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Abstract

acoustic trauma.

Background: Unlike mammals, teleost fishes are capable of regenerating sensory inner ear hair cells that have
been lost following acoustic or ototoxic trauma. Previous work indicated that immediately following sound
exposure, zebrafish saccules exhibit significant hair cell loss that recovers to pre-treatment levels within 14 days.
Following acoustic trauma in the zebrafish inner ear, we used microarray analysis to identify genes involved in
inner ear repair following acoustic exposure. Additionally, we investigated the effect of growth hormone (GH) on
cell proliferation in control zebrafish utricles and saccules, since GH was significantly up-regulated following

Results: Microarray analysis, validated with the aid of quantitative real-time PCR, revealed several genes that were
highly regulated during the process of regeneration in the zebrafish inner ear. Genes that had fold changes of >
14 and P -values < 0.05 were considered significantly regulated and were used for subsequent analysis. Categories
of biological function that were significantly regulated included cancer, cellular growth and proliferation, and
inflanmation. Of particular significance, a greater than 64-fold increase in growth hormone (ghT) transcripts
occurred, peaking at 2 days post-sound exposure (dpse) and decreasing to approximately 5.5-fold by 4 dpse.
Pathway Analysis software was used to reveal networks of regulated genes and showed how GH affected these
networks. Subsequent experiments showed that intraperitoneal injection of salmon growth hormone significantly
increased cell proliferation in the zebrafish inner ear. Many other gene transcripts were also differentially regulated,
including heavy and light chain myosin transcripts, both of which were down-regulated following sound exposure,
and major histocompatability class | and Il genes, several of which were significantly regulated on 2 dpse.

Conclusions: Transcripts for GH, MHC Class | and Il genes, and heavy- and light-chain myosins, as well as many
others genes, were differentially regulated in the zebrafish inner ear following overexposure to sound. GH injection
increased cell proliferation in the inner ear of non-sound-exposed zebrafish, suggesting that GH could play an
important role in sensory hair cell regeneration in the teleost ear.

Background

Deafness is a widespread problem with tremendous soci-
etal costs, but effective treatments for hearing loss have
remained elusive. Therapeutics that can successfully
treat or prevent the onset of deafness are desperately
needed. To develop such treatments, a thorough under-
standing of the process of auditory hair cell death and
regeneration must be established. Mammalian cochlear
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hair cells do not regenerate after they have been
destroyed, and vestibular hair cells show limited capacity
to regenerate [1]. However, avian and teleost sensory
hair cells regenerate [2-4] through direct trans-differen-
tiation [5-9] or mitosis [10-16]. The genes responsible
for conferring teleost regenerative capacity are
unknown; however, most of the zebrafish genome has
been sequenced and resources are available for the iden-
tification of gene function [17]. The mechanosensory
hair cell of teleosts resembles that of the human hair
cell at both the structural and functional level [18], and
there is a high degree of evolutionary conservation of
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chromosomal synteny extending from zebrafish to
human [19,20]. Mammals share homologous genes with
fish that are known to affect inner ear structure and/or
function. For instance, the zebrafish Mariner mutant pos-
sesses a missense mutation in the gene encoding myosin
VIIA and presents functional and morphological hair cell
defects that are similar to those found in mice defective
in Myosin VIIA [21]. Foxil, a gene expressed in otic pre-
cursor cells, is necessary for normal inner ear develop-
ment in both mice [22] and zebrafish [23]. Atohl (atonal
homolog 1, previously Mathl) is required for differentia-
tion of hair cells in rodents [24,25] while a similar role is
carried out by zebrafish homologs atohla and atohlb
[26]. Since zebrafish share inner ear developmental and
differentiation genes with mammals, examination of gene
expression in the zebrafish during hair cell regeneration
may uncover new targets for genetic manipulation lead-
ing to hair cell regeneration in mammals.

Investigators have induced auditory hair cells to prolif-
erate in postnatal mammals using gene therapies that dis-
rupt the normal pathways that keep mammalian cochlear
hair cells and their surrounding supporting cells in a
terminally differentiated state. The cyclin-dependent
kinase inhibitor p27*"! (Cdkn1b), the tumor suppressor
retinoblastoma protein (Rb), and transcription factor
Atohl have been investigated as potential therapeutic
targets [27-30]. To date, gene manipulation studies have
proven unsuccessful in producing auditory hair cells of
the proper quantity and arrangement [27], maturity and
function [31], or location [32]. Adjusting the timing and/
or sequence of manipulation of the above-mentioned tar-
gets may produce more satisfactory results; however,
other targets that have not yet been identified may prove
to be key regulators of auditory hair cell regeneration.

We have recently established a basic time line of sound-
induced cell proliferation and hair cell bundle recovery in
the zebrafish saccule following acoustically-induced
damage [33]. By performing zebrafish-based transcrip-
tomic analysis following acoustic overexposure, the pur-
pose of the current study was to identify genes that are
important in the recovery and regeneration of teleost, and
perhaps mammalian, hair cells. Such gene pathway ana-
lyses may help identify potential targets for therapeutic
intervention. In this study, we report on the role of growth
hormone-mediated signaling in hair cell proliferation and
present a number of other genes differentially regulated
following acoustic overstimulation, including those for
major histocompatibility proteins and myosins.

Results

Comparative transcriptome analysis of time points
following acoustic overexposure

We were interested in the changes in gene regulation
that occurred on and between 2 and 4 days post-sound
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exposure (dpse) to a 100 Hz tone at 179 dB re 1 pPa
Root Mean Squared (RMS) for 36 h, as previous work
indicated that this level of sound exposure produced sig-
nificant hair cell damage in the zebrafish saccule. In this
previous study, hair cell damage was followed by signifi-
cant cell proliferation that peaked at 2 dpse and fell to
control levels before 4 dpse. Additionally, hair cell bun-
dle density on the saccular macula decreased immedi-
ately following acoustic exposure and then increased
between 2 and 7 dpse, indicating that hair cell replace-
ment and/or repair took place during this time interval
[33]. We hoped to detect differential expression of genes
involved in zebrafish auditory hair cell replacement and/
or repair during this time period.

RNA samples extracted from whole inner ears from
adult zebrafish were collected at 2 and 4 dpse (plus con-
trols) and were subjected to microarray analysis. Pair-
wise comparisons were made between groups such that
three gene sets were analyzed: Day 2 (genes regulated at
2 dpse compared to controls), Day 4 (genes regulated at
4 dpse compared to controls), and Day 4: Day 2 (genes
regulated at day 4 relative to day 2). Differentially
expressed genes with fold changes >1.4 and P-values <
0.05 were considered to be significantly regulated. A
number of significantly regulated transcripts were
detected by each pairwise comparison. There were 839
transcripts that were differentially expressed two days
following acoustic trauma, 377 transcripts on Day 4, and
505 transcripts on Day 4: Day 2 (Figure 1). To assess
the reproducibility within control, Day 2, and Day 4
microarray data, we compared gene expression between
triplicate homotypic samples. The mean unnormalized
correlation coefficients for all three of these datasets was
0.99, indicating robust consistency between technical
replicates. Tables 1, 2, and 3 show the top ten most
highly up-regulated and top ten most highly down-regu-
lated genes for each of the following pairwise compari-
sons- Day 2:Controls, Day 4:Controls, and Day 4:Day 2,
respectively. Additional files 1, 2, and 3 list the subpopu-
lations of all genes whose expression was significantly
regulated (P < 0.05), sorted by fold change.

