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Abstract
Background: Many systems in nature are characterized by complex behaviour where large
cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow
avalanches are an example. Often the size distribution f(s) of a system's avalanches follows a power
law, and the branching parameter sigma, the average number of events triggered by a single
preceding event, is unity. A power law for f(s), and sigma = 1, are hallmark features of self-organized
critical (SOC) systems, and both have been found for neuronal activity in vitro. Therefore, and since
SOC systems and neuronal activity both show large variability, long-term stability and memory
capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis
is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC
systems assume full sampling. To close this gap, we investigated how subsampling affects f(s) and
sigma by imposing subsampling on three different SOC models. We then compared f(s) and sigma
of the subsampled models with those of multielectrode local field potential (LFP) activity recorded
in three macaque monkeys performing a short term memory task.

Results: Neither the LFP nor the subsampled SOC models showed a power law for f(s). Both, f(s)
and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only
one of the SOC models, the Abelian Sandpile Model, exhibited f(s) and sigma similar to those
calculated from LFP activity.

Conclusion: Since subsampling can prevent the observation of the characteristic power law and
sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible.
Nevertheless, the system specific scaling of f(s) and sigma under subsampling conditions may prove
useful to select physiologically motivated models of brain function. Models that better reproduce
f(s) and sigma calculated from the physiological recordings may be selected over alternatives.
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Background
The brain is a complex dynamical system that consists of
up to 1011 neurons. These neurons interact in a mainly
local and non-linear way and generate activity, which
exhibits two seemingly contradictory properties: First,
activity levels fluctuate over many orders of magnitude in
time and space [1-8] even when external conditions are
held as constant as possible [9-11]. And second, operation
is stable enough to ensure brain function throughout its
lifetime.

The combination of these two properties – fluctuations
over many orders of magnitude and long-term stability –
is also observed in a wide range of dynamical systems in
nature, such as the interplay of geological plate tectonics
and earthquakes, snowfall and snow avalanches, or tree
growth and forest fires. In these systems, activity typically
spreads via local connections and forms cascades of
events, called avalanches. In particular systems, among
them earthquakes, forests fires and avalanches in piles of
rice, the distribution f(s) of an appropriate spatial or tem-
poral measure, e.g. the avalanche sizes s, follows a power
law [10,12-14]:

where  is the system specific exponent. Such a power law
distribution of avalanche sizes was also found in a simple
model based on local and non-linear interactions intro-
duced by Bak and colleagues [15]. They termed the mode
of operation of this system 'self organized critical' (SOC),
to reflect that their system showed fluctuations like phys-
ical systems at the critical point [e.g. [16], as discussed in
[17]] and would converge to this state without fine tuning
of parameters, i.e. self-organized. Bak and colleagues pro-
posed SOC as a generic mechanism that generates the
power law behaviour which is often observed in nature.

In many SOC systems with avalanche like activity, one can
also define a branching parameter  as the average
number of subsequent events that a single preceding event
in an avalanche triggers [2,18]. If the branching parameter
can be defined in a SOC system, it is assumed to equal
unity.

Operation in the SOC state has also been proposed as an
explanation for the presence of large fluctuations, the sus-
ceptibility to small perturbations and the long term stabil-
ity in brain activity [2,4-6,19-28]. In addition, theoretical
investigations demonstrated that the critical state was
optimal for information transmission and processing
[29,30]. In vitro experiments provided first evidence for
this "SOC hypothesis" by showing that avalanche sizes of
suitably defined neuronal events approximately followed
a power law in slice cultures of rat cortex [2]. Whether the

SOC hypothesis is supported by experimental results in
vivo is currently under debate [4,31]. This may partly be
due to the problem that the theory of SOC does not pro-
vide a set of conditions that is sufficient for the classifica-
tion of a system as SOC [17]. Past studies focused mainly
on one hall mark feature of SOC systems – the power law
distribution for the avalanche size or duration, or for the
decay of temporal correlations [2,6,7,24,31,32]. Note
however, that non-SOC systems may also show power law
distributions [33,34].

Here, we hypothesize that it is even difficult to assess
whether avalanche sizes in brain activity are distributed
according to a power law, because brain activity is typi-
cally spatially subsampled. For example, in electrophysio-
logical experiments, only the activity of a small fraction of
the brain can be sampled simultaneously. It has not been
investigated yet how subsampling affects the results of
criticality analyses, i.e. avalanche distributions and
branching parameters, and whether subsampling effects
depend on the system under investigation. This theoreti-
cal gap challenges current attempts to classify brain activ-
ity as being in the SOC state.

It may be important at this point to highlight the differ-
ences between subsampling as it was investigated here
and scaling analysis of SOC systems [35-38]. Scaling anal-
ysis deals with deviations from power law distributions,
which are caused by the finite size of the system. However,
for scaling analysis the system is fully sampled. In contrast,
subsampling deals with the statistics obtained when sam-
pling only a small part of the system. It has previously been
demonstrated in the context of scale-free networks, that
the effects of subsampling may be very different from
those of scaling the system, and that they may fundamen-
tally change the observed statistics [39].

In the present study, we investigated the effects of subsam-
pling in three different SOC models, to derive estimates
for the avalanche distributions that are to be expected in
subsampled SOC systems. We also investigated the influ-
ence of subsampling on the branching parameter .

We compared these results to those calculated from local
field potential (LFP) activity recorded in the behaving
monkey. We found that, upon subsampling the SOC
models, f(s) did not show a power law and  was smaller
than unity. Both, f(s) and , depended sensitively on the
subsampling geometry and the dynamics of the model.
Only one of the SOC models, the Abelian Sandpile Model
(ASM) [15] which is characterized by local and recurrent
activity, exhibited f(s) and  similar to those calculated
from LFP activity.

f s s( ) ∝ − (1.1)
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Methods
Models
We wanted to investigate subsampling effects in SOC sys-
tems. This necessitates a choice of mathematically well
understood SOC models, where subsampling effects can
be distinguished from finite size effects and where the cor-
responding finite size scaling has been quantified
[15,36,38,40,41].

