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Abstract

Background: Guanine nucleotide exchange factors (GEFs) and their target Rho GTPases regulate
cytoskeletal changes and membrane trafficking. Dynamin, a large force-generating GTPase, plays an
essential role in membrane tubulation and fission in cells. Kalirin12, a neuronal RhoGEF, is found in
growth cones early in development and in dendritic spines later in development.

Results: The IgFn domain of Kalirinl2, not present in other Kalirin isoforms, binds dynamin| and
dynamin2. An inactivating mutation in the GTPase domain of dynamin diminishes this interaction
and the isolated GTPase domain of dynamin retains the ability to bind Kalirinl2. Co-
immunoprecipitation demonstrates an interaction of Kalirin12 and dynamin2 in embryonic brain.
Purified recombinant Kalirin-IlgFn domain inhibits the ability of purified rat brain dynamin to
oligomerize in response to the presence of liposomes containing phosphatidylinositol-4,5-
bisphosphate. Consistent with this, expression of exogenous Kalirinl2 or its IgFn domain in PC12
cells disrupts clathrin-mediated transferrin endocytosis. Similarly, expression of exogenous
Kalirin12 disrupts transferrin endocytosis in cortical neurons. Expression of Kalirin7, a shorter
isoform which lacks the IgFn domain, was previously shown to inhibit clathrin-mediated
endocytosis; the GTPase domain of dynamin does not interact with Kalirin7.

Conclusion: Kalirinl2 may play a role in coordinating Rho GTPase-mediated changes in the actin
cytoskeleton with dynamin-mediated changes in membrane trafficking.

Background

The human genome encodes sixty-nine GDP/GTP
exchange factors (GEFs) for small GTPases of the Rho sub-
family [1,2]. All share the ability to remove GDP from tar-
get Rho proteins, allowing GTP to bind so that
downstream effectors can be activated. In addition to hav-
ing two RhoGEF domains, the Kalirin/Trio subfamily is
unique in its use of multiple protein/protein and protein/
lipid interaction modules (Fig. 1A). Kalirin7, the most
prevalent isoform in adult brain, begins with a Secl4p

domain, includes multiple spectrin-like repeats and ends
with a PDZ binding motif. Kalirin7 is concentrated at the
post-synaptic density (PSD) and is necessary for spine
maturation, maintenance and function [3-7]. Kalirin12,
the largest isoform, is most prevalent during embryonic
development, but is also present in adult neurons [8,9].

Features unique to Kalirin12 include tandem Ig and Fn
domains as well as a putative kinase domain (Fig. 1A).
While the Drosophila TRIO gene encodes neither an Ig nor
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The IgFn domain of Kalirinl2 interacts with dynamin. A. The domains of Kalirin|2 are shown: Dbl homology (DH);
pleckstrin homology (PH); Src homology 3 (SH3); immunoglobulin (Ig); fibronectin Ill (Fn); the alternate C-terminus of Kalirin7
is shown. The specificities of the spectrin-directed (Kal) and Kalirinl2 antisera are indicated. B. Cytosolic (Cyt) and solubilized
organellar (Org) fractions (5 mg protein) from adult rat cortex were incubated with GST-IgFn beads; homogenization buffer
(BLK) was analyzed as a control. Proteins bound to the beads were fractionated by SDS-PAGE, transferred to PYDF mem-
branes and visualized with Aurodye Forte. The 100 kDa band bound specifically to GST-IgFn was sequenced (boxed). C. The
domain structure of dynamin is illustrated: pleckstrin homology (PH); GTPase effector domain (GED); proline-rich domain
(PRD). The approximate locations of the five tryptic peptides identified by MS-analysis are indicated. D. Adult cortical cytosol
(2.0 mg protein) was incubated with GST-IgFn beads. Beads were washed and bound proteins eluted. Eluate equivalent to 200
g of lysate protein was fractionated; input (20 ng protein) was analyzed for comparison. In addition to the pan-dynamin (Dyn)
antibody, dynamin| (Dynl), 2 (Dyn2) and 3 (Dyn3) antibodies were used. E. Total dynamin, dynamins|, 2 and 3 and Kalirin12
(C-terminal antibody; Fig. 1 A) were visualized in SDS lysates (20 pug protein) prepared from the tissues and cells indicated:
EI8, embryonic day 18 rat brain; PI, postnatal day | rat cortex (Ctx); adult rat cortex; PCI12 cells.

a Fn domain, C. elegans UNC?73, the paralog of Kalirin and
Trio, encodes tandem IgFn domains and mammalian
TRIO genes encode a single Ig domain [10]. Both extracel-
lular and intracellular IgFn domains are involved in pro-
tein-protein interactions [11,12]. To gain insight into
roles unique to Kalirin12, we searched for proteins that
interacted with its IgFn domain, and identified the GTPase
domain of dynamin.

Dynamin, a GTPase that causes membrane tubulation
and fission, plays an essential role in both exocytosis and
endocytosis [13,14]. Self-assembly increases the GTPase
activity of dynamin [15-17], as does the binding of
dynamin to PIP2-containing lipid tubules [18]. Dynamin
interacts with several SH3 domain proteins through its C-
terminal proline-rich domain (PRD) and with itself via
the interaction of its GTPase domain with its assembly or
GTPase effector (GED) domain [14] (Fig. 1C). In develop-
ing neurons, both exocytosis and endocytosis are critical
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players in the deployment and retraction of membrane,
and must be coordinated with the assembly and disassem-
bly of filamentous actin and microtubules in order to pro-
mote directed neuronal growth [19-21]. In mature
neurons, dendritic spines must coordinate exocytosis and
endocytosis to respond rapidly to incoming stimuli with
changes in shape and altered deployment of receptors
[22,23].