Transcripts showing the greatest regulation on Day 2
compared to control included growth hormone 1 (ghl;
64.43-fold), major histocompatibility complex, class I,
ZE (mhclze; -67.68-fold), atrial myosin light chain
(zgc:66286; -30.36-fold), and slow muscle myosin heavy
chain, like (smyhcll; -36.63-fold). On Day 4, the tran-
scripts showing the greatest fold change included atrial
myosin light chain (zgc:66286; -62.03-fold) and slow
myosin heavy chain 1, like (smyhcll; -33.26-fold). Tran-
scripts showing the greatest fold change in the Day 4:
Day 2 dataset included major histocompatibility com-
plex class I ZE (mhclze; 34.36-fold) and ghl (-11.78-
fold). Many of the genes that were significantly
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Figure 1 Volcano plots and heat maps showing the time course of acoustic trauma-related differential gene expression in the
zebrafish inner ear. RNA samples from zebrafish inner ears of controls or subjects exposed to acoustic trauma and allowed to recover for
either two or four days and then hybridized to a zebrafish microarray, which measures expression (mRNA abundance) for 21,000 gene transcipts.
Volcano plots show differential gene expression between (A) controls and two days post-trauma (D2), (B) controls and four days post-trauma
(D4), and (C) two versus four days post-trauma. The Y-axes of the volcano plots display the negative log (base 10) of P values from paired t-tests,
while the X-axes show the log (base 2) of the fold differences between the groups. The horizontal line represents the P = 0.05 value, and the
vertical lines corresponding to fold differences of 1.4 and -1.4, respectively. Genes with paired t-test P < 0.05, and fold difference > 14 or <-14,
were identified as differentially expressed genes and lie outside the lines (in red). (D) The heat map shows the level of expression (red: greater
up-regulation, blue: greater down-regulation) of each of these genes in all six samples (column 1-3: controls, column 4-6: Day 2, column 6-9: Day
4). An enlargement of the heatmap to the right shows that distinct patterns of gene expression were evident for each of these three datasets.
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Table 1 Classification of the top ten up- and down-regulated transcripts in the ears of Danio rerio allowed to recover
for two days following acoustic overexposure compared to controls

Gene ID Description (gene symbol) Fold P- GO Process or
change  value Function
AY286447 growth hormone 1 (ghl) 6443 0.0002 Hormone activity
NM_205623 luteinizing hormone beta 1 (lhbetal) 10.10 0.0003 Undetermined
NM_205729 nuclear receptor subfamily 1, group D, member 1 (nrid1) 932 0.0002  Transcription
NM_205687 glycoprotein hormones, alpha polypeptide (cga) 7.38 0.0083 Hormone activity
BC085676 si:ch211-284a13.1 (Chst15) 643 0.0003 Undetermined
NM_198815 stearoyl-CoA desaturase (delta-9-desaturase) (scd) 535 0.0027  Lipid metabolism
NM_181438 proopiomelanocortin (pomc) 502 0.0015 Signal transduction
AW419856 zebrafish gridded kidney wu:fi84d10 462 0.0006 Undetermined
NM_212889 zgc:77076 (zgc:77076) 431 0.0002  Signal transduction
NM_201334 79c:64065 (2gc:64065) 407 0.0006  Signal transduction
NM_212439 period homolog 4 (per4) 3.86 0.0005  Signal transduction
NM_205676 2g9C:77592 (z9¢:77592) -345 0.0018 Undetermined
NM_001002085  slow-specific troponin C (stnnc) -3.71 0.0004 Calcium ion binding
NM_001004628 zgc:101740 (zgc:101740) -4.66 0.0048 Nucleoside metabolic
process
NM_200965 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2a (atp2a2a) -5.31 0.0002 Calcium ion binding
NM_001004112 zgc:92375 (z9c:92375) -5.47 0.0174  Metal ion binding
Al721910 1-acylglycerol-3- phosphate O-acyltransferase 4 (lysophosphatidic acid acyltransferase,  -5.57 0.0020 Acyltransferase activity
delta) (agpat4)
NM_200516 79C:66286 (2g9c:66286) -29.66 0.0015 Calcium ion binding
AF434191 atrial myosin light chain (zgc:66286) -30.36 0.0009 Undetermined
AF425742 slow muscle myosin heavy chain like (smyhcll) -36.63 0.0006 Undetermined
NM_194425 major histocompatibility complex, class |, ZE (mhcize) -67.68 0.0024  Immunity

Table 2 Classification of the top ten up- and down-regulated transcripts in the ears of Danio rerio allowed to recover
for four days following acoustic overexposure compared to controls

Gene ID Description (gene symbol) [homologous organism] Fold P- GO Process or Function
change value
NM_205623 luteinizing hormone beta 1 (lhbetal) 10.70 0.0012 Undetermined
AF273879 immunoglobulin heavy variable 2-2 (ighv2-2) 10.17 0.0167 Undetermined
NM_205729 nuclear receptor subfamily 1, group d, member 1 (nridi1) 833 0.0002 Transcription
BC085676 si:ch211-284a13.1 (Chst15) 7.54 0.0022 Undetermined
NM_205687 glycoprotein hormones, alpha polypeptide (cga) 7.02 0.0305 Hormone activity
NM_181438 proopiomelanocortin a (pomca) 6.95 0.0039 Neuropeptide signaling pathway
AY286447 growth hormone 1 (ghl) 547 0.0044 Hormone activity
NM_212439 period homolog 1b [Drosophila] (perib) 4.24 0.0010 Transcription
BC054944 transferrin-a (tfa) 2.79 0.0003 Iron ion transport
NM_200634 amyloid beta (A4) precursor protein-binding, family B, member 1 268 0.0106 Signal transduction
interacting protein (apbblip)
NM_001002085  slow-specific troponin C (stnnc) -3.26 0.0011 Calcium ion binding
BC045465 matrilin 1 (matnT) -3.27 0.0027 Undetermined
NM_001002119 zgc:86810 (zgc:86810) -345 0.0096 Undetermined
NM_131591 actin, alpha 1, skeletal muscle (actal) -345 0.0030 ATP/Nucleotide/Protein binding
NM_201095 7gC:56376 (29¢:56376) -361 00421 Metal ion binding
NM_200965 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2a (atp2a2a)  -4.16 0.0004 Regulation of cation transport, ATP
biosynthetic process
NM_205676 29C:77592 (zgc:77592) -5.50 0.0052 Undetermined
NM_170767 vitellogenin 1 (vtg1) -13.29 0.0067 Lipid transport
AF425742 slow myosin heavy chain 1, like (smyhcll) -33.26 0.0190 Stress response, contraction

NM_200516 atrial myosin light chain (zgc:66286) -62.03 0.0026 Calcium ion binding
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Table 3 Classification of the top ten up- and down-regulated transcripts in the ears of Danio rerio allowed to recover
for four days following acoustic overexposure compared to two days

Gene ID Description (gene symbol) [homologous organism] Fold P- GO Process or Function
change  value
NM_194425 major histocompatibility complex class | ZE gene (mhcize) 3436 0.0143  Immunity
NM_001004628 zgc:101740 (zgc:101740) 6.82 0.0099 Nucleic acid metabolism
AF273879 immunoglobulin heavy variable 2-2 (ighv2-2) 4.54 0.0437 Undetermined
NM_001004587 zgc:92214 (zgc:92214) 417 0.0116 Metal ion binding
AB062116 heat shock cognate 70-kd protein (hsp70) 3.30 0.0029 Response to heat
BC074056 79C:153863 (zgc:153863) 261 0.0191 Undetermined
NM_001007378 PTC7 protein phosphatase homolog [S. cerevisiae] (pptc/) 249 0.0452 Catalytic activity
NM_131108 type | cytokeratin (cki) 227 0.0099 Structural molecule
NM_001003445 zgc:92533 (zgc:92533) 2.25 0.0146 Undetermined
BC059568 79C:73226 (2g9c:.73226) 217 0.0282 Regulation of apoptosis
Al721910 1-acylglycerol-3-phosphate O-acyltransferase 4 (lysophosphatidic acid -2.73 0.0384 Metabolic process

acyltransferase, delta) (agpat4)