Abelian Sandpile Model (ASM)
We simulated the ASM [15] on a two dimensional square
grid of size L2 with L = 50 grid units (g.u.). In this model,
each site of the grid carries an integer number of sand
grains z(x, y)  0. If a site carries more than a critical
number z(x, y)  zc = 4 of grains it is called unstable and
topples. Its height is reduced by 4 and each of its four next
neighbours receives one grain. In the subsequent time
step, all sites that became unstable in the previous one,
topple simultaneously. The toppling activity propagates
over the grid and forms so called avalanches. The size of
an avalanche is defined by its total number of topplings.
If all sites of the system are stable again, a grain is added
to the system at a random site. This then may or may not
initiate a new avalanche, depending on the state of the site
before the addition of the grain. Grains that topple over
the boundaries are lost from the system (dissipation; the
reason for finite size effects).

Random Neighbour Model (RNM)
The RNM [41] is a variation of the ASM, where the grains
from an unstable site are distributed not to the next neigh-
bours, but to randomly chosen sites. We simulated the
RNM on a grid of size L2 L = 50 g.u.. Here, no boundaries
were present. Thus, to implement dissipation, grains were
removed from the system at random sites with probability
r = 0.010923. The probability for dissipation r was calcu-
lated from the ASM:

The factor 4 in the denominator is due to 4 toppled grains
per toppling. This probability is smaller than the ratio

because more topplings occur in the center of the ASM
than at its borders.

Forest Fire Model (FFM)
The two-dimensional FFM [40] was calculated on a square
grid of size L2 with L = 50 × 50 g.u.. Each site is either occu-
pied by a tree z(x, y) = 1, or empty z(x, y) = 0. A fire is ini-
tiated by a lightning that strikes a random site. If that site
is occupied by a tree, it burns down. In the subsequent

time steps, each tree that was next neighbour to a burning
tree burns down, until the fire has burnt down the com-
plete cluster of trees. The size of the fire (i.e. the ava-
lanche) is the total number of trees that burnt down. After
a fire, trees are grown on random sites with probability p
= 2.4%.

In the ASM, RNM and FFM, the time between subsequent
avalanches is defined to be infinite (infinite separation of
time scales) [15,40,41].

Subsampling
We sampled the activity (topplings or burnt trees) on the
whole grid as well as on selected subsets of sampling sites.
The choice of the subsets coarsely resembled the geometry
of the electrode positions in the brain used in our electro-
physiological recordings (see section on experimental
data and figure 1B). We sampled 4×4 sites with varying
distance d between the sites. The subsets of sampling sites
were located either in the centre or next to a corner of a
grid. If any of the 16 electrodes in an experiment did not
contribute to the activity, we created a subset of sampling
sites that was modified accordingly. Here, we present
three subsets of sampling sites for which sampled activity
provided the best match with the experimental results:

s2: 4×4 centred sites with d = 2 g.u. and 2 sites removed
(figure 1B, left)

s5: 4×4 centred sites with d = 5 g.u. and 1 site removed
(figure 1B, middle)

c2: 4×4 sites with d = 2 g.u. located with distance 1 g.u. to
a corner of the grid and 2 sites removed (figure 1B, right)

Experimental Methods
Experimental Setup
The animal experiments were performed according to the
German Law for the Protection of Experimental Animals.
The procedures also conformed to the regulations issued
by the NIH and the Society for Neuroscience.

In order to assess whether subsampling effects could be
identified in neuronal data – that necessarily come from
extremely sparsely sampled systems – we recorded local
field potentials (LFPs). LFPs were recorded simultane-
ously from up to 16 microelectrodes in three macaque
monkeys (M1: female, 6 kg; M2: male, 12 kg: M3: female,
8 kg). Electrodes were located in the ventral prefrontal cor-
tex (PFC) in two monkeys (M1, M2) and in the dorsola-
teral PFC, directly dorsal of the principal sulcus in one
monkey (M3). The electrodes had impedances between
0.2 and 1.2 M, at 1 kHz, and were arranged in a square
grid with inter electrode distances of either 0.5 or 1.0 mm.
For these spacings, LFP signals at each electrode are dom-
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Figure 1 (see legend on next page)
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inated by sources close to that electrode. A quantification
of signal crosstalk due to volume conduction would
require knowledge of the tissue conductivity tensor. How-
ever, in the far field limit that applies to our recordings,
the signal tapers off proportional to (1/r)n with n  2 lead-
ing to a dominance of local sources [42,43]. Signals were
amplified and filtered (5–150 Hz) before being digitized
at 1 kHz. The monkeys performed a visual short term
memory task with on average 80% correct behavioural
responses which required them to memorize a sample
object and to compare a test stimulus presented after a
delay of three seconds to memory content The monkeys
indicated via differential button press whether test and
sample stimuli matched or not. Each trial consisted of a
1000 ms long baseline, 500 ms sample stimulus presenta-
tion, a delay of 3000 ms and a response interval lasting
throughout a 2000 ms test stimulus presentation. We used
data from three experimental sessions containing a total
of 3418 trials. Details of the experimental procedure can
be found in [44].

Analysis Methods
Event Definition
While binary events are at the heart of our simulations
and inherent in the 'all- or- none' generation of action
potentials, analogue data like LFP recordings have to be
transformed into binary events before SOC analysis can
proceed. Raw analogue values of each LFP channel were z-
transformed with respect to the variance of their pre-stim-
ulus baseline, determined across all trials of each experi-
ment (figure 2A). Then binary events were obtained from
the analogue and continuous LFP data: In order to define
a binary event in the LFP data, we calculated the absolute
value of the area under a deflection lobe between two zero

crossings. This measure is a function of the net sum of dis-
placed ionic charges caused by the underlying synaptic
events. If this measure exceeded a threshold of 5 SD of the
baseline values, a binary event was added (figure 2B). We
chose this threshold such that the rate of events was com-
parable to that of spiking activity in similar recordings
from prefrontal cortex [44].

Avalanche distributions
The binary events obtained from models and experiments
(a toppling or burnt tree in the model, a binary event cal-
culated from the LFP traces) formed spatio-temporal clus-
ters, called avalanches. For further evaluation, we
partitioned the time axis into discrete bins. The avalanche
size s was then defined as the total number of events in
subsequent nonempty time bins (figure 2C). The size of
the time bins was varied systematically [2]. For each bin
size T the frequency distribution f(s) of avalanches of size
s was calculated.

