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Abstract

neurological features of RTT.

patients.

Background: Rett syndrome is a neurodevelopmental and autistic disease caused by mutations of Methyl-CpG-
binding protein 2 (MECP2) gene. MeCP2 protein is mainly expressed in neurons and binds to methylated gene
promoters to suppress their expression, indicating that Rett syndrome is caused by the deregulation of target
genes in neurons. However, it is likely that there are more unidentified neuronal MeCP2-targets associated with the

Results: Using a genome-microarray approach, we found 22 genomic regions that contain sites potentially
regulated by MeCP2 based on the features of MeCP2 binding, DNA methylation, and repressive histone
modification in human cell lines. Within these regions, Chromatin immunoprecipitation (ChIP) analysis revealed that
MeCP2 binds to the upstream regions of the protocadherin genes PCDHB1 and PCDH7 in human neuroblastoma
SH-SY5Y cells. PCDHB1 and PCDH7 promoter activities were down-regulated by MeCP2, but not by MBD-deleted
MeCP2. These gene expression were up-regulated following MeCP2 reduction with siRNA in SH-SY5Y cells and in
the brains of Mecp2-null mice. Furthermore, PCDHB1 was up-regulated in postmortem brains from Rett syndrome

Conclusions: We identified MeCP2 target genes that encode neuronal adhesion molecules using ChIP-on-BAC
array approach. Since these protocadherin genes are generally essential for brain development, aberrant regulation
of these molecules may contribute to the pathogenesis of the neurological features observed in Rett syndrome.

Background

Methyl-CpG-binding protein 2 (MeCP2) is one of the
proteins associated with epigenetic regulation, and
mutations of this gene have been identified in the
majority of patients with a severe neurodevelopmental
disorder, Rett syndrome (RTT), characterized by sei-
zures, ataxic gait, language dysfunction, and autistic
behavior [1,2]. Mecp2-null mice exhibit neurological
abnormalities strikingly similar to those of RTT,
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supporting the hypothesis that classical RTT is due to a
loss of MeCP2 function [3,4], and that MeCP2 is essen-
tial for neuronal development, maturation, synaptic
activity, learning and memory [5-7].

MeCP2 has been thought to be a transcriptional
repressor that acts by binding to a number of methy-
lated-CpG dinucleotides in the mammalian genome.
However, its deficiency does not result in the significant
deregulation of the expression of a subset of genes as
determined by a comparative expression microarray ana-
lyses between Mecp2-null mice and wild-type mice [8],
but induces global changes in neuronal chromatin struc-
ture [9]. These findings indicate that MeCP2 may be a
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global gene silencer. Furthermore, MeCP2 deficiency
affects the expression levels of a large number of genes
as determined by a comparative expression microarray
analyses between Mecp2-knock-in mice and Mecp2-
duplication mice [10], indicating that MeCP2 target
genes are numerous. However, it is still worthwhile to
identify MeCP2-target genes which that are centrally
involved in RTT pathogenesis, since MeCP2 functions
cell-autonomously in neuronal maturation and dendritic
arborization and discrete subsets of genes regulated by
MeCP2 may be essential for mature neuronal function
[11].

So far several genes associated with neuronal function
have been reported as MeCP2 targets, such as brain-
derived neurotrophic factor (BDNF) [12,13], glucocorti-
coid-regulated genes [14], interleukin-1 receptor-asso-
ciated kinase 1 (IRAK 1) [15], insulin-growth factor
binding protein 3 (/IGFBP3) [16], a transmembrane mod-
ulator of Na*, K"-ATPase activity (FXYDI) [17], and
cyclin-dependent kinase-like 5 (CDKL5) [18]. However,
it is likely that there are more unidentified neuronal
MeCP2-targets associated with the neurological features
of RTT.

In this study, we used a genome-microarray based
approach [19,20] rather than a standard expression-
microarray approach, to identify genomic regions that
are epigenetically regulated by MeCP2.