NM_001007365 troponin |, skeletal, fast 2a.1 (tnni2a.1) -273 0.0305 Undetermined

NM_213556 jun B proto-oncogene (junb) -2.81 0.0478 Transcription regualtion

AF500198 fibronectin 1b (fn1b) -2.89 0.0481 Undetermined

NM_212837 potassium voltage-gated channel, subfamily H (eag-related), member 2 -3.01 0.0411 Signal transduction, transcription,
(kcnh2) ion transport

NM_200091 signal transducer and activator of transcription 1b (stat16) =311 0.0308 Transcription, transduction

NM_198815 stearoyl-CoA desaturase (delta-9-desaturase) (scd) -3.29 0.0374 Lipid biosynthesis

NM_201334 7gc:64065 (2g9c:64065) -3.69 0.0053 Intracellular signalling

NM_170767 vitellogenin 1 (vtg1) (replaced by NM_001044897) -4.25 0.0203 Chemical stimulus response

AY286447 growth hormone 1 (ghl) -11.78 0.0025 Hormone activity

regulated on Day 2, were significantly regulated in the
opposite direction on Day 4 (Table 4). For example,
growth hormone 1 (ghl), matrix metalloproteinase 13
(mmp13), major histocompatibility complex (MHC)
class II integral membrane protein alpha chain 3
(2gc:92049), and junb were upregulated at Day 2, but
downregulated at Day 4 compared to Day 2. In contrast,
MHC class I, ZE (hla-ze) and MHC class II integral
membrane alpha chain (mhc2a) were downregulated at
Day 2, but upregulated at Day 4 compared to Day 2.

We used in silico tools (Ingenuity Pathway Analysis
8.5, Ingenuity Systems, Redwood City, CA) to identify
pathways that may be associated with proliferation and
hair cell recovery. Functional Analysis of the three sets
of transcripts was used to identify significant processes
or pathways being affected during the process of audi-
tory cell regeneration in the zebrafish ear. While numer-
ous pathways were significantly regulated, we present
only the top 15 categories here (Figure 2). Cancer and
cellular growth and proliferation pathways were the
most significant functional categories at both 2 and 4
dpse. This is not surprising since previous work showed
that cell proliferation peaks at two days following acous-
tic trauma in the zebrafish ear [33]. Additional files 4, 5,
and 6 present the categories and functions of all the
genes analyzed for the Day 2:Control, Day 4:Control,
and Day 2:Day 4 datasets, respectively.

Cell death pathways were significantly regulated at
Day 2 compared to controls. Other processes that were
significantly regulated during the first four days follow-
ing acoustic trauma included cellular development,
inflammation, immunology, and dermatological diseases
and conditions (Figure 2).

Following this initial analysis, we sought to identify
gene networks and biochemical pathways of zebrafish
homologs of mammalian genes that may be significantly
up- or down-regulated in response to acoustic overexpo-
sure. Since cancer and cellular proliferation pathways
were highly regulated in our dataset, we used functional
network analysis to identify specific pathways involved
in cellular growth. At Day 2, ghl was the most highly
overexpressed gene, but others included junb, fos, cga,
socsl and 3, cdkl, and mmp9 (Figure 3A). By Day 4,
most of these genes were significantly under-expressed
(ghl, fos, socs3, mmp?9, junb; Figure 3B).

Zebrafish homologs of mammalian genes reportedly
involved in growth hormone pathways were shown to
be significantly regulated in the zebrafish microarray
dataset (Table 5; Figure 4). The JAK-STAT signaling
pathway regulates the production of insulin-like growth
factors (IGF). At Day 2, transcripts for socs (suppressor
of cytokine signaling), shpI (Shatterproofl mammalian;
protein tyrosine phosphatase, non-receptor type 6 zebra-
fish), and cebpa (CCAAT/enhancer binding protein
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Table 4 Representative genes significantly regulated in the Danio rerio inner ear at both two and four days post-

sound exposure

GenBank # Gene name/symbol Putative biological process  Day 2:Control P-value Day 4:Day 2 P-value
Fold Change Fold Change

NM_194425 hla-ze Immunity -67.68 0.0024 3436 0.0143
NM_131490 mhc2a Immunity -243 0.0005 415 0.0018
NM_001005976 clqc Immunity 293 0.0002 -2.04 0.0149
NM_13169 29c:92049 Immunity 3.09 0.0011 -233 0.0249
NM_199730 dgatl Lipid synthesis 2.68 0.0005 -2.18 0.0085
NM_198815 scd Lipid synthesis 535 0.0027 -3.29 0.0374
AB055667 similar to MRPS31 Mitochondrial protein -2.13 0.0003 2.01 0.0030
NM_001004628 similar to Pnp Nucleic acid metabolism -4.66 0.0048 6.82 0.0099
NM_200856 similar to torsin B Protein chaperone 3.78 0.0427 -2.04 0.0287
NM_201503 mmpl13 Proteolysis 2.39 0.0032 -2.15 0.0161
TC293041 Ubquitin-like protein 2 Proteolysis 482 0.0003 -2.77 0.0037
NM_200091 similar to STAT1 Signal transduction 3.04 0.012 -3.1 0.0308
NM_212837 kenh2 Signal transduction 3.23 0.0019 -3.01 0.0411
NM_201334 similar to PLCXDT Signal transduction 4.07 0.0006 -3.69 0.0053
AY286447 similar to GH1 Signal transduction 64.43 0.0002 -11.78 0.0025
NM_194390 znfl2 transcription, apoptosis -248 0.0016 214 0.0077
NM_213556 junb Transcription, apoptosis 3.14 0.0005 -2.81 0.0478
AY538257 fibronectin 3 Wound healing 2.78 0.0045 -233 0.0146
ENSDART00040691  similar to F13A1 Wound healing 574 0.002 -3.92 0.0287
TC282441 RIn3 Wound healing 8.53 0.0008 -4.97 0.0283
AF434191 atrial myosin light chain (zgc:66286)  Calcium ion binding -30.36 0.0009

AF425742 smyhcll Motor activity -36.63 0.0006

alpha), a regulator of transcription, were upregulated.
Both socs and shpl are inhibitors of jak, and cebpa can
interact with cyclin-dependent kinases to arrest cell
growth [34] so their over-expression could be part of a
negative feedback loop associated with a strong GH sig-
nal. In contrast, c-fos (mammalian; v-Fos FB] murine
osteosarcoma viral oncogene homolog-zebrafish) is also
upregulated, and is a proto-oncogene that promotes cell
growth and proliferation [35].

Confirmation of microarray results with real-time
quantitative PCR

In order to validate the results obtained through micro-
array analysis, we performed real-time quantitative PCR
using probes obtained from custom Tagman Gene
Expression Assays (Applied Biosytems) designed against
the following target genes: eflalpha, ghl, junb, atohla,
rbl, and cdknlb. Sybr green probes were designed
against the following genes: smyhcll , zgc:66286 (atrial
myosin light chain), micl, mhclze, and ppia. The pat-
tern of transcript abundance detected for these genes in
the array was validated with the aid of real-time PCR
(Figure 5). The target genes that were chosen included
genes that were up-regulated (ghl), down-regulated
(smyhcll, zgc:66286), and not highly regulated (atohla,
c¢dknlb, junb). In addition, atohla and cdknlb were

chosen since they are known to regulate cell prolifera-
tion and hair cell regeneration in the mammalian ear
[27-29].