Variations in the bin size T applied to activity sampled on
subsets of sampling sites were expected to change the ava-
lanche size distribution f(s), because avalanches may
leave a subset and at a later point in time reenter that same
subset. This way, a single avalanche is counted as being
two avalanches in this subset of sampling sites. Only if T
exceeded the time between leaving and reentering, the
avalanche would be concatenated again. Thus larger bin
sizes were expected to result in more large and less small
avalanches in subsampled systems.

The avalanche distributions f(s) obtained from our analy-
ses depended on several independent variables such as
data type (LFP events, model events), experiment/monkey

Comparison of subsampling effects in avalanche distributions and branching parameters from model systems and in vivo LFP dataFigure 1 (see previous page)
Comparison of subsampling effects in avalanche distributions and branching parameters from model systems 
and in vivo LFP data. (A) Avalanche distributions calculated from events sampled on a small fraction of the model sites (as 
indicated in B). None of the models shows a power law for f(s). Note that the characteristic peaks in f(s) are only expressed in 
the ASM and only when the distance between the sampling sites is small (left column). Avalanche distributions of the ASM (full 
lines), the RNM (dashed lines) and the FFM (dotted lines) are plotted. The colours indicate the different bin sizes (blue 2 steps; 
green 4 steps; red 8 steps). (B) Recording electrode configurations and corresponding sampling sites used in the simulations. 
The circles indicate the position of the electrodes, full circles indicate the electrodes that provided data for the evaluation of 
the LFPs. The inter electrode distance is given at the bottom of each figure. The full circles at the same time indicate the con-
figuration of the subset of sampling sites sampled in the models. The left part of each figure indicates the position of the subsets 
of sampling sites with respect to the grid the model was simulated on. The left figure indicates the subset of sampling sites s2: 
4×4 sites with distance 2 grid units (g.u.) between the sites, located in the center of the grid. The middle figure 4 enotes the 
subset of sampling sites s5, and the right the subset of sampling sites c2. (C) Avalanche size distributions f(s) for the binary 
events calculated from the LFPs. The colours indicate the bin size (blue 2 ms; green 4 ms; red 8 ms): left figure – Monkey1 (LFP 
M1), middle – Monkey2, LFP2 M2, right – Monkey3, LFP M3. The corresponding electrode configurations are plotted in part 
(B). (D) Branching parameter  over bin size (in ms for LFP data and steps for simulated data) for the subsampled models and 
the LFP data. (Left)  for sampling on subset s2 (related to the LFP recording geometry in M1). Green, solid line:  for LFP of 
M1; dashed lines:  for the subsampled ASM, FFM, and RNM; (Middle)  for sampling on subset s5 (LFP of M2), same colour 
codes; (Right)  for sampling on subset c2 (LFP of M3), same colour codes.
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or model system and subsampling geometry. Whenever
necessary, these parameters are indicated in brackets of
f(s) as demonstrated in the following examples: The ava-
lanche distribution calculated from the LFPs recorded in
monkey 1 (M1) is denoted by f(s; LFP, M1), and those cal-
culated from the ASM on the subset of sampling sites s2
are denoted by f(s; ASM, s2).

Normalization
All avalanche distributions f(s) were normalized to the
total number of elementary events (topplings, burnt trees,
LFP events) that were recorded or sampled in the experi-
ments or simulations, respectively:

F(s) denotes the avalanche distribution before normaliza-
tion. A normalization to unity on the interval s  [1;] as
it is required for a probability distribution is impossible for

a power law distribution with exponent   1 due to the
divergence of the integral.

Branching Parameter
The branching parameter () is defined in the theory of
branching processes [45].  represents the average
number of events triggered by a single event in the previ-
ous time step within an avalanche (figure 2C). It is
defined as the number of ancestors per predecessor aver-
aged over all time steps t in all avalanches n:

N is the total number of avalanches, ton(n) is the time step
of the first event in avalanche n, toff(n) is the time step of
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Definition of binary events from raw LFP data and detection of avalanchesFigure 2
Definition of binary events from raw LFP data and detection of avalanches. (A) Sample LFP traces recorded simulta-
neously on 14 electrodes in monkey 1. LFPs were z-transformed with respect to pre-trial baseline. The red dots indicate binary 
events calculated from the LFP traces (see figure part B). (B) Algorithm for calculating binary events from the LFPs. Deflection 
lobes under the LFP trace are coloured in grey. Blue bars indicate the value for the area under a deflection lobe between two 
zero crossings. A binary event (red dot) is generated, if the absolute value of the area exceeds a threshold of 5SD of the abso-
lute areas of deflection lobes in the baseline. (C) Avalanche definition. Binary events are concatenated in temporal bins (here: 4 
ms). The avalanche size s is the total number of events in subsequent nonempty time bins. The single-step branching ratio ' for 
the transition from one time bin to the next is calculated as described in the methods. The branching parameter  is defined as 
the average of all single-step branching parameters. (D) Definition of the drop parameter  for avalanche distributions with 
peaks at the number of sampled sites/electrodes and its multiples (N, 2N, ..). The drop delta is the difference of the value of f(s) 
at N and the value at this point obtained by linear extrapolation from the right (see methods).
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the last event in avalanche n, and a(t) is the total number
of events at time step t.

For a branching process, the expected size of generation k
equals k. Consequently, in the subcritical state, where  is
smaller than unity, any avalanche will die out within finite
time. In the supercritical state, where  is larger than unity,
some of the avalanches may become infinite. The proba-
bility for large avalanches is increased compared to the
subcritical state. In the critical state,  equals unity, and
the avalanche size distribution follows a power law, thus
the system is scale free: The avalanches do not have any
characteristic size.

Here, we calculated  for the binary data obtained from
the LFPs, and for all subsets of sampling sites of all mod-
els.