Rho GEFs of the Trio/Kalirin family, with their ability to
activate Rac and RhoG, participate in the membrane
remodeling associated with growth cone extension and
active dendritic spines [6,24-29]. UNC-73 regulates the
subcellular localization of UNC-40, a Deleted in Colorec-
tal Cancer (DCC) receptor homolog, to direct growth
cone migration [28]. Trio8, a splice variant which lacks
the C-terminal GEF2, Ig and kinase domains [10], modu-
lates endosome dynamics and neurite elongation in
Purkinje neurons [30]. In AtT-20 cells, both Kalirin and
Trio affect secretion via the regulated pathway [29,31].
Expression of exogenous Kalirin7 in non-neuronal cells
inhibits the uptake of transferrin [32]. This response
requires the presence of the Sec14p domain, which binds
phosphatidylinositol-(3,5)-bisphosphate and phosphati-
dylinositol-(3)-phosphate, and the spectrin-like repeats,
which allow Kalirin to oligomerize.

Methods

Expression vectors

Fragments of rat Kalirin were cloned into the pEAK10 vec-
tor (Edge Biosystems, Gaithersburg, MD) with a Hisg-myc
epitope tag at the NH,-terminus [33]. Enhanced green flu-
orescent protein (from pEGFP-N2; Clontech, Mountain
View, CA) replaced residues L1127STHTS!132 of Kalirin12
in the pEAK GFP-Kalirin12 vector [6]. The IgFn region of
Kalirin (L2456LG ... GIS2625) was inserted into the pEGFP-
N2 vector to make a GFP-IgFn fusion protein, and into
pGEX-6P (Amersham Biosciences) to generate GST-IgFn.
pEGFP-N1 vectors encoding GFP fused to the C-terminus
of human dynamin2, dynamin2/K44A, dynamin2/APRD
(lacking the Pro-rich domain, P747 to D870), and
dynamin2 GED/PRD (containing both the GED and Pro-
rich domains, S¢18 to D870) were the kind gifts of Dr. Pietro
De Camilli (Yale University) [17,34,35]. A vector encod-
ing GFP fused to the C-terminus of the GTPase domain of
human dynamin2 (M! GN...RPD320) was generated by
subcloning a PCR amplified fragment flanked by HindIII
and EcoR 1 sites into pEGFP-N2. All constructs were veri-
fied by DNA sequencing.

GST fusion protein expression and purification

Bacteria (E. coli BL21/ADE3) were transformed with vec-
tors encoding pGEX.GST-IgFn or GST-Amphiphysin2 SH3
(a gift from Dr. Pietro De Camilli, Yale University), grown
to stationary phase in LB medium containing ampicillin,
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diluted 100-fold and grown to ODgy, = 1.3 at 37C,
induced with 0.4 mM IPTG and grown at 16C overnight.
Pellets of cells were resuspended in PBS (50 mM
NaH,PO,, pH 7.4, 150 mM NaCl, 1 mM dithiothreitol, 5
mM EDTA, 1 mM PMSF) and passed 3 times through a
French Press. Supernatants from a 500 ml culture were
tumbled with 0.5 ml glutathione-Sepharose at 4C for 4 h.
Beads were washed twice with 10 vol PBS, and once with
10 vol PBS containing 0.1% Triton X-100. Fusion proteins
remained on the beads (stored at -80C). To elute the
fusion proteins from the beads, beads were equilibrated
with 10 vol of 50 mM Tris - HCI, pH 7.4, 150 mM NacCl, 1
mM DTT and eluted with 0.5 ml 50 mM Tris - HCI, pH 7.4,
150 mM NaCl, 1 mM DTT, 20 mM reduced glutathione.
Fractions were dialyzed into 20 mM Hepes, pH 7.4, 100
mM NaCl, 1 mM DTT, 50% glycerol at 4C.

GST-IgFn binding assay

Freshly dissected female adult rat cortex was minced and
homogenized in 0.32 M sucrose, 10 mM Tris- HCIL, pH 7.0
(10% w/v) using a Potter-Elvehjem homogenizer and
nuclei were removed by centrifugation at 138 x g for 5
min. The supernatant was centrifuged at 435,000 x g, 15
min; the resulting supernatant constituted the cytosolic
fraction. The high speed pellet was resuspended in 20 mM
Na TES, 10 mM mannitol, 1% TX-100, pH 7.4 (TMT) with
protease inhibitors for 30 min, then centrifuged at
435,000 x g, 15 min. The detergent supernatant is the sol-
ubilized organellar fraction; the insoluble pellet was dis-
carded. Samples were pre-cleared by incubation with GST-
glutathione-Sepharose 4B beads for 1 h, 4C and superna-
tants were incubated with GST-IgFn-glutathione-Sepha-
rose 4B beads for 1 h, 4C and washed. Bound proteins
were eluted by boiling in 1x SDS loading buffer; aliquots
were fractionated on 4-20% polyacrylamide gels. Pro-
teins transferred to PVDF membranes were visualized
with Coomassie Brilliant Blue R250 or Aurodye Forte
(Amersham Biosciences, Piscataway, NJ). For mass spec-
troscopy, bands were excised from Coomassie stained gels
and prepared for trypsin digestion at the UCHC Proteom-
ics & Biological Mass Spectrometry facility (Dr. David
Han, Director) [36]. Five peptide sequences from rat
dynaminl were identified. Verification of mass spectros-
copy results utilized antibodies that cross-react with all
three dynamin gene products (pan-dynamin) (#610245,
Pharmingen, San Diego, CA), or recognize individually
dynaminl, 2, or 3 (#3456-3458, AbCam, Cambridge,
UK).