Effect of growth hormone on cell proliferation in the
zebrafish utricle and saccule

We were interested in the effect that overexposure to
GH might have in the normal, non-acoustically
exposed inner ear, given that ghl levels were so dra-
matically up-regulated following acoustic trauma.
Zebrafish (n = 6) were intraperitoneally injected with
salmon GH and allowed to recover 24 h before treat-
ment for bromodeoxyuridine (BrdU) detection
through immunofluorescence. Two inner ear end
organs were examined: the utricle, which is part of
the vestibular system, and the saccule, which is the
organ most fully characterized as a sound detector in
fishes [36]. Injection with growth hormone resulted in
a significant increase in cell proliferation only in the
utricle (P < 0.001), although a deductable increase
was also noted in the rostral portion of the saccule (P
= 0.093; Figure 6).

A small number of proliferating cells was detected in
control saccules (mean + S.E. = 26.6 + 4.31), which
supports previous reports of ongoing proliferation in
the adult zebrafish saccule [33,37]. Proliferating cells in
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control saccules were noted primarily near the rostral
tip and near the outer margins, although some BrdU-
labeled cells were observed in other portions of the
saccule (Figure 6A). Proliferating cells observed in
treatment saccules did not show a consistent spatial
arrangement in the rostral area. In some saccules, pro-
liferating cells were located primarily near the edges of
the rostral area, while in other saccules labeled cells
were concentrated in the center of the rostral saccule.
The spatial distribution of proliferating cells in the
caudal region of the saccule was similar in control and
treatment groups. Labeled cells occurred mainly in the
outer margins of the macula.

Proliferating cells were also observed in control utri-
cles, primarily near the outer margins of the macula
(Figure 6B). Labeled cells in treatment utricles were
scattered widely across the entire surface of the utricular
macula, with less observable clustering or concentration
at the edges than in controls. Proliferating cells in both
control and treatment saccules and utricles were
observed in multiple cell layers of the sensory epithelia.

Discussion

Our current approach has been to delineate regulated zeb-
rafish genes in order to provide direction for future inves-
tigations into auditory hair cell regeneration in zebrafish
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Table 5 Growth hormone-related transcripts differentially expressed in the ears of Danio rerio allowed to recover for

two days following acoustic overexposure compared to controls

Gene ID Description (gene symbol) Fold change  P-value GO Process or Function
AY286447 growth hormone 1 (ghl) 6443 0.0002 Hormone activity
NM_200091 signal transducer and activator of transcription 1b (stat1b) 3.04 0.0120 Signal transduction
NM_205569 v-fos FBJ murine osteosarcoma viral oncogene homolog (fos) 3.1 0.0002 Transcription

NM_131885 CCAAT/enhancer binding protein (C/EBP), alpha (cebpa) 2.89 0.0023 Transcription
NM_213304 Danio rerio zgc:77038, suppressor of cytokine signalling 3b (socs3b) 1.99 0.0029 Cytokine signalling
NM_001003467  Danio rerio zgc:91868, suppressor of cytokine signalling 3b (socs1) 1.81 0.0011 Cytokine signalling
NM_199960 Danio rerio protein tyrosine phosphatase, non-receptor type 6 (ptpn6)  1.68 0.0041 Regulate transduction

and mammals. Distinct patterns of gene expression were
evident two and four days after acoustic trauma, suggest-
ing that sound-induced damage in the zebrafish inner ear
is a good model system for understanding pathways
involved in hair cell regeneration. Transcripts showing the

most dramatic regulation over the time course of our
study include transcripts encoding growth hormone,
major histocompatibility complex, class I, ZE, a light chain
myosin, a heavy chain myosin, and a protein similar to
atrial myosin light chain (2gc:66286).
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Figure 4 Canonical pathway analysis reveals growth hormone-related gene regulation. Canonical pathway analysis showing known
growth-hormone related pathways. Red-colored genes are up-regulated and gray-colored genes are down-regulated in the zebrafish microarray
data set at two days following acoustic trauma. Numbers below genes represent fold changes and P-values.
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The short time period within which these transcripts
were examined following acoustic trauma coincided
with a sharp increase in cell proliferation and partial
recovery of hair cell bundle density, which was observed
in our previous experiment with zebrafish [33], suggest-
ing that these genes, as well as others listed in the data-
sets, may play a role in the regulation of cell
proliferation and/or cellular repair. Genes associated
with transport, kinase activity, transcription factor activ-
ity, signal transduction, hormone activity, nucleobase,
nucleoside, nucleotide and nucleic acid metabolic pro-
cess, extracellular region, cellular component, and cal-
cium ion binding were also significantly regulated
during this time period. However, a number of genes
could not currently be assigned to any process or func-
tional category. The roles of these transcripts during
hair cell repair and regeneration remain undetermined.
Further work is needed to elucidate the specific roles of
many of the genes uncovered in this study.

A. Role of growth hormone in hair cell regeneration

Mammalian growth hormone (GH) and insulin-like
growth factor 1 (Igfl) affect growth in postnatal animals
through independent and common pathways [38], influ-
encing final stature [39,40] and facilitating neuron devel-
opment and survival [41]. No previous study has been
published concerning the effect of growth hormone in
the inner ear, but other growth-related factors are
known to affect hair cell production and survival in
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Figure 6 Growth hormone promotes cell proliferation in the
zebrafish inner ear. A) BrdU-labeled saccules and B) utricles of
control (C) and growth hormone-injected (gh) zebrafish. C)
Numbers of BrdU-labeled cells increased significantly only in the
utricle (P < 0.001; n = 6) following injection with growth hormone;
however, a non-significant but noticeable increase in proliferation
occurred in the saccule (P = 0.093; n = 6).

mammals. Igfl-null mice exhibit altered inner ear
maturation, abnormal innervation of the sensory cells in
the organ of Corti, and increased apoptosis of cochlear
neurons [42]. Vestibular hair cell proliferation can be
stimulated in mammals through exposure to transform-
ing growth factor-alpha and epidermal growth factor
[43]. The zebrafish homologs of these genes were not
listed among the differentially regulated transcripts in
our study, but ghl was dramatically upregulated 64-fold
on Day 2 and remained upregulated over five-fold on
Day 4, indicating that growth hormone played a promi-
nent role in post-sound exposure recovery of the inner
ear of zebrafish. We speculated that the activity of ghl
in the zebrafish might induce proliferation in the ear,
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since administration of growth hormone can increase
cell proliferation in cultured trout leukocytes [44] and
increase body mass in zebrafish [45]. To characterize
the effect of ghl on cells of the inner ear, we injected
zebrafish with salmon growth hormone. The significant
increase we observed in cell proliferation in non-sound-
exposed zebrafish inner ear following injection with
growth hormone suggests at least three things: 1)
growth hormone has the ability to stimulate prolifera-
tion in the inner ear of zebrafish, 2) under normal con-
ditions, cells of the utricle, a vestibular organ, are more
sensitive to growth hormone-mediated signaling than
are cells of the saccule, and 3) that the rostral portion of
the saccule may be more sensitive than the caudal por-
tion. The difference in growth hormone sensitivity
between the zebrafish utricle and saccule, and the
potential difference between the rostral and caudal por-
tions of the saccule, was unexpected but intriguing.