Results

Screening for BACs containing MeCP2 binding sites with
epigenetic modification

We assumed that MeCP2 was bound to multiple sites in
human genome. In order to clarify these sites, we first
performed ChIP on chip assay using our in-house BAC
array ("ChIP on BAC array” assay) with an anti-MeCP2
antibody in human oral cancer cell lines (ZA, KOSC2,
HSC5, NA). As a result, we obtained 846 “positive” BAC
clones, which were suggestive of having MeCP2 binding
sites, out of the 4,500 clones on the array (data not
shown). We next screened BAC clones encompassing
hypermethylation site(s) and repressive histone modifi-
cation sites based on DNA methylation using the
BAMCA and ChIP-on-BAC array assay with an anti-his-
tone H3K9-2Me antibody in the same cell lines [19,20].
We identified 22 “triple positive” BAC out of the 846
“MeCP2 positive” BAC clones, which contain MeCP2-
binding site(s), hypermethylation site(s), and repressive
histone modification site(s). Although “triple positive”
did not necessary mean these three epigenetic modifica-
tions existed at the same genomic site in a genomic
region (~300 kb) in a BAC, we considered that the
genomic regions in these 22 BAC clones potentially
contained the site(s) regulated by MeCP2. At this step,
we used oral cancer cell lines because they had
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previously screened to identify MeCP2 targets in carci-
nogenesis (manuscript in preparation), and used this
screening data in this study.

Search for Neuronal Genes

We next searched for neuronal genes in the genomic
regions within these 22 BAC clones using a genome
database (NCBI MAPVIEW), and identified the follow-
ing four genes: APBB3 (amyloid beta precursor protein-
binding, family B, member 3) and SRA! (steroid recep-
tor RNA activator 1) in BAC RP11-115I4 (located at
chromosome 5q31.3), PCDHBI (protocadherin beta 1)
in BAC RP11-79K4 (5q31.3), and PCDH?7 (protocad-
herin 7; brain-heart protocadherin) in RP11-205N12
(4p15.1). Among these genes, the consensus MeCP2-
binding sequence with A/T bases [A/T>4] within 1-3 or
6-9 base pairs from a CpG di-nucleotide [21] was identi-
fied in the 5’ flanking region (within 1 kb region from
the transcriptional start site) in APBP3, PCDHBI and
PCDH?7, but not in SRAI (data not shown).

MeCP2-binding status in the upstream regions of the
neuronal genes in SH-SY5Y human neuroblastoma cells
Since the observed epigenetic alterations were found in
oral cancer cell lines, we confirmed whether MeCP2
was bound to the APBP3, PCDHBI and PCDH7 genes
using the ChIP-PCR assay in human neuroblastoma SH-
SY5Y cells as neuronal origin cells.

Within the 5 flanking regions of these genes, we
found that MeCP2 was bound to the regions of PCDH7,
PCDHBI genes, but not to the APBP3 gene (Figure 1).
In this assay, we confirmed that MeCP2 was bound to
the promoter region of SNURF/SNRPN gene (a known
MeCP2 target site) but not bound to the promoter
region of the GAPDH gene (a known non-MeCP2 target
site) in SH-SY5Y cells [22].

Methylation status in the upstream regions of the two
neuronal genes in SH-SY5Y human neuroblastoma cells
We examined the methylation status in the upstream
regions of the PCDHBI and PCDH? genes, in order to
determine whether the CpG sites were hypermethylated
for MeCP2 binding (Figure 2A, B). The PCDHBI up-
stream region was highly methylated as expected. How-
ever, the PCDH?7 up-stream region was unexpectedly
less methylated, and the result was nonetheless consis-
tent with a recent report, in which MeCP2 not only
binds to highly methylated regions, but also binds to
less methylated regions [23].