Assessment of similarity between experimental and model avalanche 
distributions
We wanted to determine whether certain subsampled sys-
tems would approximate the experimental data better
than others. Therefore, we quantified the similarity
between the avalanche distributions obtained from mod-
els and those obtained from in vivo data on the interval 1
 s  2·N where N is the number of recording sites. The
measure for the dissimilarity of the distributions, the dis-
similarity factor DF, was defined as standard deviation of
the difference between the logarithm of the model and of
the experimental distributions for bin size 4 and 8 time
steps or ms, respectively. This measure is independent of
an arbitrary choice of normalization:

Where  is the standard deviation taken over all ava-

lanche sizes s. This dissimilarity factor DF is related to the
Kullback-Leibler divergence (KLD) of two probability dis-
tributions f1 and f2[46]:

Since in our case most of the information is in the tail of
the distributions where f(s) tends to be small, we removed
the factor f1(s) that weighs the differences between the two
distributions by the first one and consequently gives too
much significance to the initial interval of the distribution
in our case. Moreover, we knew that scaling was arbitrary,
hence we were not interested in the absolute distance of
the distributions (as measured by the sum or integral of

log(f1(s)/f2(s)) over all values of s). If the two distributions
f1(s) and f2(s) are identical apart from a scaling factor –
which is the best we can hope for when comparing ava-
lanche distributions – the fraction inside the integral of
the KLD should be a constant. If distributions vary not
only by scaling factor, this fraction will be variable. To
estimate this variability we chose to use the standard devi-
ation in equation (1.4). Hence, a small value for DF indi-
cates that distributions are similar up to a scale factor.

We calculated DF for all possible combinations of f(s)
from the experiments and the critical models sampled on
different subsets of sampling sites. The minimum value of
the computed DFs indicated the best match between an
experimental and a model distribution.

To enable the computation of the logarithm for our simu-
lated data where certain large avalanche sizes do not
appear in the simulations – due to limited simulation
runtime -, zero values in the distribution f(s) were substi-
tuted by 0.1/c to obtain real numbers only. This replaces
the smallest possible avalanche frequency, 0, by a number
that is still smaller than the next smallest possible ava-
lanche frequency, 1/c and does not change the ordering of
results. Here c is the normalization constant defined in
equation (1.2).

To demonstrate that a model selection is feasible in prin-
ciple by comparing avalanche distributions obtained
from subsampled models and the experimental data we
compared the dissimilarity factor (DF) between the data
and various combinations of model systems (ASM, RNN
and FFM) and subsampling geometries (s2, s5, c2).

Statistical Tests
Jensen stated in his book 'Self-Organized Criticality' [17]
that local interactions of non-linear threshold units are
essential to build a SOC system. We wanted to test the
dependency of the observed avalanche distributions on
these local interactions. More specifically, we wanted to
demonstrate that these interactions were necessary for the
appearance of peaks (cf. results section) in the avalanche
distribution observed in the LFP data and in the ASM
when s2 was sampled. In this context, peaks were quanti-
fied by a drop  at s = N (figure 2D). We calculated the
drop  at the total number N of electrodes (or sites of a
subset of sampling sites) as the difference between the
peak value f(N) and the extrapolation of an approxima-
tion function g(s) evaluated at s = N.
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The function g(s) was assumed to follow a power law with
exponent -1, g(s) ~ s-1. It was fitted to the three values fol-
lowing the peak of the distribution f(s), i.e. the interval s
 [N + 1, N + 2, N +3].

Using this quantitative description of the peaking behav-
iour, we wanted to demonstrate that the occurrence of
these peaks was dependent on the presence of interactions
in the experimental system and in the ASM. To test this for
the LFP data we exchanged trials with each other within
each sampling site. This way of shuffling the data kept the
event statistics for each channel relative to the onset of a
trial but destroyed the effects of interaction between the
channels, which would be necessary for putative self-
organized criticality. With this test we wanted to show that
the distribution f(s) calculated from the unshuffled LFP
data of M1 had a more extreme drop  at s = N than the
fshuffled(s) calculated from the shuffled data. To apply a
similar test to the ASM – in order to prove that the appear-
ance of peaks in the subsampled ASM also depended on
intact interactions of the sites – we sampled the activity of
a subset of sampling sites s2 and separated the data into
trials of the same length as the experimental trials. Using
the above test logic we then wanted to test whether f(s)
calculated from topplings sampled on subset s2 of the crit-
ical ASM had a more extreme drop  than the fshuffled(s)
calculated from data sampled on the same subset of sam-
pling sites of the ASM. This would prove that the appear-
ance of peaks in our subsampled avalanche distributions
depended on intact local interactions. We also tested
whether the experimental results f(s; LFP, M1) fitted better
with the f(s) calculated from unshuffled data from s2 of
the ASM than with the fshuffled(s; ASM, s2) to assess
whether the similarity between experimental data and
model data depended on interaction rather than on single
channel statistics. Again the drop  was used as a measure
for this match.

Results
Simulation Results
Avalanche distributions and branching parameters in the fully 
sampled models
In order to demonstrate that the models used in this study
expressed SOC behaviour in the form of power law distri-
butions and branching parameters near unity, we first
present results from simulations of the fully sampled
models.

The Abelian Sandpile Model (ASM) is a well known SOC
model which was proposed to simulate the dynamics of
avalanches on a pile of sand (see [15,47,48] for the
absence of SOC in real world sandpiles; but see also
[35,49]). It is run on a two dimensional lattice and activity
triggered by a single grain propagates over the lattice via
next neighbour connections and forms avalanches. The

avalanche size distribution of the ASM, f(s; ASM, full),
resulted in a power law with exponent  = 1.1 for the fully
sampled system (figure 3A). The deviation of f(s; ASM,
full) from a power law for large s was caused by finite size
effects [e.g. [36,38]]. The avalanche distributions
observed in the FFM and RNM followed a power law, too
(figure 3A). The exponents of f(s; FFM, full) and f(s; RNM,
full) were  = 1.0 and  = 1.4 for the FFM and RNM, respec-
tively. Thus, all three simulated SOC models expressed a
power law when fully sampled but each model had a dif-
ferent slope exponent .