A difference in growth hormone sensitivity may reflect
differences in proliferative capacity among the inner ear
end organs. The regenerative capacity of hair cells in the
fish utricle and lagena has not yet been determined.
However, other non-mammalian vertebrates are capable
of regenerating hair cells in both the vestibular and
auditory portions of the inner ear [3,4,10,14,16], and
rates of proliferation differ in vestibular and auditory
systems in the absence of damage. For instance, sup-
porting cells in the auditory portion of the chick inner
ear, the basilar papilla, are normally quiescent in the
absence of a damaging stimulus [46]. Conversely, hair
cells in the vestibular organs of chicks have a relatively
short life span (approximately 2-6 weeks), undergoing
spontaneous apoptosis and replacement though prolif-
eration and differentiation of epithelial supporting cells
[47-50]. Hair cells in the mammalian auditory system do
not regenerate, but vestibular hair cells exhibit a limited
regenerative capacity [51-54]. Low levels of apoptosis
occur throughout the development of the zebrafish sac-
cule [37], but no data comparing the rate of apoptosis
in the uninjured zebrafish saccule and utricle is cur-
rently available. This would be useful in elucidating
whether the dissimilar sensitivity of different portions of
the zebrafish inner ear to proliferation corresponds with
dissimilar rates of apoptosis. In noise-exposed goldfish,
apoptosis peaked in the saccule one day before a peak
in apoptosis in the lagena, suggesting that patterns of
cell damage can vary between different endorgans of the
teleost ear [33].

Interestingly, although ghl was up regulated approxi-
mately 64-fold at 2 dpse in our experiment with zebra-
fish, GhI in the rat cochlea is down-regulated two-fold
following temporary threshold shift induced by noise-
exposure, and to a smaller extent following permanent
threshold shift [55]. Previous studies with mammals
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have shown that acute or chronic stresses can reduce
GH levels in blood serum as well as in the brain
[56-58]. While it is possible that exposure to sound pro-
duces a different growth hormone regulatory response
in mammalian and non-mammalian vertebrates like zeb-
rafish, it is more likely that this is due to differential
timing of sound exposure. In the rat cochlea experi-
ment, noise exposures were only for 90 minutes whereas
in the current study, zebrafish were exposed for 36
hours followed by a two day recovery period. Thus, in
zebrafish there could have been a decrease in GH dur-
ing the initial stress of the acoustic exposure, followed
by a subsequent increase during the recovery and regen-
eration phase. Future experiments with more time
points following acoustic trauma are needed to deter-
mine this.

B. Other transcripts associated with cell proliferation
Other genes that may have been up- or down- regulated
in order to enable cell proliferation include signal trans-
ducer and activator of transcription 1 (statl), stearoyl-
Coa desaturase (scd), diacylglycerol O-acyltransferase
(dgat), and major histocompatablility complex class II
(MHC 1II) genes. The function of statl may be con-
nected with ghl, as it is in mammals, since growth hor-
mone is known to activate signaling pathways that
include STAT proteins [Figure 4; [59]]. The STAT acti-
vation process is transient and influences a broad range
of physiological processes depending on the activating
ligands and tissue type [60]. The STATSs that are acti-
vated by growth hormone exposure can vary by cell
type, possibly contributing to the specificity of the
growth hormone response [61].

Proteins Scd and Dgat appear to regulate lipid bio-
synthesis, and possibly phospholipid membrane synth-
esis. Proliferation depends in part on the ability to
incorporate oleate with free long-chain fatty acids in
order to form membrane phospholipids [62]. Since the
Scd protein synthesizes the oleate necessary for the bio-
synthesis of membrane phospholipids [63], the Danio
rerio scd gene may be up-regulated on day two in order
to increase production of membrane phospholipids as
required by cell proliferation. The protein encoded by
dgat, another gene up-regulated at 2 dpse and down-
regulated between days 2 and 4, also participates in the
regulation of membrane lipid synthesis. DGAT proteins
interact with diacylglycerols, which are common inter-
mediates for both triacylglycerol and phospholipid
synthesis. DGAT tips diacylglycerol toward triacylgly-
cerol synthesis. For instance, in vitro overexpression of
DGAT1 gene in human lung SV40-transformed fibro-
blasts reduces synthesis of the membrane phospholipids
phosphatidylcholine, phosphatidylethanolamine, and
sphingomyelin by 30-40%, and reduces cell growth rate
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[64]. It is not clear why dgat was upregulated on Day 2,
given that cell proliferation peaks at this time, but one
possibility is that up-regulation of dgat occurred as part
of the system to regulate proliferation.

Several genes associated with immune function were
identified in the microarray. These genes may play roles
in cell proliferation following apoptosis. Major Histo-
compatibility (MHC) class II molecules are found on
professional antigen-presenting cells such as macro-
phages, dendritic cells and B cells. MHC class II mole-
cules are observed in the cochlear cells of adult mice
following a damaging event and may promote cell pro-
liferation in the inner ear of organs that possess prolif-
erative capability [65].

Deoxyspergualin, a drug that inhibits de novo cell sur-
face expression of MHC class II antigens, blocks cell
proliferation in the kidney [66]. Zebrafish MHC com-
plex class II integral membrane alpha chain gene
(mhc2a) was significantly regulated on 2 dpse and
between days 2 and 4 dpse. Even more notable is MHC
complex, class I, ZE (mhclze), which was down-regu-
lated more than 67-fold on 2 dpse, but was not signifi-
cantly regulated by 4 dpse. At this time, the function of
mhclze has not been determined, but since MHC class
I proteins are involved in antigen presentation on nearly
all cell types in mammals, it seems probable that
mhclze functions similarly in zebrafish. Antibodies that
bind human MHC Class I molecules (HLA) and prevent
them from presenting antigens induce increased prolif-
eration of airway epithelial cells [67]. Down-regulating
mhclze in zebrafish may have a similar effect, encoura-
ging proliferation by the reduction of antigen
presentation.

It is not surprising that genes related to immune func-
tion were regulated following acoustic trauma since
macrophages, a type of leukocyte, are recruited to sites
of damage and may be involved in initiating wound
healing and repair [68]. Within hours of trauma to hair
cell sensory epithelium, macrophages and other leuko-
cytes are recruited to the area of damage. This has been
reported in the lateral line of amphibians [69] and zeb-
rafish [70], avian inner ear sensory epithelia [71-73], and
the mammalian organ of Corti [74]. Macrophages recog-
nize and destroy cells undergoing apoptosis via phagocy-
tosis [75] and may secrete substances such as growth
factors that could affect cell proliferation and other
functions [68,76]. It has long been recognized that there
is an interaction between the endocrine and immune
systems in mammals. This appears to be true in fishes
as well, and GH may be an important mediator between
the two systems. For example, plasma GH levels and
phagocytic activity are positively correlated in brown
trout (Salmo trutta) during sea-water transfer [77,78],
and GH causes proliferation in leukocyte cultures of
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chum salmon, Onchorynchus keta [79]. Reciprocal
effects are also evident. Stress induces a rapid decrease
of plasma GH levels in several fish species [80-82].

Another group of proteins that were highly regulated
in our dataset were myosins. The most highly regulated
were atrial myosin light chain (zgc:66286, -30 fold on
Day 2, and -62 fold on Day 4) and slow muscle myosin
heavy chain, like (smyhcll, -36 fold on Day 2, and - 33
fold on Day 4). Mutations in non-muscle myosins
MYH9, MYH14 and myosin VIIa have been implicated
in deafness in mammals [83-85]. Myosins are a large
superfamily with many shared domains among the
members and are important regulators of the actin
cytoskeleton, a prominent component of hair cell bun-
dles. A large number of different myosins are expressed
in developing neurons and sensory cells, helping to
carry out a range of functions including morphogenesis,
axonal transport, and synaptic and sensory functions
[reviewed in [86]], although the functions of many myo-
sins are not known [87].