PEAK Rapid cells were transiently transfected with vectors
encoding EGFP or various fragments of dynamin. After 24
h, cells were extracted into 0.5 ml 20 mM NaTES, 10 mM
mannitol, pH 7.4 (TM) containing protease inhibitor
cocktail [29] and 0.2 mM Na,VO,;. Following centrifuga-
tion (15,000 x g for 15 min), lysates were tumbled with
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GST or GST-IgFn beads, 4C, 2 h. After three rinses with
TMT, proteins eluted by boiling in SDS sample buffer were
separated by SDS-PAGE.

Immunoprecipitation

Rat cortical cytosolic fractions (as described above) and
extracts of transfected pEAK Rapid cells were used for
immunoprecipitations. pEAK Rapid cells extracted in TM
were centrifuged at 435,000 x g for 1 h to remove particu-
lates. Samples (100 pg protein for tissue extracts, or 1/3 of
total sample for pEAK lysates) were incubated with anti-
bodies to Kalirin (polyclonal antibody Kal-spectrin, Fig.
1A) [33], GFP (polyclonal antibody, Abcam), or dynamin
(monoclonal antibody, BD Biosciences) for 2 h at 4C;
immune complexes were isolated with Protein G or A
Sepharose (Pharmacia Biotech, Uppsala, Sweden). Sam-
ples were fractionated on 4-20% polyacrylamide SDS gels
and Western blot analysis was carried out with antibodies
to Kalirin12, dynamin or GFP (clone N86/8, NeuroMADb,
UC Davis, Davis, CA).

Primary cortical cultures and nucleofection

Cortices from E19.5 to PO rats were diced and dissociated
using a papain dissociation system (Worthington Bio-
chemical Corporation, NJ). Plasmids (10 pg) were intro-
duced into dissociated cells (107) by nucleofection using
the Rat Neuron Nucleofector Kit, program O-003
(AMAXA GmbH, Germany). Nucleofected and control
neurons (0.3 x 10%/well) were plated onto poly-L-lysine
coated glass coverslips and incubated in Neurobasal
medium containing 10% fetal calf serum for 2 to 4 h; the
medium was then changed to Neurobasal medium sup-
plemented with 2% B27, 2% fetal calf serum, 0.5 mM L-
glutamine, 25 uM L-glutamic acid, 100 U/ml penicillin
and 0.1 mg/ml streptomycin (Invitrogen, Carlsbad, CA).
After 4 days in vitro, 50% of the medium was replaced with
fresh medium.

Immunocytochemistry

After 3 h in vitro, cortical neuron cultures were fixed with
4% formaldehyde in PBS, permeabilized and blocked
[29]. Primary antibodies were applied for 2 h and second-
ary antibodies for 1 h at room temperature; coverslips
were mounted using Prolong Gold Antifade Reagent (Inv-
itrogen). Images were captured using a Zeiss LSM510-
Meta confocal microscope. Kalirin12 was detected using
affinity-purified rabbit antibody JH3226 (1:100) [33];
Cy3-labeled donkey anti-rabbit IgG (1:1000, Jackson lab.,
PA) was used for co-staining with FITC-phalloidin (1:500,
Sigma) while Alexa488-labeled donkey anti-rabbit IgG
(1:500, Invitrogen) was used for co-staining with pan-
dynamin monoclonal antibody (1:100, BD Biosciences)
using Cy3-labeled donkey anti-mouse IgG (1:1000, Jack-
son Labs). Specificity of the Kalirin12 antibody was veri-
fied by pre-incubation (diluted 10-fold in blocking
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solution) with antigenic peptide (10 pg/ml) at 4C for 30
min; no signal was seen when the blocked antibody was
applied to cortical neurons (6 DIV). BII tubulin was
detected with a chicken monoclonal antibody (1:2000;
Aves Labs, Tigard, Oregon) followed by Alexa633-labeled
goat anti-chicken IgG.

Endocytosis of transferrin

After 6 days in vitro, cortical neurons nucleofected with
vector encoding Kalirin12 or EGFP were rinsed with
serum-free DMEM for 5 min and incubated with 50 pg/ml
AlexaFluor546-transferrin (T23364, Invitrogen) in serum-
free DMEM for 5 min at 37C. Cells were quickly rinsed
with serum-free DMEM and fixed with 4% formaldehyde
(J.T. Baker, Phillipsburg, NJ) in PBS. Uptake of transferrin
by PC12 cells was assessed in a similar manner. Removal
of surface bound transferrin with a low pH wash (50 mM
glycine, 100 mM NacCl, pH 5.0 for 10 min at 37C) did not
change the answer. Kalirin12 positive neurons were iden-
tified using myc monoclonal antibody and FITC-tagged
donkey anti-mouse IgG; neurons were identified by
simultaneously visualizing BIII tubulin using chicken
antibody (1:2000, Aves Labs) and Alexa633-goat-anti-
chicken IgG (Invitrogen, CA). To quantify AlexaFluor546-
transferrin uptake, images from EGFP or Kalirin12 posi-
tive neurons were acquired under identical conditions
using a Zeiss LSM510 Meta confocal microscope. Once
background fluorescence was defined, the cell soma was
identified automatically using the 488 nm signal (myc or
EGFP) and SimplePCI software (Compix, Inc., Sewickley,
PA); total and mean red within the cell soma were meas-
ured for each transfected neuron. Significance was calcu-
lated using a two-tailed Student's T-test.