Suppression of PCDHB1 and PCDH7 genes by MeCP2 in
SH-SY5Y human neuroblastoma cells

To examine whether the expression of the PCDHBI and
PCDH?7 genes was controlled by MeCP2, we evaluated
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Figure 1 MeCP2 binds to the promoter region of two target
genes in SH-SY5Y cells. Immunoprecipitation (IP) was performed
using an anti-MeCP2 antibody or normal rabbit serum (NRS) as
negative control. Equal amounts of precleared chromatin were
processed without IP as total input control. The purified DNA was
amplified by PCR using primers located within the 1.0 kb upstream
genomic regions from the transcriptional start sites of the APBB3,
PCDHBI, or PCDH7 genes. SNURF/SNRPN was used as a positive
control for a promoter previously demonstrated to bind MeCP2.
GAPDH was used as a negative control.

the effects of wild-type or MBD-deleted MECP2 on
either unmethylated or methylated promoter by the luci-
ferase assay in SH-SY5Y cells. Methylation status of
these constructs was confirmed by bisulfite sequencing
(data not shown). Luciferase fusion plasmids containing
1.5 kb of upstream sequences of the PCDHBI or
PCDH?7 transcription start site were methylated by
methylase SssI in vitro. These luciferase reporter plas-
mids were co-transfected in combination with the
MECP2-expressing plasmid into SH-SY5Y cells. The
transcriptional activity of the unmethylated PCDHBI
promoter was suppressed by wild-type MeCP2, but not
MBD-deleted mutant MeCP2 (Figure 3A). Likewise, the
transcriptional activity of the methylated PCDHBI pro-
moter was suppressed by wild-type MeCP2, but not
MBD-deleted mutant MeCP2 (Figure 3A). Approxi-
mately 70% reduction in promoter activity was found in
methylated promoters, compared with unmethylated
promoters, by mock (no MeCP2), indicating that endo-
genous MeCP2 preferentially suppresses PCDHBI
methylated promoter (Figure 3A). Similar to PCDHBI,
the transcriptional activity of both the unmethylated and
methylated PCDH7 promoter was suppressed by wild-
type MeCP2, but not MBD-deleted mutant MeCP2 (Fig-
ure 3B). We did not find down-regulation of the SV2
promoter region by wild-type MeCP2, suggesting that
the SV2 gene is not a MeCP2-target gene (data not
shown). Taken together, these results indicate that not
only methylated but also unmethylated promoter of the
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PCDHBI and PCDHY genes are regulated by MeCP2 in
SH-SY5Y cells.

Knock-down effect on the two neuronal genes with
MECP2-siRNA in SH-SY5Y human neuroblastoma cells

If PCDHBI and PCDH? genes are controlled by MeCP2,
their expression from these genes should be increased
under the MeCP2 deficient condition. To assess this, we
performed knockdown experiments using MECP2-
siRNA. We first confirmed the transfection efficiency of
siRNA in SH-SY5Y cells, and the fluorescent labeled
siRNA showed that the efficiency of siRNA delivery was
approximately 50~60%. As a result, the expression level
of MECP2 mRNA decreased by 85% by following treat-
ment with MECP2-siRNA compared with scramble-
siRNA (Figure 4A). Under this condition, the expression
levels of PCDHBI and PCDH7 mRNA were significantly
increased by MECP2-siRNA compared with scramble-
siRNA (4.9- and 2.7-fold, respectively) (Figure 4B, C).

Expression levels of the two neuronal genes in Mecp2-
null mice and RTT brain tissue samples

We examined the expression of the two genes in brain
tissue samples from Mecp2-null mice (Mecp2 ™! Bird)
[4]. We compared the mRNA expression level in the
frontal cortex of 14-day-old Mecp2-null mice with those
of wild-type male mice. As a result, we found that
Pcdhbl and Pcdh7 mRNA were significantly increased
in Mecp2-null mice compared with wild-type mice (5.0-
and 5.9-fold respectively) (Figure 5).

We further investigated the expression of these genes
in postmortem RTT brain tissues. As a result, the aber-
rant expression of the PCDHBI gene was found in three
of four RTT patients (RTT-1, RTT-2 and RTT-4) com-
pared with control individuals (Figure 6). However,
there was no apparent difference in the expression of
PCDH? gene in the brain tissue of controls and RTT
individuals.

