
TCGCCTTTGTCAGC-3/5-CCG AAG GTC TCG TCT
TTC AT-3.

Plasmid construction
The CAGG promoter element [69] from pTP6 [70] and
myrd1EGFP cDNA [53] were inserted between the Sall/
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EcoRI and EcoRI/Pstl restriction sites of pBluescriptKS
(Stratagene) respectively to generate pTP7 in which a
CAGG:myrd1EGFP cassette lacking mammalian polyade-
nylation signals is immediately 5’ to a unique NotlI
restriction site. A partial clone of the -catenin gene
was recovered from mouse genomic DNA by sequential
PCR using primer pairs 5-CCCAGCTACCGTTC
TTTTCA-3 & 5-GAGCTGAAGGGCTGGTTA CA-3’
followed by 5’-ATGGACCCTATGATGGAG CA-3" &
5-TCAGCCCTTTGGTCAGAAGT-3" to generate a
1396 bp B-catenin sequence spanning from 100 bp 5’ to
the translation stop codon to 200 bp 3’ to the polyade-
nylation signal so including the entire 3’UTR and
sequence 3’ to the polyadenylation signal. pKR6 was
generated by inserting this 1396 bp sequence into the
pTP7 Notl site. pKR7 was generated using PCR primers
5-GCGGCCGCTGCTTCAACAGATGCGGTTA-3" &
5-GAGCTCGTTTGCCTGGGTTTTGATGT-3" to
make a 287 bp truncated fragment of the 1396 bp f3-
catenin sequence spanning from 80 bp 5’ to the polya-
denylation signal to 200 bp 3’to the polyadenylation sig-
nal and inserting this 3’ to the pTP7 NotlI site. Plasmid
construction was performed using standard restriction
enzyme digest and T4 DNA ligation and PCR products
were subcloned into pGEMTeasy (Promega). All PCR
was performed with the high fidelity polymerase Pfu-
Turbo (Stratagene) and plasmids verified by sequencing
(MWG@G Biotech).

GFP reporter analysis

GFP stained material was imaged with a Zeiss Axiovert
LSM510 CLSM (Carl Zeiss Ltd, Germany). Myrd1EGFP
reporter expression from pKR6 and pKR7 or tauGFP
reporter expression from pTP6 [70] in the axon was
quantified by measuring the distance which GFP immu-
nofluorescence could be traced from the cell body along
the axon. Cell body myrd1EGFP expression was quanti-
fied by measuring the intensity in a freehand selection
drawn round the cell body and subtracting the back-
ground level measured in an area of the explant not
expressing GFP. Image] was used for measurements and
the Sigmaplot software package for statistical analysis.
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