Dynamin self-assembly assay

Adult rat brains (1 g wet weight) were homogenized in 10
ml of buffer A (20 mM Hepes, pH 7.4, 150 mM NaCl, 1
mM MgCl,, 1 mM EGTA, 1 mM DTT, 0.3 mg/ml PMSF,
protease inhibitor cocktail [29] with 10 mM NaF and 2
mM Na;VO,). Triton X-100 was added (1%) and the sam-
ple clarified by centrifugation at 100,000 x g for 10 min.
Rat brain supernatant (10 ml; 8 mg protein/ml) was incu-
bated with 0.5 ml GST-amphiphysin-2/SH3 domain [18]
(8 mg) bound to glutathione Sepharose 4B equilibrated
with buffer A. After tumbling for 4 h at 4C, beads were
washed 3 times with 10 bed volumes buffer A. Proteins
were eluted twice with 1 ml buffer B (20 mM Pipes, pH
6.5, 1.2 M NaCl, 1 mM DTT, protease/phosphatase inhib-
itors). Pooled eluates were dialyzed into buffer C (20 mM
Hepes, pH 7.4, 100 mM NaCl, 1 mM DTT, 50% glycerol
with protease/phosphatase inhibitors). Based on SDS-
PAGE, the pooled eluate (2.0 ml) contained 0.1 mg/ml
dynamin. Liposomes were prepared with 10% phosphati-
dylinositol-4,5-bisphosphate (#840046, Avanti, Alabas-
ter, AL) and 90% brain polar extract (#141101, Avanti)
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[37,38]. Organic solvent was removed using dry argon
and a vacuum pump. The lipid film was re-hydrated with
buffer G (40 mM Hepes, pH 7.4, 1 mM MgCl,, 5 mM KCl,
135 mM NaCl, 1 mM DTT with protease/phosphatase
inhibitors) by vortexing continuously for 15 min. After
three freeze/thaw cycles and repeated extrusion (21 times)
through a 400 pum filter (#800282, Whatman, Clifton,
NJ), the liposome suspension was centrifuged at 15,000 x
g for 5 min; the supernatant, which contains liposomes <
400 pm in diameter was used. The dynamin assembly
assay was performed using purified dynamin pre-incu-
bated or not with GST or GST-IgFn on ice for 1 h and incu-
bated at room temperature for 10 min with or without
fresh liposomes. Oligomerized dynamin was pelleted by
centrifugation at 60,000 x g for 15 min. Supernatant and
pellet fractions were recovered and equal aliquots were
subjected to SDS-PAGE; dynamin in each fraction was
determined by staining proteins transferred to PVDF
membranes with Coomassie Brilliant Blue.

Results

The IgFn domain of Kalirinl2 interacts with Dynamin
Alternative splicing at the 3'-end of the Kalirin gene gener-
ates transcripts encoding Kalirin7 and 12 plus additional
isoforms not diagramed (Fig. 1A) [33]. Each longer Kali-
rin isoform contains additional domains and a unique C-
terminus. The domains unique to the largest characterized
isoform, Kalirin12, presumably contribute to its functions
in the cell. To explore this possibility, a GST-IgFn fusion
protein was purified, bound to glutathione Sepharose 4B,
and incubated with cytosolic and solubilized organellar
fractions prepared from adult rat cortex. Proteins that
bound to GST-IgFn, but not to GST, and were not in the
control fraction were of interest (Fig. 1B). A 100 kDa pro-
tein was the most prevalent band meeting these criteria
and was subjected to trypsin digestion and mass spec-
trometry. Five dynamin peptides were identified, suggest-
ing that dynamin might interact with Kalirin12 (Fig. 1C).
Dynaminsl, 2 and 3 share the domain structure illus-
trated in Fig. 1C; three of the peptides identified were
unique to dynaminl, one was also present in dynamins2
and 3, and the fifth was common to dynamins1 and 3, but
not dynamin2.

To determine which dynamins could be identified
amongst the proteins bound to the IgFn domain of
Kalirin12, binding was evaluated utilizing antibodies
directed towards dynamins1, 2 and 3, each of which is
expressed in the adult cortex (Fig. 1D). Both dynaminl
and dynamin2 were detected, although detection of
dynamin2 required loading more of the bound fraction
onto the gel. An interaction between the IgFn domain of
Kalirin12 and dynamin3 was not detectable. As in the
adult brain, all three isoforms of dynamin are expressed in
embryonic day 18 brain and in post-natal day 1 cortex
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(Fig. 1E); all three isoforms of dynamin are also expressed
in rat PC12 pheochromocytoma cells, one of the cell lines
utilized for these studies. Kalirin12 expression declined
with age, but was readily detected in adult rat cortex; PC12
cells were previously shown to express Kalirin12 [39].
Although it was apparent that only a small percentage of
the total dynamin interacted with the IgFn domain of
Kalirin12 and these experiments do not establish a direct
interaction, the interaction is specific.

Kalirin12 interacts with dynamin in vivo

Since dynaminl and 2 interacted with the isolated IgFn
domain of Kalirin in a GST pull-down assay, we next eval-
uated their ability to interact with full-length Kalirin12 in
intact cells. pEAK Rapid cells, a human embryonic kidney
line, were transiently transfected with vectors encoding
full-length myc-tagged Kalirin12. Based on Western blot
analysis, these cells express dynamin2, but not dynamin1
(Fig. 2A), as expected for fibroblasts [40]. Cell extracts
were immunoprecipitated with Kalirin antibody and ana-
lyzed with a pan-dynamin antibody (Fig. 2B). As observed
in the GST pull-down assay, a small percentage of the
endogenous dynamin was co-immunoprecipitated with
Kalirin 12 (Fig. 2B).

We next wanted to determine whether endogenous
Kalirin12 and dynamin interacted. Since Kalirin12 was
enriched in embryonic brain, cytosolic fractions from rat
embryonic cortex were analyzed. Immunoprecipitation
with a Kalirin spectrin antibody and analysis with a pan-
dynamin antibody demonstrated co-immunoprecipita-
tion of dynamin (Fig. 2C, upper). Antisera specific for
dynaminl and dynamin2 were used to demonstrate co-
immunoprecipitation of both dynamins with Kalirin (Fig.
2C, upper). The Kalirin spectrin antibody immunoprecip-
itates all of the major isoforms of Kalirin; to confirm the
interaction of dynamin with Kalirin12, samples were
immunoprecipitated with a pan-dynamin antibody and
detected with a Kalirin12 specific antibody (Fig. 2C). Co-
immunoprecipitation of dynamin and Kalirin12 was
demonstrated.