Discussion

It had been thought that the causative gene for RTT
should encode a synapse-associated molecule based on
its pathogenesis. However, the gene in which most RTT
patients have mutations does not encode a synapse
molecule, but encodes an epigenetic regulation protein.
This raises the question about which synaptic molecules
are regulated by MeCP2, and directly contribute to its
neuropathogenesis. To address this question, several
attempts to identify MeCP2 target genes have been per-
formed. The initial study using a expression microarray
demonstrated that subtle expression changes occur in
the brain of Mecp2-null mice [8], indicating that the
accumulation of subtle changes affect brain function
and that brains are less tolerant of background
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Figure 2 Mapping the methylation status of the PCDHB1 (A) and PCDH7 (B) regions in SH-SY5Y cells by bisulfite genomic DNA
sequencing. The top diagram depicts the 5’ flanking region of each gene with its transcription start site. CpG island regions are shown as gray
areas. Methylated-CpG sites are shown as closed circles and unmethylated CpG sites as open circles. The triangles represent the CpG sites with
A/T bases ([A/T].4) located 1-3 or 6-9 base pairs from the CpG sites, indicating the putative MeCP2-binding sequences. Arrows at the bottom
indicate the region that was amplified for ChIP-PCR. (A) 5’ flanking region of the PCDHBT gene. (B) 5’ flanking region of the PCDH7 gene.

transcriptional noise than other organs [24]. To date,
several neuronal molecules regulated by MeCP2, such as
BDNF, IGFBP3 and CRMP1 have been identified by
candidate gene approaches or MeCP2 target screenings
using expression microarrays [12-16]. To our knowl-
edge, this is the first attempt to identify MeCP2 target
genes using ChIP-on-BAC array approach using a gen-
ome microarray. We identified two genes PCDHB1 and
PCDHY that encode molecules associated with neuronal
function.

However, we did not detect the previously reported
MeCP2 target genes probably because our in-house
array only covers one third of the human genome and
the genomic loci of previously identified genes might
not be located within the overlapping regions with
MeCP2 binding, DNA methylation and repressive

histone modification, although the reported genes are
located at sites where MeCP2 is bound. A newly-devel-
oped ChIP-sequencing approach using a next-generation
sequencer, which is a more quantitative method to
assess methylation [25], will shed light on the identifica-
tion of new MeCP2 target genes.

It has been thought that MeCP2 represses transcrip-
tion by binding specifically to methylated DNA. How-
ever, it was recently reported that MeCP2 is also bound
to unmethylated DNA [26,27]. In this context, our data
supported this notion, because MeCP2 repressed tran-
scriptional activity of PCDHB1 and PCDH?7 genes either
via methylated or unmethylated promoter constructs.
However, the transcriptional activity was more effec-
tively repressed via the methylated promoter constructs
than via the unmethylated promoter constructs, which
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Figure 3 Effects of wild-type MECP2 or MBD-deleted mutations on the transcriptional activity of the methylated or unmethylated
PCDHB1 and PCDH7 promoter fragments. SH-SY5Y cells were transfected with the methylated or unmethylated PCDHB1-luc (A), PCDH7-luc
(B) as a reporter vector. As an effector, an MECP2-expression vector was co-transfected. After 48 h, the transfectants were lysed and assayed for
luciferase activity. PCDHB1 and PCDH7 promoter transcriptional activities are repressed by wild-type MeCP2 (gray), but not by MBD-deleted
mutant (black) in SH-SY5Y cells. Luciferase reporter activity in each sample was normalized according to the beta-galactosidase activity measured
in the same sample. The luciferase activity of the cells transfected with the reporter vector was taken as 100%. All results are shown as the mean
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are consist with a report showing that the affinity of
MeCP2 for methylated DNA is ~3-fold greater than
unmethylated DNA [26].

The protocadherins comprise the largest subfamily of
the cadherin superfamily and are predominantly
expressed in the nervous system [28]. They are divided
into two groups (the clustered and nonclustered Pcdh
families) based on their genomic structure. PCDHB1
and PCDH?7 are belonged to the clusterd and nonclus-
tered families, respectively. Genome association studies
have shown that single-nucleotide polymorphisms and
deletions in Pcdh genes, such as PCDH10, PCDH11Y
and PCDH12, are associated with bipolar disorder, schi-
zophrenia and autism, respectively [29-33].