In addition to a description of the avalanche distribu-
tions, the branching parameter  is used to quantify the
state of a dynamical system [45]. We calculated  for the
ASM as a function of the bin size T (figure 3B). In general,
increasing the bin size has two distinct effects on  in a
branching process: First, for infinite branching processes it
is trivial to show that

Thus,  derived from a process with (T = 1) > 1 increases
with larger bin size T,  derived from a process with (T =
1) = 1 is unity for any bin size, and  derived from a proc-
ess with (T = 1) < 1 decreases with larger bin sizes. Sec-
ond, dissipative systems of finite size express finite
avalanches, because avalanches that reach the boundaries
are affected by dissipation mechanisms and tend to die
out within finite time. Consequently, any branching
parameter approaches zero for large bin sizes T:

In the critical ASM,  was near unity for small bin sizes
and decreased with a larger bin size (figure 3B) due to
finite size effects (see equation (1.8)). The branching
parameter of the FFM and RNM showed the same qualita-
tive behaviour (figure 3B), although the finite size effects
were stronger in the FFM and RNM, leading to a steeper
decrease.

Avalanche distributions in subsampled critical models
Frequently, complex dynamical systems like the brain
cannot be sampled completely due to experimental con-
straints. To assess the effects of subsampling in SOC sys-
tems, we implemented subsampling in the models by
defining subsets of sampling sites and only sampled the
activity that occurred on these specified subsets (figure
1B). To address the question whether the subsampling
effects observed in SOC models were model-specific, we
simulated three different SOC models, the ASM, the RNM
and the FFM, and evaluated their activity on three differ-
ent subsets of sampling sites.

ˆ ˆ(T=k) (T=1)
k= ( ) (1.7)

lim
T

finite size
→∞

=ˆ 0 (1.8)
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SOC systems exhibit strong deviations from power law behaviour 
under subsampling conditions
In figure 1A (left), avalanche distributions were plotted
which were calculated from activity of the ASM sampled
on s2 (figure 1B, left). The avalanche distributions
resulted in a power law for small avalanches of size s < 10.
Surprisingly, f(s) of the ASM sampled on s2 showed char-
acteristic peaks at avalanche sizes that were equal to N, the
number of sampling sites, and to multiples of N. These
peaks were less pronounced for smaller bin sizes and
more distinct for larger bin sizes. Peaks at multiples of N
indicated that all sampled sites were preferentially acti-
vated together within a single avalanche. With increasing
the number of sampling sites of the SOC models, f(s) suc-
cessively approximated a power law (figure 4). In the ASM
and FFM, sampling of about 25% of the models' sites was
necessary to obtain a power law robustly, although the
slope was still different from that of the fully sampled
models.

Subsampling effects are model specific
While activity sampled on s2 of the ASM resulted in an
f(s) with peaks at multiples of N (figure 1A, full lines), the
activity of the RNM (with identical dynamics but different

topology) sampled on s2 resulted in an avalanche distri-
bution that followed a steadily decaying function (same
figure, dashed lines). The avalanche distribution of the
FFM sampled on s2, f(s; FFM, s2), showed a distribution
less steep than that of the RNM, but had a strong decay as
approaching N (same figure, dotted lines). These types of
distributions, which result in many small and few large
avalanches are characteristic for fully sampled subcritical
systems. However, here the 'apparently subcritical' ava-
lanche distributions were caused by subsampling of criti-
cal models. Taken together, we found that sampling the
same subset of sampling sites on the three different SOC
models revealed substantially different avalanche distri-
butions.

Subsampling effects depend on subsampling geometry
The avalanche distribution of the ASM changed from the
shape with peaks at multiples of N for sampling s2 to a
continuously decaying function for sampling s5 (figure
1A, full lines). Only a small step at N could be recognized
in these latter distributions. This indicates that the appear-
ance of the peaks depended strongly on the distance d
between the sampling sites. Along similar lines, the FFM
yielded more small avalanches and less large avalanches

Avalanche distributions and branching parameters for fully sampled model sytemsFigure 3
Avalanche distributions and branching parameters for fully sampled model sytems. (A) Avalanche Distributions for 
the fully sampled SOC models evaluated in logarithmic binning. The avalanche distributions of the fully sampled models do not 
change with the bin size, due to the infinite separation between subsequent avalanches in the models. All f(s) follow a power 
law for s < 500. The steeper decay for large s is caused by the finite size of the models. Solid line – Abelian sandpile model 
(ASM). Dashed line – random neighbour model (RNM). Dotted line – forest fire model (FFM). Avalanche distributions have 
been set apart for better visibility by multiplication with a constant factor per curve. (B) Dependence of the branching parame-
ter  on the bin size. Sigma is near unity for small bin sizes. For larger bin sizes sigma decays due to the finite size of the mod-
els. Solid line – Abelian sandpile model (ASM). Dashed line – random neighbour model (RNM). Dotted line – forest fire model 
(FFM). Bin size given in simulation steps.
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when sampled on s5 instead of s2 (same figure, dotted
lines), but the differences between the distributions of s2
and s5 were not as pronounced as for the ASM.

Subsampling effects depend on the location of subsampling sites
The above results from the ASM and FFM were obtained
on subsets of sampling sites that were centred with respect
to the model geometry. In contrast, the subset c2 of sam-
pling sites was situated next to a corner of the grid where
dissipation mechanisms were strongest for the ASM. The
distance between the sampled sites in subset c2 was 2 g.u.,
i.e. identical to that of subset s2. Due to enhanced dissipa-
tion of grains at the borders next to c2, the avalanche dis-
tribution calculated from activity sampled on c2 of the
ASM showed fewer large avalanches than that sampled on
s2, and f(s; ASM, c2) expressed no peaks. For small ava-
lanches, s < <N, however, f(s) was very similar for s2 and
c2 (figure 1A, right, full lines). The opposite was found for
sampling c2 instead of s2 in the FFM (figure 1C, right, dot-
ted lines). Fires could reach c2 only from two directions
and thus trees had more time to accumulate next to the
corners before they were set on fire. This facilitated dense

clusters of trees and caused the bump in f(s) of the FFM at
s ~11.

The distributions for the RNM sampled on area s2 were
very similar to those sampled on both, c2 and s5 (figure
1A, dashed lines), as expected. Due to the random nature
of the connections between the sites of the RNM, s2 is
equivalent to c2 (both have N = 14 sites) and very similar
to s5 (N = 15).

 in subsampled critical systems
We next took a look at the apparent branching parameter
 in the SOC models to see whether it changed under sub-
sampling conditions, and to evaluate whether these
changes might be specific for models and subsampling
areas.