It is not clear why smyhcll was down-regulated fol-
lowing acoustic trauma; however, smyhcll may play a
role in the regulation of immune response in the inner
ear. Smyhcll is a TMPIT-like protein, which is induced
by TNEF-alpha [88]. Since TNF-alpha is a cytokine
involved in inducing immune response, apoptosis and
inflammation [89], it is reasonable to assume that the
down-regulation that we see in smyhcll may be asso-
ciated with the down-regulation in TNF-alpha and other
cytokines that one would expect during the recovery
from inflammation. In support of this, a number of
genes that are negative regulators of immune response
were up-regulated two days post-trauma, including TCF
family B cell activation factor (TC277656), Clq tnfl
protein (TC276192), and complement Clq tumor necro-
sis factor-related protein 4 precursor (TC298139; Addi-
tional file 1).

Atrial myosin light chain (zgc:66286) possesses an EF-
hand domain [88]. EF hands are a superfamily of cal-
cium sensors and calcium signal modulators. Calcium-
binding proteins such as calretinin, calmodulin, and par-
valbumin have been used as markers for inner ear gang-
lion neurons and hair cells [90-94]. Calmodulin is
known to mediate inflammation, apoptosis, immune
response, and cell cycling [95,96], but it is unclear at
this point if the calcium-binding properties of atrial
myosin light chain are serving similar roles in the zebra-
fish inner ear.

C. Genes associated with induced hair cell regeneration in
mammals

Zebrafish homologs of genes that have been used to
induce hair cell regeneration in mammals, specifically,
cyclin-dependent kinase inhibitor p27(kipI)/cdknlb,
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retinoblastomal (rb1), and atonal homolog 1 (atohl)
were found to be regulated at the P-value 0.05 level, but
not at fold changes >1.4. Two days following sound
exposure, cdknlb was down-regulated slightly (-1.12-
fold, see Additional file 1), while cdknib and rbi, both
suppressors of cellular proliferation, showed up-regula-
tion (1.60- and 1.36-fold, respectively) at 4 dpse follow-
ing the peak in proliferation (Additional file 3). A
similar pattern was evident for atohl, which was down-
regulated at 2 dpse (-1.20 fold) and up-regulated at 4
dpse (1.24 fold). Thus, more work will need to be done
to rule them out as players in the process of prolifera-
tion and differentiation of zebrafish hair cells.

In this study, we used RNA isolated from whole ear
tissue because of the very small size of the sensory
epithelium of the zebrafish inner ear. RNA collected
only from sensory maculae or specific cell types may
reveal significant regulation of low-abundance tran-
scripts that was not detectable in whole ear samples.
Additionally, regulation of proteins, which would not be
detected via microarray, likely affects cellular processes
during regeneration in the inner ear. Levels of existing
p27%"P! protein may have been altered by ubiquitinyla-
tion in order to allow proliferation to occur. Analysis of
p27%P! protein alteration in the sound-exposed inner
ear will be necessary to ascertain whether p27°'"* pro-
tein regulation plays a significant role in naturally occur-
ring hair cell regeneration in the zebrafish. Interestingly,
p27 P! was not found to be a part of the zebrafish hair
cell transcriptome [97], although it is a supporting cell
marker in the mammalian organ of Corti that inhibits
cell cycle progression [98]. Knock-out mice without this
gene exhibit cell proliferation in the organ of Corti [27].

The gene rbl, was also not significantly regulated in
this study at the 1.4 fold cut-off level, but since Rb1l
function is regulated by phosphorylation, significant
changes in overall transcription levels may not be neces-
sary to promote proliferation. Hypophosphorylated Rb1
is an active proliferation repressor, but Rb1 loses all
repression function if sufficiently phosphorylated [99].
The phosphorylation state of pRb following noise expo-
sure will need to be delineated to determine whether
pRb is an active regulator of cell proliferation in the
zebrafish inner ear.

Similarly, regulation of zebrafish atohla, homolog of
the hair cell differentiation gene Atohl/Mathl, was
weak at 2 and 4 dpse in our study. Atohla is a key regu-
lator of differentiation of precursor cells that become
hair cells in mice [24,25]. Atohla and b are also neces-
sary for hair cell differentiation in zebrafish [26]. The
time points investigated in this study may have been too
early in the recovery process for Atohl detection, as
Atohl only promotes the final stages of hair cell
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development [24,100] and may have peaked in the
majority of regenerating hair cells later than 4 dpse.

D. Hair cell genes

Comparison of our microarray dataset with the zebrafish
hair cell transcriptome [97] revealed common hair cell
genes. We identified significant regulation in zebrafish
hair cell genes encoding proteins such as creatine
kinase, alpha-tubulin, keratin 8, and v-fos FB] murine
osteosarcoma viral oncogene homolog. Two zebrafish
genes encoding creatine kinase (creatine kinase, muscle
(ckm) and creatine kinase, mitochondrial 2 (ckmt2))
were significantly regulated in our microarray dataset.
Muscular creatine kinase performs a variety of func-
tions, even in non-muscle tissues and cells [101]. In the
inner ear, creatine kinase (or its mitochondrial creatine
kinase isoform) is required to maintain energy homeos-
tasis through ATP delivery to plasma-membrane Ca*
“-ATPase isoform 2 (Pcma2), an ion pump required for
normal sensory transduction in stereocilia of mammals
and birds [102]. In the avian utricle, creatine kinase B is
primarily localized in hair cells, and creatine kinase/
mitochondrial creatine kinase isoform double knockout
mice exhibit elevated hearing thresholds of 20-30 dB at
8 and 16 kHz [103].

Significant regulation of transcripts encoding zebrafish
inner ear structural proteins was noted in our study.
Alpha-tubulin and beta-tubulin dimers are components
of all polymerized microtubules. Strong labeling for
alpha tubulin is seen in sensory and supporting cells of
the guinea pig inner ear [104]. Keratin 8 is one of the
major intermediate filaments, which provide structural
support throughout many tissue systems. Keratin 8 is
thought to confer resistance to apoptosis induced by Fas
ligand or TNF family receptors [105], both of which are
implicated in cisplatin- and ethacrynic acid-induced
apoptosis of hair cells in chinchillas [106].

V-fos genes (the viral homologue of c-fos genes) are
highly inducible in response to a variety of growth fac-
tors and differentiation-specific inducers, and can induce
bone tumors in mice [107]. Members of the fos and jun
protein families can combine to form a complex called
activating protein-1 (AP-1). AP-1 induction by the hair
cell-toxic antibiotic gentamicin is transient and occurs
exclusively in hair cells in rat organ of Corti explants
[108]. Inhibitors of the upstream pathway for AP-1 res-
cue hair cells [109]. It should be noted that the up-regu-
lation of some genes found in our microarray data, such
as c-fos, are indicative of a general neuronal stress
response in fishes [110], and acoustic stimuli can induce
a short-term stress response in goldfish [111]. Thus, it is
unclear if such regulation is the response from hair cell
damage or auditory nerve overstimulation, but it should
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not be indicative of neuronal changes in brain activity
since our samples only contained ear tissue.