We next compared the localization of Kalirin12 and
dynamin in cortical neurons (Fig. 2D). When examined 3
h after plating, Kalirin12 positive puncta were prevalent in
the soma (S) and growth cones (GC) of all cortical neu-
rons. Pan-dynamin positive puncta were also apparent in
the soma and in growth cones (Fig. 2D). Both proteins
were present at multiple sites in these young neurons. Co-
localization of a small fraction of the Kalirin12 and
dynamin was observed in the cell soma and in growth
cones (Fig. 2D, enlarged box regions). This result was
consistent with the small fraction of the total dynamin or
total Kalirin recovered by co-immunoprecipitation.
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Figure 2

Kalirinl2 interacts with dynamin in vitro and in vivo. A. Lysates of pEAK Rapid and PC|2 cells (20 g protein) were
blotted for total dynamin (pan), dynamin| (Dynl) or dynamin2 (Dyn2). B. pEAK Rapid cells were transiently transfected with
pEAK vector encoding myc-Kalirin12 (myc-K12) or pEGFP-N2 (Vector). Extracts (100 pig protein) prepared 48 h later were
immunoprecipitated with antibodies to Kalirin spectrin (Kal). Immunoprecipitation was verified using Myc antibody (upper) and
co-immunoprecipitation was assessed with antibody specific for pan-dynamin (Dyn, lower); ratio of Input to Immunoprecipi-
tated sample, 1:10. C. Cortical cytosol (Cort. Ext.; nig indicated below blots) was immunoprecipitated with Kalirin-spectrin
antibody (Kal; upper) or dynamin antibody (Dyn; lower); controls included IgG or no antibody. Immunoprecipitated proteins
were visualized with the same Kalirin antibody (upper) or dynamin2 antibody (lower). Co-immunoprecipitation was assessed
using antisera to dynamin, dynamin|, dynamin2 or Kalirin12 as indicated; ratio of Input to Immunoprecipitated sample, 1:100.
D. Primary cultures of cortical neurons were fixed 3 h after plating. Endogenous Kalirin|2 was visualized using a rabbit polyclo-
nal antibody for Kalirin|12 and Alexa488-secondary (green). Endogenous dynamin was visualized using the pan-dynamin anti-
body (Dyn) and Cy3-secondary (red). S, soma; GC, growth cone; boxed regions are shown enlarged. White arrows,
colocalized Kalirin12 and dynamin. Scale bar: 10 um.
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The IgFn domain of Kalirin binds to the GTPase domain of
dynamin in a GTP-dependent manner

The GTPase activity of dynamin is critical to its function
[14,37]. Under physiological conditions, dynamins are
loaded with GTP [14]. The ability of dynamin to bind GTP
and function as a GTPase can be blocked by mutating the
key Lys residue in the GTPase domain (Lys*4) to Ala [41].
To determine whether the ability of Kalirin12 to bind to
dynamin was sensitive to its GTP-binding state, lysates
containing dynamin2-GFP or dynamin2/K**A-GFP (Fig.
3A) were incubated with beads containing GST or GST-
IgFn (Fig. 3B). Dynamin2 was used for these studies
because a collection of GFP-tagged variants were available
[17,34,35]. While binding of dynamin2 was readily
detected, dynamin2/K#4A failed to bind to Kalirin IgFn
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(Fig. 3B). The presence of equivalent amounts of GST-
IgFn and GST was verified by Coomassie staining (Fig. 3B,
lower).

To determine whether the GTPase domain of dynamin
bound to the IgFn domain of Kalirin, lysates containing
dynamin2/GTPase domain were incubated with beads
loaded with GST or GST-IgFn; binding of the isolated
GTPase domain to the IgFn beads was readily detected
(Fig. 3C). To explore further the effect of GTP on the inter-
action of dynamin with Kalirin-IgFn, GTP or GTPyS was
added to lysates containing dynamin2/GFP before the
GST-IgFn beads were added; both GTP and its non-hydro-
lyzable analog enhanced the interaction (Fig. 3D). In
these crude lysates, addition of GTP could increase
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Dyn2 KIA <————> [ﬁa 75 7S
K4“A @ 50+ 50"
GED/PRD EBQGFP
APRD <> ' [.Ea : ™o Coomassie
- 50-! - e - ST
T v B = -IgFn
GTPase .. 25 R s « ST
-
D. E. GED GED F. Co-immunoprecipitation
Dyn2 Ig G /PRD APRD /PRD APRD IPT Ab
IL 0 GTP 48 In In Glg Glg
———— . e (1/30th) & 5 5
150 i 150 - Input © O Input®@ O
-
100- 100 - | .. WBKal
75- - f:g_ - ! spectrin
50- Transfect: +Kal7 +Kal12
50 S Dyn-GTPase
Figure 3

The IgFn domain of Kalirin interacts with the GTPase domain of dynamin. A. The GFP-tagged dynamin2 proteins
expressed transiently in pEAK Rapid cells are shown diagrammatically; dynamin domains were defined in Fig. 1C. B.-E.
Lysates were incubated with beads to which 2 ng GST (G) or 2 ng GST-IgFn (Ig) was bound. Bound proteins (50% of total)
were eluted and fractionated on polyacrylamide gels; inputs (In; 1% of total) were analyzed simultaneously. EGFP and dynamin
were visualized using antibody to GFP. B. Dynamin2 (Dyn2), but not dynamin2 K#4A bound to GST-IgFn. The Coomassie Bril-
liant Blue image demonstrates similar amounts of GST and GST-IgFn. C. The GTPase domain of dynamin2 bound to Kalirin-
IgFn. D. Binding of dynamin2 to GST-IgFn was enhanced by | mM GTP or | mM GTPys. E. Dynamin2 lacking the PRD (APRD)
bound to Kalirin-IgFn while the GED/PRD domains of dynamin2 did not. F. pEAK Rapid cells expressing the dynamin2/GTPase-
GFP fusion protein along with Kalirin7 or Kalirin12 were extracted and immunoprecipitated using a polyclonal GFP antibody or
control immunoglobulin; the Kalirin-spectrin antibody detected an interaction of dynamin2 with Kalirinl2, but not with