The clustered Pcdh family is subdivided into three dis-
tinct gene groups in mammals (Pcdh-a, Pcdh-B, and
Pcdh-y). Pcdh-a expression is down regulated by myeli-
nation during neuronal maturation [34,35], and Pcdh-f3,
namely PCDHBI6, is expressed in dendritic spines and
plays an important role in synaptogenesis [36]. Since the
expression of PCDHBI is not detectable in normal brains
during development [37], the presence of PCDHBI in the
brains of RTT patients and the up-regulation of PCDHB1
in Mecp2-null mice may be associated with the neurolo-
gical findings in RTT brains, such as decreased neuronal
size, increased cell density and reduced dendritic arbori-
zation [5,37-39]. Furthermore, since our results indicate
that PCDHBI is epigenetically regulated by MeCP2, the
Pcdh-B gene cluster may be epigenetically regulated simi-
lar to the Pcdh-o gene cluster in which epigenetic regula-
tion produces isoforms in neurons [40].

PCDH?Y is predominantly expressed in the somatosen-
sory and visual cortices in the cerebral cortex, external
granule cell layer in the cerebellar cortex, and the

brainstem starting from embryonic day 17, and PCDH7
exhibits a critical period for the establishment of specific
synaptic connections [41,42]. PCDH?7 is also expressed
in the ganglion cell layer of the retina [43], and its over-
expression leads to a morphological change and Ca*
“-dependent cell adhesion in mouse fibroblast L cells
[44]. Therefore, the up-regulation of PCDH?7, observed
in the brains of Mecp2-null mice and neuroblastoma
cells following MECP2-siRNA treatment, could poten-
tially alter synaptic connections. However, no up-regula-
tion was found in the brain tissues of RTT patients, and
this may be due to the area of the brain examined (pre-
frontal cortex). Another finding in our study, in which
the upstream region of PCDH7 was unexpectedly
unmethylated despite its transcriptional respression by
MeCP2 binding to its promoter, was consistent with the
recent report that MeCP2 can bind to less methylated
regions of genes and repress their expression [45].

Several lines of evidence suggest that MeCP2 acts as (1)
a promoter of neuronal differentiation [46,47], (2) an effec-
ter of dendritic arborization [3,5,38,39], (3) a modulator of
synapses in postmitotic neurons), (4) an essential factor
for the maturation of NMDA receptors [48] and (5) a con-
troller of the balance between excitatory and inhibitory
synaptic transmission through the maintenance of density
between glutamate and GABA receptors [49-54]. Here we
show that MeCP2 also regulates protocadherins, including
PCDH?7 that is potentially associated with synaptogenesis.
Therefore, our findings may help to clarify the pathogen-
esis of RTT with synaptic dysfunction.

Conclusions
In this study we identified two novel direct MeCP2 tar-
get genes by ChIP and reporter assay. Expression of
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transfected with MECP2-siRNA or Scramble siRNA (Control) for 24 h.

The expression level of MECP2 (A), PCDHBT (B) and PCDH7 (C) were

examined by gqRT-PCR and normalized using the expression level of
GAPDH. All results are shown as the mean + SEM of three replicates
with the mean Control normalized to 1.0.

PCDHB1 and PCDH7 were regulated by MeCP2 in
human neuroblastoma cells and brain tissue. On the
basis of the previous findings of the nature of protocad-
herins, dysregulation of these molecules are potentially
associated with the neuronal and synaptic dysfunction
observed in the brains of RTT patients.

Methods

Cell culture

Four human oral cancer cell lines (ZA, KOSC2, HSC5,
NA) and a human neuroblastoma cell line (SH-SY5Y)

were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) (Sigma Aldrich, St. Louis, MO) supplemented
with 10% fetal calf serum at 37°C in a 5% humidified
atmosphere.