Some of the regulated genes in the current study are
similar to genes highly regulated in the hair cells of
other model organisms as well. Avian utricular hair cell
genes include parvalbumin, which serves as a mobile
Ca®* buffer in the avian inner ear, alpha-tubulin, crea-
tine kinase, heat shock protein 90 (HSP90), and an iso-
form of Ca** transporting ATPase [103]. Additionally,
POU domain transcription factors, thyroid hormone
receptor [112], heat shock proteins [113], and collagen
IV alpha chain 4 [114] have been noted in mammalian
hair cells. Bcl-2, another regulated gene in our dataset,
is believed to play an essential role in prevention of sen-
sory cell death in guinea pigs [115]. Thus, a number of
the gene products that were regulated in the zebrafish
ear following acoustic trauma have been found in hair
cells or have been found to regulate hair cells.

Conclusions

Microarray analysis of RNA from acoustically overex-
posed zebrafish inner ears revealed that genes involved
in multiple processes were significantly regulated,
including those involved with cell proliferation, apopto-
sis, wound healing, signal transduction, transcription,
growth, immunity, and hair cells. Some of these genes
are prospective targets for manipulating cell prolifera-
tion and/or improving hair cell protection during or fol-
lowing noise exposure. Genes previously identified in
the hair cells of zebrafish, and homologs of avian and
mammalian hair cell genes were also noted. More work
will be needed to determine the functions of these and
other genes identified in acoustically-overexposed zebra-
fish. Although a clear candidate for regulation of mam-
malian auditory hair cell regeneration has not been
identified in this study, the data point to possible addi-
tional targets of investigation and suggest that hair cell
proliferation may be accelerated through treatment with
growth hormone.

Methods

Experimental animals

Adult breeder zebrafish (Danio rerio) were obtained
from Segrest Farms (Gibsonton, FL) and maintained in
170-L flow-through aquaria under conditions of con-
stant temperature (25°C) and a 12-h light/12-h dark
schedule. Fish total lengths ranged from 36 to 44 mm.
All work was done under the supervision of the Institu-
tional Animal Care and Use Committee of Western
Kentucky University.

Sound exposure
Adult zebrafish were randomly assigned to treatment
and control groups without bias for weight or length or
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sex. Forty zebrafish were exposed to a 100 Hz tone at
179 dB re 1 uPa RMS. The sound was generated by a
B&K Precision function generator (4017A) connected to
a 5.3 amp/200 watt Audiosource monoblock amplifier
and University Sound UW-30 underwater speaker
placed in a 19-L sound exposure chamber. Fish were
exposed for 36 hours at 24.5-25°C, and then 20 fish
were moved to a recovery tank for two days and the
remaining 20 fish were placed in another tank for four
days. Controls (n = 20) were placed in the sound expo-
sure chamber for the same time and temperature with
the sound generator turned off.

RNA isolation and preparation

RNA samples were obtained from the inner ears of the
three groups of 18 to 20 fish each (controls, 2 dpse, 4
dpse). One group served as non-sound-exposed controls,
and the remaining two groups were exposed to the
acoustic stimulus and allowed to recover for 2 or 4
days. The day 2 time point was selected in order to
investigate gene expression during proliferation, which
had been shown to peak at 2 dpse, and 4 dpse was cho-
sen since it represented a post-proliferative phase [33].
Additionally, it was hoped that genes strongly associated
with hair cells would be significantly regulated at this
time point as proliferating cells potentially differentiated
into replacement hair cells.

Fish were sacrificed one at a time with an overdose of
MS-222, their heads were removed, and both whole ears
(saccule, lagena, utricle and semi-circular canals) were
immediately dissected out while being completely sub-
merged in RNAlater (Ambion, Austin, TX), as prelimin-
ary work indicated that either the small size of the
saccule, or the length of time needed to separate it from
the inner ear, resulted in low RNA vyield. Ears were then
placed in sterile Eppendorf tubes and flash frozen in
liquid nitrogen. Three to four hours were required to
dissect all the fish in one group. Although each fish was
dissected quickly, the ears were not contaminated with
surrounding tissue other than perhaps residual parts of
the auditory nerve. Once all the ears for a sample were
collected, the tissue was pooled and homogenized with a
Kontes Pellet Pestle Microgrinder and sterile disposable
pestles (Kontes, Vineland, NJ), then processed for RNA
isolation using the RNeasy Lipid Tissue Mini Kit (Qia-
gen, Valencia, CA). RNA quality was checked with the
aid of an Agilent 2100 Bioanalyzer (Agilent, Wilming-
ton, DE). For this project, sharp ribosomal RNA bands
were evident with an RNA integrity number greater
than 7.0. 300 ng total RNA was used to generate fluor-
escent cRNA with the aid of Low RNA Input Linear
Amplification kit with one-color (Agilent, Wilmington,
DE). Briefly, this kit uses a T7 promoter primer to
synthesize cDNA and T7 RNA polymerase to synthesize
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cRNA, which simultaneously amplifies the target mate-
rial and incorporates cyanine 3-labeled CTP (Cy3). The
labeled cRNA was purified by using the RNeasy Mini
Elute kit (Qiagen, Valencia, CA). The yield and incor-
poration efficiency were measured on a spectrophot-
ometer (NanoDrop Technologies). The yield for this
project was greater than 1.5 pg, and the specific activity
was greater than 9.0 pmol Cy3 per ug cRNA.

Microarray

1.65 pg of each labeled cRNA sample was fragmented at
60°C for 30 min (Agilent Gene Expression Hybridization
kit) and then hybridized to Agilent Zebrafish (Danio
rerio) oligonucleotide arrays (Agilent Unrestricted
AMADID Release GE 4 x 44K, 60-mer oligonucleotides;
G2519F; V1: 015064) at 65 °C for 17 hours. This micro-
array has 21,000 D. rerio probes, replicated twice. Three
technical replicates were hybridized for each of the
three time points (control, Day 2, and Day 4), with one
replicate of each time point on each of the three 4-array
plates processed. After hybridization, the microarray
slides were washed with Agilent gene expression wash
buffers. The slides were scanned with the aid of an Agi-
lent microarray scanner (G2565BA) with a setting for
one-color using the green channel and 5 pm resolution.
The one-color microarray images (.tif) were extracted
with the aid of Feature Extraction software (v 9.5.1, Agi-
lent). Raw and processed gene expression data were
deposited in NCBI's Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/ webcite, GEO Series
accession number GSE29669).

Quantitative Real Time PCR

Validation of the results obtained through microarray
analysis was performed via quantitative PCR on the
same RNA samples used for the microarrays. Probes
were obtained from custom Tagman Gene Expression
Assays (Applied Biosytems) designed against the follow-
ing target genes: elongation factor 1-alpha, eflalpha
(NM_131263); growth hormone, ghl (AY286447); jun B
proto-oncogene, junb (NM_213556); atonal homolog 1a,
atohla (NM_131091); retinoblastoma 1, rbl
(BC154730); and cyclin-dependent kinase inhibitor 1b,
cdknlb (NM_212792). Sybr green probes were designed
against the following genes: Slow myosin heavy chain,
myhc5 (AF425742); atrial myosin light chain, zgc:66286
(AF434191); Danio rerio major histocompatibility com-
plex class I, mhclze (NM_194425); peptidylprolyl iso-
merase A (cyclophilin A), ppia (NM_212758). Primer
sequences are presented in Table 6.

Complementary DNA was generated starting with 100
ng of RNA template per reaction using Multiscribe
Reverse Transcriptase (Applied Biosystems). Real-time
PCR was performed using Tagman or Sybr Gene
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Expression Master Mixes. Samples were placed in an
ABI PRISM 7300 Real-time PCR System (Applied Bio-
systems) and thermal cycling was initiated at 95°C for
10 min, followed by 40 cycles of denaturing at 95°C for
15 s with annealing at 60°C. Each gene expression was
repeated in three independent reactions. Each target
gene was normalized relative to endogenous control
genes for cyclophilin and efl-alpha. Single band specifi-
city was verified.