The apparent branching parameter  changes under subsampling 
conditions
As presented above, in all SOC models  calculated from
activity sampled on the complete grid was around unity for
small bin sizes and decreased with larger bin size due to

Approximation of a power law distribution with increasing coverage of the system when subsamplingFigure 4
Approximation of a power law distribution with increasing coverage of the system when subsampling. Ava-
lanche size distributions f(s) from models of grid size 50×50, sampled on centred, compact subareas of size 4×4 (purple), 
10×10 (light blue), 20×20 (red), 25×25 (green) and fully sampled (blue). (A) ASM. (B) FFM. Note, how the characteristic sub-
sampling effects vanish for the ASM (peaks) and the FFM (peak, steep drop off) with increasing coverage of the system.
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finite size effects (figure 3B). The branching parameter
sampled on the tested subsets of sampling sites (s2, s5, c2)
of the three SOC models was always smaller than unity
(figure 1D, black lines). However,  initially increased
monotonically with larger bin size T, approaching a max-
imum. After reaching this maximum, finite size effects
started to reduce the apparent branching parameter. This
was expected as increasing the bin size increases the frac-
tion of avalanches with a duration of 1 bin size. These par-
ticular avalanches have a single step branching ratio of
zero and consequently  decreases.

The apparent branching parameter depends on the distance 
between sampling sites
Similar to results obtained for the avalanche distributions
under subsampling, the apparent branching parameter
changed with distance d between the sampling sites for
the ASM and the FFM (figure 1D, compare s2 and s5). The
larger the distance d for these models, the smaller the
apparent branching parameter at small temporal bin sizes
– as expected, because larger distances d increase the prob-
ability that avalanches die out on their way from one sam-
pled site to the next. Avalanches need around d
simulation steps to reach the next sampling site [41].
Hence, with larger distances the time to reach the next
sampling site may be longer than the applied window of
temporal binning. Then a larger fraction of avalanches
will contribute a single step branching ratio of zero.

The apparent branching parameter depends on the location of 
sampling sites
The apparent branching parameter also changed when the
sampling sites were moved to the edges of the ASM or FFM
(figure 1D, compare s2 and c2) – in line with the results
for the respective avalanche distributions. For the RNM,
the apparent branching parameter did not depend on the
sampling site distance d and only weakly on the number
of sites sampled. This behaviour had also been found for
the avalanche distributions of this model.

Relation of apparent avalanche distributions and apparent branching 
parameters
Although the apparent branching parameter in our simu-
lations was always smaller than unity, it showed larger
values for those subsets of sampling sites which had
'apparently supercritical' avalanche distributions (s2,
ASM; c2, FFM), and smaller values for those which
showed 'apparently subcritical' avalanche distributions
(s5, ASM and FFM; all subsets of sampling sites of the
RNM).

Avalanche Distributions and branching parameters from LFP data
We now present the results obtained for the avalanche dis-
tributions and branching parameters in LFP recordings.
These recordings inevitably come from extremely sparsely

sampled systems. Hence, the avalanche distributions and
branching parameters presented here should be compared
to those obtained in the subsampled SOC models from the
previous section.

LFP avalanche distributions deviate from power law behaviour and 
may express characteristic peaks
The avalanche distribution obtained from LFPs recorded
in M1, f(s; LFP, M1) approximately followed a power law
for s < 10. However, at multiples of N, the total number of
electrodes evaluated, f(s; LFP, M1) expressed characteristic
peaks (figure 1C, left). The peaks became more pro-
nounced with larger bin size. After each multiple of N, f(s;
LFP, M1) showed a strong drop  of one or more orders of
magnitude.

The LFPs in M2 were recorded with an inter electrode dis-
tance (IED) of 1.0 mm instead of 0.5 mm in M1 (as indi-
cated in figure 1B middle). This resulted in an avalanche
distribution which did not show the characteristic peaks
observed in f(s; LFP, M1). Instead, f(s; LFP, M2) followed
distributions between a power law and an exponential
decay (also see additional file 1 for a presentation of all
these data in log-linear coordinates).

The avalanche distribution obtained from LFPs from M3,
sampled with an IED of 0.5 mm like that of M1, displayed
a power law in the initial interval that was similar to f(s;
LFP, M1) (figure 1C left and right, respectively). However,
unlike f(s; LFP, M1), f(s; LFP, M3) did not result in peaks
but showed a smooth transition into a steep decay when
approaching s = N. For larger bin sizes the slope of this lat-
ter decay was more gentle again.

We determined the similarity between the distributions
obtained from the LFPs and the distributions obtained
from the different subsets of sampling sites on the three
SOC models using the dissimilarity factor DF as defined
in equation (1.4). A low DF is associated with a high sim-
ilarity of the two distributions. Results for the similarity
between distributions obtained from LFP data and mod-
els are listed in table 1. Distributions obtained from the
ASM always provided a better fit to the experimental data
than distributions obtained from the other models. More
specifically, f(s; LFP, M1) was reproduced best by f(s;
ASM, s2), that is by sampling s2 on the ASM. f(s; LFP, M2)
and f(s; LFP, M3) were most similar to f(s; ASM, s5)
obtained from sampling s5 on the ASM. We also observed
a better match between the distributions of the LFP data
from all three monkeys and of the subsampled ASM than
for any match between the distributions of the LFP data
and the fully sampled ASM.
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Branching Parameters from LFP Data
 calculated from the binary LFP events was plotted in fig-
ure 1D, green lines.  was largest, but still smaller than
unity, for activity recorded in M1, which also showed the
'apparently supercritical' avalanche distribution. In com-
parison, the LFP data recorded in M2 and M3 resulted in
a smaller , in agreement with their 'apparently subcriti-
cal' avalanche distributions. -values calculated from
binary LFP events of M1 and M2 were most similar to -

values calculated from activity of the subsets s2 and s5,
respectively. s2 and s5 were the same subsets of sampling
sites of the ASM which had already produced the best
match to the avalanche distributions calculated from LFP
data in M1 and M2.