Bacterial artificial chromosome screening

Bacterial artificial chromosomes (BACs), which contain
MeCP2 binding site(s), and repressive histone modifica-
tion (H3K9) site(s), were screened using a ChIP-on-BAC
array. Briefly, Chromatin Immunoprecipitation (ChIP)
samples were prepared from the four cell lines using an
anti-C-terminal anti-MeCP2 antibody and an anti-his-
tone H3K9-2Me antibody (Abcam, Cambridge, UK) as
described below. The antibody-enriched immunoprecipi-
tate and total input control were amplified by adaptor
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PCR and labeled with Cy3-dCTP and Cy5-dCTP,
respectively. Labeled test and control PCR products
were co-hybridized to our in-house BAC-array (MCG
Whole Genome Array-4500). Hybridizations were car-
ried out as described elsewhere [55]. Arrays were
scanned with a GenePix 4000 B (Axon Instruments,
Foster City, CA) and analyzed using GenePix Pro 4.1
software (Axon Instruments).

BACs, which contains DNA methylated region(s),
were screened using BAC array-based methylated CpG
island amplification (BAMCA) [19,20] analyses of the
four cell lines (ZA, KOSC2, HSC5, and NA). Briefly, the
preparation of DNA probes for screening of methylated
regions was carried out by the Methylated CpG island
Amplification (MCA) method [56]. Five-microgram ali-
quots of test DNA (extracted from the four cell lines)
were first digested with 100 units of a methylation-sen-
sitive restriction enzyme Smal and subsequently with 20
U of methylation-insensitive Xmal. Adaptors were
ligated to the Xmal-digested sticky ends and PCRs were
performed using an adaptor primer and Cy3-dCTP for
labeling. Control DNA (extracted from primary cultured
cells of normal oral mucosa) was treated in the same
manner except that they were labeled with Cy5-dCTP.
Hybridization and array scanning were performed
described above.

In either assay (ChIP-on-BAC array with MeCP2 anti-
body, ChIP-on-BAC array with histone H3K9 antibody,
and BAMCA), if a BAC demonstrated a Cy3/Cy5 inten-
sity ratio more than 1, it was recognized as a “positive”
BAC.

Chromatin immunoprecipitation

Immunoprecipitation and reverse crosslinking were per-
formed using a ChIP Assay Kit (Millipore, Billerica, MA)
with C-terminal anti-MeCP2 antibody (Abcam) or normal
rabbit serum (NRS) (Wako, Osaka, Japan) as a negative
control according to the manufacturer’s instructions.
Equal amounts of precleared chromatin were processed
without IP as total input control. Immunoprecipitates col-
lected by centrifugation were washed, then digested with
50 mg/ml DNase free RNase A for 30 min at 37°C, fol-
lowed by SDS/proteinase K digestion and subjected to

phenol/chloroform extraction before ethanol precipitation
with glycogen. One twentieth of the DNA from each IP
reaction was PCR amplified in reactions containing 2.5 U
of AmpliTaq GOLD (Applied Biosystems, Norwalk, CT),
with buffer II, ANTP mix (2.5 mM each), and 0.2 mM pri-
mers of either GAPDH-F (5 - CCAATCT-
CAGTCCCTTCCCCC -3’) and GAPDH-R (5 -
GTTTCTCTCCGCCCGTCTTC -3’) specific to the
GAPDH promoter region (Fulmer-Smentek et al., 2001),
SNURF-F (5 - ACTGCCATAGCCTCCTCGCCTC - 3’
and SNURF-R (5 -CTTGCTGTTGTGCCGTTCTGCC -
3’) specific to the SNURF/SNRPN promoter region within
the 15q11-13 imprinting control region (Thatcher et al.,
2005), APBB3-F (5 - CCTGGATGGGCTTTACCTCT -
3) and APBB3-R (5 - AACAGTGTGGAGTGGTGTGG -
3’) specific to the APBB3 upstream region, PCDHBI-F (5’
- TCAGTGGCTCCAGACAGCTA - 3’) and PCDHBI-R
(5" - TGCCACTGAATAGCGGATAG - 3) specific to the
PCDHBI- upstream region, or PCDH7-F (5 -
GACAAGCCTGATCCGTGAG - 3’) and PCDH7-R (5 -
GCAGGGAACTCAAGCTGAAC - 3’) specific to the
PCDH?7- upstream region, using one cycle of 95°C for 10
min, 33-35 cycles of 95°C for 30 s, 55 or 60°C for 30 s, 72°
C for 30 s, with a final cycle of 72°C for 7 min. PCR pro-
ducts were resolved by agarose gel electrophoresis and
stained with ethidium bromide. Primers were designed
within 1.0 kb upstream genomic regions from the tran-
scriptional start sites of either the APBB3, PCDHBI, or
PCDH?7 gene, which contain CpG islands that fulfilled our
criteria (>100 base pairs; % of C or G >50%; Observed CG
/ Expected CG > 0.6), and the putative MeCP2-binding
sequences with A/T bases ([A/T].4) located 1-3 base pairs
or 6-9 base pairs from the CG site [21].