Kalirin7.
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dynamin binding directly or indirectly, by affecting its oli-
gomerization [42]. Consistent with the ability of
dynaminsl and 2 to interact with Kalirin-IgFn, their
GTPase domains are almost 90% identical (P21575;
P39052).

The ability of other fragments of dynamin to bind to GST-
IgFn was evaluated to determine whether additional inter-
actions could be detected. The proline rich domain (PRD)
at the C-terminus of dynamin (Fig. 3A) interacts with a
number of proteins that contain Src-homology-3 (SH3)
domains [14]. We expressed a fragment of dynamin2 con-
taining only the GED and PRD and a truncated version of
dynamin2 that lacked the PRD; both proteins were
expressed well (Fig. 3A, E). While the GED/PRD fragment
failed to bind to the IgFn domain of Kalirin, dynamin
lacking its PRD (APRD) continued to bind. Attempts to
express the Middle/PH/GED or Middle domain fused to
GFP led to insoluble aggregates.

We next wanted to determine whether isoforms of Kalirin
that lacked the IgFn domain interacted with the GTPase
domain of dynamin. The dynamin2/GTPase-GFP fusion
protein and Kalirin7 or Kalirin12 were co-expressed in
pEAK Rapid cells (Fig. 3F). The GTPase domain of
dynamin2 interacted with Kalirin12, but not with
Kalirin7. Taken together, our data indicate that the
GTPase domain of dynamin binds to the IgFn domain of
Kalirin in a GTP-dependent manner.

The IgFn domain of Kalirin disrupts dynamin self-assembly
The GTPase activity of dynamin is increased dramatically
following its oligomerization [14,16-18,37,42]. Phos-
phatidylinositol-4,5-bisphosphate-containing liposomes
induce the oligomerization of purified rat brain dynamin,
which can be assessed by quantifying the recovery of oli-
gomerized dynamin from the liposome-containing partic-
ulate fraction [16,18]. The dynamin used for these studies
was purified from adult rat brain using the SH3 domain of
Amphiphysin2, which binds dynamin through its PRD
(Fig. 4A); since adult rat brain was used, most of the
dynamin in this preparation is dynaminl [43]. In the
presence of PI(4,5)P2-containing liposomes, Coomassie
staining revealed the recovery of 97% of the dynamin
from the particulate fraction; in the absence of liposomes,
only 3% of the dynamin was recovered from the pellet
(Fig. 4B). When purified, recombinant GST-IgFn domain
was added to the mixture of PI(4,5)P2-containing lipo-
somes and purified dynamin, most of the dynamin
remained in the supernatant. The addition of GST did not
have an inhibitory effect on dynamin oligomerization. To
determine whether the IgFn domain of Kalirin bound to
liposomes, thus indirectly blocking the binding of
dynamin, IgFn domain was incubated with liposomes in
the absence of dynamin. Coomassie blue staining

http://www.biomedcentral.com/1471-2202/10/61

revealed the presence of the IgFn domain in the superna-
tant fraction in the presence and absence of liposomes
(Fig. 4C), indicating no direct interaction of the IgFn
domain with liposomes.

Data from several experiments were quantified following
normalization to the amount of dynamin pelleted in the
presence of liposomes (Fig. 4D). The ability of liposomes
to induce the oligomerization of purified dynamin was
blocked by the addition of recombinant GST-IgFn
domain (Fig. 4D). In these studies, the molar ratio of GST-
IgFn:dynamin was approximately 5:1. Kalirin binds in a
GTP-dependent manner to the GTPase domain of
dynamin, blocking the ability of dynamin to oligomerize,
and presumably to activate, upon interacting with phos-
pholipids [18,42]. These data suggest an inhibitory role
for Kalirin12 in regulating dynamin-mediated trafficking.

Overexpression of Kalirin |2 or IgFn disrupts endocytosis of
transferrin in PCI2 cells

Dynamin oligomers constrict, severing the necks of nas-
cent vesicles in a GTP-hydrolysis-dependent reaction
[14,18,37]. This fission step is critical to the endocytic traf-
ficking of many membrane proteins [13,44]. The uptake
of fluorescently tagged transferrin provides an assessment
of dynamin-mediated endocytosis [38]. To explore the
possibility that Kalirin12 plays a role in controlling
dynamin-mediated endocytosis, Kalirin12-GFP, its GFP-
tagged IgFn domain or GFP were expressed in rat PC12
pheochromocytoma cells, which express both dynamin1
and dynamin2 (Fig. 1E). Following a 10 min incubation
with fluorescently-tagged transferrin, cells were rinsed and
fixed (Fig. 5A). Transferrin uptake by cells expressing GFP-
Igkn (yellow arrows) was inhibited to varying extents
compared to cells expressing GFP (green arrows); even
when endocytosed by GFP-IgFn expressing cells, transfer-
rin failed to accumulate in the perinuclear region, remain-
ing distributed throughout the cell. PC12 cells expressing
Kalirin12-GFP (red arrows) were unable to endocytose
significant amounts of transferrin (Fig. 5A). Despite its
lower levels of expression, Kalirin12-GFP had a more pro-
found inhibitory effect on transferrin uptake than the iso-
lated IgFn domain. Uptake of transferrin was categorized
as Normal, with readily detected puncta of fluorescently-
tagged transferrin accumulated in the interior of the cell,
or Reduced (Fig. 5B). While 90% of non-transfected or
GFP-transfected cells were categorized as Normal, endocy-
tosis was categorized as Reduced in 60% of the cells
expressing GFP-IgFn (Fig. 5B). Uptake was scored as
Reduced in over 80% of the cells expressing Kalirin12-
GFP.
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Figure 4