Subsampling phenomena were dependent on the interaction of the 
systems' constituents
In order to assess whether the observed subsampling
effects were caused specifically by interactions of the sys-
tems' constituents rather than event statistics at single
sites, we used shuffled data in which temporal correla-
tions between activities at the different sites of models or
experimental recordings were destroyed (figure 5).

f(s; ASM, s2) calculated from topplings sampled on s2 had
a more extreme drop  than the fshuffled(s; ASM, s2) calcu-
lated from the shuffled data of the same subset of sam-
pling sites (p < 0.001). This demonstrates that the
occurrence of peaks in the event size distributions of the
SOC systems tested here depends on intact interactions
between the constituents of the system and not on the
resulting event statistics at single sites (figure 5). Note that
event statistics at single sites were indistinguishable for
unshuffled and shuffled data by definition.

We found that the distributions f(s; LFP, M1) had a more
extreme drop  than the fshuffled(s; LFP, M1) calculated
from the shuffled data (p < 0.001), indicating that the
occurrence of peaks in the distribution f(s; LFP, M1)

Table 1: Dissimilarity Factor DF for avalanche distributions from 
in vivo data and SOC models

s2 c2 s5 fully sampled

LFP M1 – ASM 2.42 2.64 2.56 3.99
LFP M1 – RNM 7.23 6.97 6.88 3.57
LFP M1 – FFM 6.15 5.90 5.98 4.00

LFP M2 – ASM 1.79 1.59 0.82 2.43
LPF M2 – RNM 6.75 6.58 6.60 1.86
LFP M2 – FFM 7.21 7.24 6.71 2.45

LFP M3 – ASM 2.28 1.79 1.41 3.07
LFP M3 – RNM 6.78 6.55 6.52 2.51
LFP M3 – FFM 6.74 6.76 6.30 3.09

Dissimilarity factor DF as defined in equation (1.4) between avalanche 
distributions from LFP data (M1, M2, M3) and models (ASM, RNM, 
FFM). Each lists a specific comparison between model and in vivo data. 
Each column contains the results fro a specific (sub-)sampling scheme 
(s2, c2, s5, full sampling). Best matching results are highlighted in 
BOLD face.

Avalanche size distributions f(s) for shuffled dataFigure 5
Avalanche size distributions f(s) for shuffled data. Avalanche size distribution f(s) obtained from trial shuffled data plot-
ted in semi-logarithmic coordinates. Here, straight lines indicate exponential distributions and not a power law. Coloured lines 
are averages over 1000 different shufflings. Grey lines around the coloured lines are results obtained for single shufflings. (A) 
ASM; bin sizes: 2 (purple), 4 (green), 8 (red). (B) LFP data from M1; bin sizes: 2 (purple), 4 (green), 8 (red).
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obtained from the LFP data in Monkey 1 depended on
intact interactions between neuronal populations at the
different recording sites (figure 5).

Furthermore, the experimental results f(s; LFP, M1) fitted
better with the model results f(s; ASM, s2) calculated from
unshuffled data than with the fshuffled(s; ASM, s2) calcu-
lated from the shuffled data (p < 0.001), suggesting that
similar mechanisms may generate the peaks both in the
model and the experimental data.

Discussion
We studied the effects of subsampling in a controlled way
in simulated SOC models and then assessed to what
extent specific deviations from the expected power law
behaviour obtained from in vivo LFP recordings may be
attributable to subsampling effects. Our simulations dem-
onstrated that subsampling of SOC systems typically
results in avalanche distributions and branching parame-
ters that strongly deviate from those expected for fully
sampled SOC systems. Strikingly similar avalanche distri-
butions were found in the LFP recordings.

How many sampling sites are necessary to observe a power 
law distribution in a SOC system?
In our models, the avalanche distributions obtained upon
subsampling strongly deviated from a power law. How-
ever, the avalanche distributions approximated a power
law when increasing the number of sampling sites (figure
4). For the ASM and FFM, approximately 25% of the sys-
tem had to be sampled to obtain a power law. The peaks
in the avalanche distributions from LFP data clearly dem-
onstrate that brain activity was sampled too sparsely to
observe a power law if it were present, although we do not
know how many electrodes at what distance would suffi-
ciently sample brain activity. The fact that we do not need
full sampling to observe approximate power laws, how-
ever, leaves hope that we can investigate SOC behaviour
in the brain by massively increasing the number of sam-
pled sites. Note, however, that the value of 25% obtained
from subsampling the ASM can only be seen as an
extremely rough estimate of the necessary coverage when
dealing with in vivo recordings.

Avalanche distributions of subsampled SOC models can 
show multiple peaks
The observed avalanche distributions in the simulated
models strongly depended on the available sampling of
the system. The avalanche distributions f(s; ASM) of the
ASM, for example, showed the characteristic power law
when the system was fully sampled (figure 3A). However,
upon subsampling, f(s; ASM) depended strongly on the
geometry of the sampled subset of sites and on the tempo-
ral bin size T applied.

For a small compact subset of sampling sites (s2),
f(s;ASM, s2) showed peaks at N, the total number of sites
sampled, and at multiples of N (figure 1A, left). This find-
ing can be explained in a straight forward manner: In the
ASM the avalanches tend to be compact [41]. Hence, there
is an increased probability that large avalanches which hit
the subset of sampling sites will also run over the entire
subset. Activation of the entire subset of sampling sites is
particularly probable if the area spanned by the subset is
small compared to the total area affected by a large ava-
lanche. In addition, avalanches in the ASM can express
multiple waves [50]. These multiple waves in large ava-
lanches then cause the peaks at multiples of the total
number of sampled sites. In this respect, the detection of
multiple peaks in an avalanche distribution obtained
from experimental data may hint at an interaction topology
and a dynamics of the experimental system under investi-
gation that together enable the generation of compact,
recurrent avalanches. Observation of multiple peaks in
data recorded from the brain in vivo therefore suggests the
existence of compact, recurrent avalanches of neuronal
activity.

Multiple peaks in f(s) have already been described for a
fully sampled, supercritical model [37], and are considered
to indicate supercriticality. However, we showed that crit-
ical systems, too, may exhibit distributions with multiple
peaks. These peaks, interpreted naively, would lead to a
classification of the system as supercritical. We suggest to
use the term 'apparently supercritical' for these distribu-
tions obtained when subsampling a SOC model. Our
results demonstrate that subsampling provides a second,
and independent, mechanism for generating avalanche
distributions with one or multiple peaks. Therefore, any
observation of peaks in avalanche distributions from sub-
sampled experimental data cannot be seen as an indicator
of supercriticality.