DNA methylation analyses

Genomic DNA was extracted from SH-SY5Y cells using a
DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany),
and was subjected to sodium bisulfite modification with
an EpiTect bisulfite kit (Qiagen). Modified DNA was
amplified by PCR with the primers PCDHBI-BF (5 -
TTTGAAAGGGAATTAATAGGTGAGTTTG - 3’) and
PCDHBI-BR (5 - TCCCCCACAAATATACACAAA
AAAATA - 3’) specific to the PCDHBI- upstream region,
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and PCDH7-BF (5° - TATTTAGTAGTAATTAT-
TATTTTGGGTAAT - 3’) and PCDH7-BR (5" - ATT-
CAAAAATAAACAAACCAAACTC - 3) specific to the
PCDH7-upstream region, using one cycle of 95°C for 10
min, 33-35 cycles of 95°C for 30 s, 55 or 60°C for 30 s, 72°
C for 30 s, with a final cycle of 72°C for 7 min. The pri-
mers used in this analysis were located in the same regions
as those used in the ChIP analysis described above. Each
PCR product was cloned into a pPCR4 vector using a
TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA) and
sequenced.

MECP2-expression vectors

To make an MECP2-expression plasmid, an MECP2
c¢DNA (I.LM.A.G.E #03956518, Geneservice, Cambridge,
UK) was inserted into the TA cloning vector (Invitro-
gen), and then an EcoRI-Xhol fragment of the MECP2
c¢DNA, created with primers containing either an EcoRI
or Xhol site, was inserted into pcDNA3 (Invitrogen).
MECP2 cDNA lacking the methyl-binding domain
(MBD) was made by PCR amplification using KOD-
Plus-Mutagenesis Kit (Toyobo, Osaka, Japan). The pri-
mers of MECP2-MBDdel-f (5 - GGGAGCCCCTCC
CGGCGAGAGCAG - 3’) and MECP2-MBDdel-r (5" -
AGCTTCCGGCACAGCCGGGGCGGAG - 3'), located
at both flanking sites of MBD in opposite directions to
each other, were used for PCR with pcDNA3 containing
the normal MECP2 cDNA sequence as a template DNA.

In vitro methylation of reporter plasmid
In vitro methylation of reporter plasmids was carried
out as reported previously [57]. Briefly, to make a repor-
ter plasmid, we amplified approximately 1.5 kb of the
upstream genomic regions from the transcription start
site with primers PCDHBI-RF (5 - GGGGTACCAA-
GAGGAAAATGAGAGCACACC - 3’) and PCDHBI-RR
(5" - GGAAGCTTAGCCAACTGTTGCGGATATACT -
3’) specific to the PCDHBI upstream region, and
PCDH7-RFE (5 - GGGGTACCACACTTCCATCCAACG
GGCATCTAC - 3’) and PCDH7-RR (5" - GGAAGCTT
CTCTGCGCAAGGTCATTAGTCACG - 3’) specific to
the PCDH7 upstream region, and these were fused
upstream of the firefly luciferase gene in the pGL3-Basic
vector (Promega). Whole PCDHB1 and PCDH?7 reporter
plasmids were methylated using SssI methylase, which
methylates all cytosine residues within the double-
stranded dinucleotide recognition sequence 5-CG-3".
Each plasmid was digested with Kpnl/HindIII and
then incubated with 3 U/pg of M.Sssl. The same plas-
mid was mock methylated in the absence of M.SssI.
Methylated and mock-methylated plasmids were reli-
gated back to Kpnl/HindIII-restricted pGL3-Basic vec-
tor. The extent of methylation was determined by
bisulfite sequence.
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Luciferase assay