Kalirin-IgFn domain disrupts dynamin self-assembly. A. Dynamin purified from adult rat brain was fractionated by SDS-
PAGE and visualized with Coomassie brilliant blue: Bound, aliquot of washed GST-amphiphysin2-SH3 beads incubated with rat
brain cytosol; Eluted, aliquot of protein eluted by high salt/lower pH buffer. B. Purified dynamin (2.5 ng) was incubated on ice
with or without purified GST (5 pg) or purified GST-IgFn (5 ug) for | h before exposure to liposomes, then incubated with
freshly prepared liposomes for 10 min at room temperature; the control lacked liposomes. Liposomes were pelleted and
supernatants and pellets were fractionated by SDS-PAGE; proteins were visualized by Coomassie Brilliant Blue staining the
PVDF membrane. Supernatant lanes tend to be wider because of the glycerol-containing sample buffer used to prepare these
more dilute samples. C. Purified GST-IgFn domain (5 pg) was incubated with or without liposomes (composed of 0.1 mM PIP2
and 0.9 mM brain polar lipids), without dynamin; Coomassie Brilliant Blue staining is shown. D. Coomassie stained dynamin in
the supernatant and pellet was quantified using Gene Tools (Syngene, Frederick, MD). For each experiment (n = 4), dynamin in
the "liposome only" pellet was set to 100%; the amount of dynamin in the other pellets was normalized to this value. Error bars
are standard error of the mean; p values, two-tailed student T-test.

Overexpression of Kalirinl2 disrupts endocytosis of
transferrin in primary neurons

We next explored the effects of exogenous Kalirin12 and
IgFn on transferrin uptake by primary cultures of rat corti-
cal neurons. After 6 days in vitro, cultures were incubated
with AlexaFluor546-transferrin for 5 min, rinsed and fixed
(Fig. 6A). Cells expressing EGFP or myc-Kalirin12 were
located and identified as neurons based on staining for
BIII tubulin. Internalized transferrin was quantified in at
least 20 images by measuring total red intensity in the cell

soma. Over-expression of Kalirin12 reduced total red
intensity in the cell soma by approximately 50%; soma
area was unaffected (Fig. 6B). In a separate series of exper-
iments using postnatal day 1 striatal neurons, expression
of GFP-IgFn or Kalirin12-GFP was found to inhibit trans-
ferrin uptake (data not shown). Although our co-immu-
noprecipitation data indicate that only a small percentage
of the endogenous Kalirin12 and dynamin is stably inter-
acting at any given time, our functional data demonstrate

Page 9 of 14

(page number not for citation purposes)



BMC Neuroscience 2009, 10:61

A.PC-12

Control

\

c
I
>
o
™
o

Kalirin12-GFP

Figure 5

http://www.biomedcentral.com/1471-2202/10/61

B. Quantification
O Non-transfected

120 B GFP
T ] GFP-IgFn
80 B Kalirin12-GFP
(/2]
]
Q
240
. Normal Reduced

(Transferrin uptake)

Kalirin inhibits transferrin uptake by PCI12 cells. A. PCI2 cells were transiently transfected with vectors encoding GFP
(green arrows), GFP-IgFn (yellow arrows) or Kalirin12-GFP (red arrows). After 48 h, cells were fed with serum-free medium
containing 50 pg/ml AlexaFluor546 transferrin; 10 min later, cells were rinsed in serum-free medium, fixed and analyzed. All
images were taken using the same exposure time; scale bar, 10 um. B. Endocytosis of transferrin was scored as normal if fluo-
rescent puncta were readily detected in the interior of the cell and reduced if they were absent entirely or not centrally col-
lected. Results are percentage of total number of transfected cells per group. Data are from three separate experiments. Total
N for each group: non-transfected, 34; GFP, 24; GFP-IgFn, 25; Kalirin12-GFP, 20. Using chi square analysis, p < 0.001 for group
distribution, GFP vs. GFP-IgFn, GFP vs Kalirin|2-GFP and GFP-IgFn vs Kalirin12-GFP.

that over-expressed, exogenous Kalirin12 has a powerful
inhibitory effect on dynamin-mediated endocytosis.

Discussion

IgFn domains distinguish isoforms of Kalirin/Trio

The IgFn domain of Kalirin binds to the GTPase domain
of dynamin, inhibiting dynamin self-assembly. Although
the dTrio gene does not encode Igkn domains, the C. ele-
gans unc-73 gene generates isoforms that include tandem
IgFn domains [10,45,46]. Mammalian Trio has a single Ig
domain that binds RhoA, increasing its GEF activity [47];
RhoA does not bind to the IgFn domain of Kalirin (data
not shown). The IgFn regions of mammalian Kalirin and
Trio are more divergent than any other domain [9]. In
addition to Kalirin12, only Duet, which lacks the spectrin-
repeats and first GEF domain of Kalirin12, contains the
tandem IgFn domains [10].

Ighn domains, with their 7 anti-parallel B-sheets, often
serve as protein-protein interaction sites and are more
common in extracellular than intracellular proteins
[11,48,49]. Intracellular proteins with IgFn domains
include titin, with 300 Ig domains, and short smooth
muscle myosin light chain kinase, with three Ig domains
and one Fn domain [11,49]. When mechanically
stretched, the Ig and Fn domains of titin vary in the force
required for unwinding, with Fn domains generally dis-
rupted more easily than Ig domains. With Kalirin12
linked to plasma membrane phosphoinositides through
its Sec14p domain [32] and to dynamin, it is conceivable
that force-mediated unwinding of the IgFn domain could
occur.