Immunohistochemistry

Fish averaging 4.7 cm total length and 0.66 g were ran-
domly assigned to treatment and control groups without
bias for weight or length. Treatment fish were injected
with 10 pg salmon GH/g body weight, while controls
were injected with a phosphate buffer solution. Both
groups (n = 6/group) were then allowed to recover for
24 h at 25 pC. Cell proliferation in saccules of these fish
was then quantified through visualization of cells labeled
for BrdU, which is a synthetic thymidine analog that is
incorporated into cellular DNA during S-phase. BrdU
(Sigma-Aldrich, St. Louis, MO) was dissolved into nor-
mal Ringer’s solution at a concentration of 5 mg BrdU/
ml. Fish were injected intraperitoneally with 0.02 ml
BrdU/Ringer’s solution and allowed to recover for 4 h.
The fish were then euthanized with an overdose of MS-
222. The heads were removed and placed in 4% parafor-
maldehyde overnight at 4°C. The heads were then rinsed
4 x 10 min in 0.1 M PBS and the inner ears dissected
out under a stereomicroscope.

The saccules and utricles were isolated from the ears
and excess tissue was trimmed away to allow the maculae
to lie flat. The maculae were bathed in 1N HCL for one
hour at 37°C to denature DNA, 0.1 M borate buffer (pH
8.5) for 10 min to neutralize tissue pH, and washed 3 x
10 min in PBS. Maculae were incubated overnight at 4°C
in mouse monoclonal anti-BrdU antibody (Invitrogen,
Carlsbad, CA) diluted to 1:100 in 1% BSA/0.5% Triton X-
100/PBS. Maculae were then washed 3 x 10 min and
incubated for 30 min at room temperature in 1:500 Alexa
Fluor 568-conjugated rabbit anti-mouse antibody (Invi-
trogen) in PBS. Maculae were again washed 3 x 10 min
in PBS and mounted with Prolong Gold Antifade reagent
with DAPI (Invitrogen). The slides were cover-slipped
and viewed under an Zeiss Axioplan 2 epifluorescent
microscope with rhodamine and DAPI filters. Images
were captured with an AxioCam MRm camera and ana-
lyzed with Zeiss Axiovision 4.4 software. Alexa Fluor
568-labeled cells were counted for each whole saccule
and utricle to quantify cell proliferation.

Data analysis
The raw data files generated by the microarray proce-
dure were imported into GeneSpring (GX 7.3) and the
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Table 6 Primer sequences of Danio rerio genes used in qRT-PCR for validation of microarray data

Symbol ID Direction Primer Sequence PCR
eflalpa NM_131263 forward CGACAAGAGAACCATCGAGAAGTT Tagman
reverse CCCAGGCGTACTTGAAGGA Tagman
ghl AY286447 forward Applied Biosystems Assay ID: Tagman
reverse Dr03128643_m1 Tagman
Jjunb NM_213556 forward Applied Biosystems Assay ID: Tagman
reverse Dr03204057_s1 Tagman
atohla NM_131091 forward GGCAGATGAGGGCAGACA Tagman
reverse CCTCTGTTTCTGCACGACGTT Tagman
bl BC154730 forward GCCCCTCCATCACAACCA Tagman
reverse GGCTCGGCCTCCATTACAG Tagman
cdknlb NM_212792 forward GAGAGCCGAGGAAAAGAAGCT Tagman
reverse GCGAGCGTTTGCTTTGACA Tagman
smyhcll AF425742 forward TGAGCAACTTGGTGAGAGTGGGAA Sybr green
reverse TCAGCTTCCTCCAGAGCAGTTTGT Sybr green
79c:66286 AF434191 forward TTCCTGCCAATGCATCAGCACAT Sybr green
reverse CCGTTGCCCTCTTTGTCAAACACT Sybr green
mhcize NM_194425 forward AGAGTGTGTGGACTGGCTCAACAA Sybr green
reverse AGAATCCAGTGGCCAGACAAGTGA Sybr green
ppia NM_212758 forward AGAATTTCAGGCAGTTGTGCACGG Sybr green
reverse TGTGGTTTGTGAAGTCACCTCCCT Sybr green

data were normalized and analyzed. GeneSpring gener-
ated an average value of the three replicates of each
gene. Data was transformed to bring any negative value
to 0.01. Normalization was performed using a per-chip
50th percentile method that normalizes each chip on its
median, allowing comparison among chips. Then a per-
gene on median normalization was performed, which
normalized the expression of every gene on its median
among samples. The differentially expressed genes of
significance were evaluated with the aid of Volcano
Plots (P-value versus fold change; Figure 1). Pairwise
comparison of the experimental and control groups
used the data derived from the Volcano Plots. Pairwise
comparisons were also performed between the two
treatment groups. Differentially expressed genes with P-
values<0.05 and fold changes > 1.4 were determined to
be significantly regulated. The Benjamini and Hochberg
False Discovery rate was used for test correction.

Gene networking analyses were performed using Inge-
nuity Pathways Analysis (IPA; Ingenuity Systems). Biolo-
gical processes and molecular functions were identified
for significantly regulated transcripts via Gene Ontology
(GO; http://www.geneontology.org). The processes and
functions listed should be considered putative, as many
of the genes are currently assigned to GO categories
based on electronic annotation or inferences from
expression pattern.

The effect of growth hormone injection on cell prolif-
eration in the zebrafish utricle and saccules was tested

using a separate one-way analysis of variance for the
utricles and saccule. Preliminary analyses showed no sta-
tistical differences between right and left utricles and
saccules in terms of numbers of BrdU-labeled cells, so
data from both ears were pooled for analysis.

Additional material

Additional file 1: Differential gene expression at two days post-
trauma compared to controls. This file presents all significantly
regulated (P < 0.05) genes in zebrafish ears two days following acoustic
trauma compared to controls, sorted by fold change. Following IPA
notation, upregulated and downregulated genes with > 1.4 fold changes
are labeled in red and green, respectively.

Additional file 2: Differential gene expression at four days post-
trauma compared to controls. This file presents all significantly
regulated (P < 0.05) genes in zebrafish ears four days following acoustic
trauma compared to controls, sorted by fold change. Following IPA
notation, upregulated and downregulated genes with > 1.4 fold changes
are labeled in red and green, respectively.

Additional file 3: Differential gene expression at four days post-
trauma compared to day two. This file presents all significantly
regulated (P < 0.05) genes in zebrafish ears four days following acoustic
trauma compared to two days post-trauma, sorted by fold change.
Following IPA notation, upregulated and downregulated genes with >
1.4 fold changes are labeled in red and green, respectively.

Additional file 4: Significantly regulated functions at two days post-
trauma. This file displays the categories and functions of significantly
regulated genes in zebrafish ears two days following acoustic trauma
compared to controls. In addition, specific molecules being regulating in
each functional annotation are provided.

Additional file 5: Significantly regulated functions at four days post-
trauma. This file displays the categories and functions of significantly
regulated genes in zebrafish ears four days following acoustic trauma
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compared to controls. In addition, specific molecules being regulating in
each functional annotation are provided.

Additional file 6: Significantly regulated functions at four days post-
trauma compared to day two. This file displays the categories and
functions of significantly regulated genes in zebrafish ears four days
following acoustic trauma compared to day two. In addition, specific
molecules being regulating in each functional annotation are provided.
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