One microgram of the MECP2 expression plasmid, 3 pug
of the reporter plasmid and 1 pg of SV2-B-gal, a B-
galactosidase expression vector, were transfected into
SH-SY5Y cells (approximately 80% confluent) in a 6-cm
dish using the FUGENE HD transfection reagent
(Roche) as described by the manufacturer. Two days
after transfection, whole cell extracts were prepared by
the addition of the Triton X-100-containing solution
from a Pica gene kit (Wako) to the cells. Approximately
a one-fifth volume of the extract was used for the -
galactosidase assay to normalize the transfection effi-
ciency as described previously [58], and luciferase activ-
ity was determined using the Pica gene kit and a
Luminometer, Lumat LB9501 (EG & G Berthold, Berlin,
Germany). The same experiments were repeated five
times.

RNAi knockdown

Twenty nanomolar MECP2-siRNA (S102664893, Qiagen)
were transfected into SH-SY5Y cells using the Hiperfect
transfection Reagent (Qiagen). To determine the effi-
ciency of siRNA delivery into the cells and the efficiency
of the reduction of gene expression, we used 20 nM of
an Alexa 488 fluorescence labeled control siRNA
(1027284, Qiagen) and siRNA for the MARKI gene
(8103650367, Qiagen). We also used a scrambled siRNA
(1027284, Qiagen) as a negative control. At 24 h after
transfection, cells were harvested for use in further
experiments.

Mouse and human tissue samples

B6.129P2 (C)-Mecp2 "™ 1B mice lacking exons 3 and
4 were obtained from the Jackson Laboratory (Bar Har-
bor, ME). Mecp2-null mice and wild-type male litter-
mates, as controls, were used at postnatal day 14 (P14).
All animal experiments were approved by the University
of Yamanashi Animal Care and Use Committee. Post-
mortem brain (cortex) samples from individuals were
obtained with informed consent and postmortem brain
samples from RTT patients were obtained from the
Harvard Brain Tissue Bank, USA. The profile of each
individual is shown in Table 1.

RNA extraction and quantitative reverse transcription PCR
Total RNA was extracted from the mouse and human
brain (cerebral cortices) samples using an RNeasy mini
kit (Qiagen). Total RNA was reverse-transcribed with
random primers and Ominscript reverse transcriptase
(Qiagen) according to the manufacturer’s instructions.
One tenth of the reaction was used in the PCR amplifi-
cation. Gene expression was measured by quantitative
reverse transcription PCR (qRT-PCR) on an ABI Prism
7500 with a QuantiTect SYBR Green PCR kits (Qiagen)
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Table 1 Characteristics of the RTT patient and control brain samples used in this study

Age Sex Diagnosis Mutation Cause of death
CTL-1 23y M Duchanne muscular dystrophy - Pulmonary infection
CTL-2 11y M healthy boy - Cardiac infarction
CTL-3 69y M ALS - Pneumonia
CTL-4 37y M CP (Athetosis) - Hepatocellular carcinoma
RTT-1 8y F Rett syndrome R255X Drowning
RTT-2 24y F Rett syndrome R255X Respiratory failure
RTT-3 10y F Rett syndrome R270X unknown
RTT-4 20y F Rett syndrome N.D. unknown

using primers for the human MAPK1, MECP2, PCDH7
or PCDHB1 (QT00065933, QT00039361, QT01005662,
or QT01019543, respectively, Qiagen), or mouse Mecp2,
Pcdh7 or Pcdhbl (QT00268555, QT01052366, or
QT01055453) genes. The expression level of each gene
was normalized against that of human GAPDH or
mouse Gapdh (QT01192646 or QT01658692, Qiagen).
All qRT-PCRs were performed in triplicate.

Statistical Analysis
Results are given as the mean +/- SEM. The significance
of differences was determined by Student’s t-test for sin-
gle comparisons and analysis of variance (ANOVA) for
multiple comparisons.
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