Kalirin12 interacts with dynamin
Dynamin is crucial for membrane fusion and fission dur-
ing exocytosis and endocytosis [14,35]. Our data indicate
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p<0.001

Kal12

Kalirin |2 inhibits transferrin endocytosis in cultured cortical neurons. A. Dissociated cortical neurons were nucleo-
fected with vectors encoding GFP (upper) or myc-Kalirinl2 (bottom) and examined after 6 days. AlexaFluor546-transferrin
(red) was internalized for 5 min, cells were rinsed and fixed for visualization of Kalirin12 (myc; green) or GFP and Bl tubulin
(blue). White arrows identify the cell soma. Scale bar, 10 um. Including an acidic wash to remove surface transferrin did not
alter the results. B. Transferrin signal in the cell soma was quantified in > 20 images from GFP and Kalirin|2 expressing neu-
rons. Soma area and total red intensity were quantified. SEM is indicated; bracket, p < 0.001 using two-tailed student T-test.

that the IgFn domain of Kalirin binds dynamin in vitro
and in vivo (Figures 1 and 2), and in a GTP-dependent
manner (Figure 3). Mutation of Lys#¢, a key residue in the
GTP binding site of dynamin2 [41], reduced the binding
of dynamin2 to Kalirin-IgFn. In the presence of GTP or
GTPyS, the binding of dynamin2 to Kalirin-IgFn was
increased. While Kalirin12 and Kalirin-IgFn bound to the
35 kDa GTPase domain of dynamin2, Kalirin7, which
lacks the IgFn domain, did not (Figure 3).

Both dynamin and Kalirin are multiply phosphorylated
and their interaction may be regulated by phosphoryla-
tion state [50-52]. Constitutive phosphorylation of
dynamin is catalyzed by protein kinase C and CdkS5; along
with synaptojanin, amphiphysin, and epsin, dynamin

must be dephosphorylated before it can assemble and
promote vesicle scission [52-54]. Kalirin is also phospho-
rylated by Cdk5 and rapidly dephosphorylated by protein
phosphatase 1 under basal conditions [55]. Dynamin
interacts with a variety of proteins through its C-terminal
proline-rich domain, targeting it to specific sites of action
[14]. Whether the two SH3 domains of Kalirin bind to the
proline-rich domain of dynamin has not yet been investi-
gated.

The Kalirin-IgFn domain blocks dynamin self-assembly and
inhibits dynamin-mediated endocytosis

Dynamin, through its GTPase activity, functions as a
mechanoenzyme,  facilitating ~ membrane fission
[14,34,37]. Self-assembly is an essential step in activating
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the GTPase activity of dynamin [15-17,42]. Using an in
vitro assay [16] we demonstrated that the IgFn domain of
Kalirin blocked liposome triggered dynamin self-assem-
bly (Figure 4). Other proteins known to interact with the
GTPase domain of dynamin in a GTP-dependent manner
include the PHOX homology domain of phospholipase
D, which acts as a GTPase activating protein (GAP) for
dynamin [56]. The SH3 domain of phospholipase C-y1
binds to the proline rich domain of dynamin1 and func-
tions as a guanine nucleotide exchange factor (GEF) for
dynaminl [57]. The fact that exogenous Kalirin12 inhib-
ited uptake of transferrin (Figures 5 and 6), a dynamin-
mediated process, suggests that a similar interaction may
be used normally in neurons. Tethered to the membrane
via its Sec14p, PH or spectrin-like repeats and to dynamin
via its IgFn domain, Kalirin12 could link activation of
dynamin to membrane deformation and cytoskeletal
reorganization.

A role for Kalirin in endocytosis

Exocytosis and endocytosis, which are prevalent at growth
cones [58], must occur in a carefully balanced and spa-
tially controlled manner in response to multiple attractive
and repulsive signals. Similarly, the insertion and retrieval
of the receptors prevalent in dendritic spines requires care-
fully controlled, signal mediated exocytosis and endocy-
tosis [22,59]. Kalirin12 is well equipped to play a key role
in both processes. Kalirin12, like its Drosophila paralog,
dTrio, is localized to vesicular structures and membranes
in neuronal processes and growth cones [8,27]. In addi-
tion to a general role in endocytosis, the C. elegans para-
log, UNC-73, may affect growth cone guidance by
regulating the localization of UNC-40, a growth cone
guidance cue receptor [28,45,60,61]. In the adult brain,
expression of Kalirin7, which does not interact with the
GTPase domain of dynamin, greatly exceeds expression of
Kalirin12, but both proteins can be identified at the PSD
[7]. The N-terminal region of Kalirin7, which is shared by
Kalirin12, localizes to the sub-plasma membrane region
of non-neuronal cells, where it inhibits the uptake of
transferrin  [7]. Both the phosphoinositide-binding
Sec14p-domain of Kalirins7 and 12 and their spectrin-like
repeat regions, which have been shown to interact with
Arf6-GDP [62,63], could contribute to additional interac-
tions affecting endocytic trafficking in dendritic spines
and axonal terminals.

Conclusion

The IgFn domain unique to Kalirin12 interacts with the
GTPase domain of dynamin in a GTP-dependent manner
and inhibits dynamin oligomerization. Transient interac-
tions between dynamin and Kalirin12, with its N-terminal
phosphatidylinositide binding Sec14p domain, multiple
spectrin-like repeats and RhoGEF domains, may facilitate

http://www.biomedcentral.com/1471-2202/10/61

the coordination of endocytic trafficking and changes in
the actin cytoskeleton.
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