The shape of avalanche distributions depends on the 
geometry of the subsampling scheme
As described above, an 'apparently supercritical' f(s) was
found in the critical ASM when the distance between the
sampling sites was small (s2). For larger distances
between the sampling sites (s5), f(s) showed a reduced
frequency for large avalanches compared to a power law
distribution (figure 1A, middle). This kind of avalanche
distribution f(s) is characteristic for the subcritical state of
fully sampled systems [e.g. [37]]. In the subsampled
model systems these 'apparently subcritical' distributions
f(s) are generated when sampling from a subset of sam-
pling sites with large distances between the sites, because
then the sampled sites are distributed over a larger area
and the avalanches of the ASM are rarely large enough to
affect all sites of a subset. This causes a decreased proba-
bility of observation for large avalanches under this partic-
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ular subsampling geometry and results in an apparently
subcritical f(s).

Emergence of both, apparently subcritical and apparently
supercritical distributions f(s) upon subsampling of the
same critical model, suggests that applying multiple inde-
pendent sampling schemes with different resolutions may
improve our knowledge about the state a system under
investigation considerably and may help to prevent mis-
classifications.

Avalanche distributions depend on the position of the 
subset of sampling sites in the system
We observed a distribution f(s) with multiple peaks when
sampling the ASM on the compact subset s2. Sampling on
c2, which had the same geometry, but was located next to
a corner of the grid, resulted in an avalanche distribution
with fewer large avalanches than the distribution sampled
on s2, and did not express any peaks (figure 1A, right,
solid lines). This observed suppression of peaks and large
avalanches in the distribution for c2 was caused by a
strong impact of dissipation (effects of dissipation are also
referred to as finite size effects in SOC literature). Dissipa-
tion was larger in c2 than in s2 because c2 was located
next to a corner of the grid, bordering two dissipating
edges, while s2 was located in the middle of the grid. Our
results demonstrate that f(s) in the ASM obtained upon
subsampling did not only depend on the geometry, but
also on the location of the subset of sampling sites. Con-
sequently, sampling at different locations in an experi-
mental SOC system in which not all elements are
equivalent may yield different avalanche distributions
upon subsampling, even if the geometry of the recording
device remains the same.

By subsampling the ASM, we demonstrated that the
absence of a power law under subsampling conditions is
not sufficient evidence to reject the hypothesis that the
system is in a critical state. Therefore, false classifications
of the state of a system may occur under subsampling con-
ditions. We propose to vary the geometry and location of
the subsampling area in experimental systems that cannot
be fully sampled, since f(s) may depend strongly on these
factors.

Subsampling effects are system specific
Since the ASM showed very specific subsampling effects,
we asked whether other SOC models with different
dynamics, like the FFM, and different connectivity, like
the RNM, may also express subsampling effects, and
whether these subsampling effects were model specific.
Indeed, we found that avalanche distributions depended
on both, the internal dynamics, and the topology of con-
nections between the system's constituents.

Dependence of subsampling effects on internal dynamics
We compared two systems with identical topology but dif-
ferent dynamics – the ASM and the FFM: In the ASM, the
sand grains added to a site come mainly from its next
neighbours, while in the FFM trees are distributed to ran-
dom sites, accumulate and then contiguous tree clusters
can burn down. This has various effects on the avalanche
characteristics: While sand avalanches in the ASM are
compact, forest fires are not compact because the tree dis-
tribution is patchy. Hence, the area affected by a fire
includes usually a large fraction of empty sites. This differ-
ence in the dynamics affects the avalanche distribution
observed under subsampling: As a consequence of the
patchy tree distribution in the FFM it is rare that all sites
of a subset of sampling sites (not to be confused with a
cluster of trees) burn down since, first, all sampling sites
of the subset must be covered by a tree, and, second, all of
these sites have to belong to the same cluster. Note that
subsampling is typically not compact and that trees on a
subset of sampling sites can belong to different clusters.
Therefore not even all trees on a subset necessarily burn
down in a single fire. Due to these effects of the patchy tree
distribution, the avalanche distribution f(s) from the FFM
on subset s2 did not show the apparently supercritical
avalanche distribution, which had been observed when
sampling the same subset on the ASM.

There is, however, a way to generate apparently supercrit-
ical distributions with increased probability for large fires
via subsampling of the FFM: f(s) sampled on c2, located
next to a corner, showed an increased probability for fires
of size s~0.8 N (N = number of subsampling sites). Fires
tended to be larger on c2 than on s2, because near the cor-
ners of the grid fires can reach the tree cluster only from
two sides, and trees have more time to accumulate before
they are burnt down. Therefore, clusters on c2 tended to
be larger on average.

In sum, both models, the ASM and the FFM showed
apparently supercritical avalanche distributions, but the
mechanisms leading to the apparently supercritical f(s)
are different. As a consequence of the different mecha-
nisms, the shapes of the two distributions were also differ-
ent.

Subsampling had already been applied to the FFM [36].
However, in that study, the subsampling areas were rela-
tively large, containing at least 400 sites. In contrast, we
applied sparse subsampling, analyzing the activity of 16
sites at most. Only upon sparse subsampling, the specific
subsampling effects described above occur. When more
and more sites were taken into account, the avalanche dis-
tribution continuously approached a power law (figure
4).
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Dependence of subsampling effects on the topology of 
connections
In contrast to the behaviour of the ASM and the FFM upon
subsampling, neither the configuration nor the location
of the sampling sites mattered for the avalanche distribu-
tions of the RNM. This is intuitively plausible because the
neighbours which receive the grains during an avalanche
are chosen anew in every time step and, hence, spatial
structure is meaningless for the RNM. Nevertheless, we
still observed subsampling effects in the RNM: f(s)
depended on the total number of sampled sites and
showed an 'apparently subcritical' avalanche distribution
when subsampled (figure 1A). We note that in models
with next neighbour connections like the ASM and the
FFM the distribution f(s) strongly depended on the sub-
sampling geometry, while this was not the case for models
with random dynamic connections, where the concept of
next neighbours has no meaning. In the RNM, the ava-
lanche distribution depended only on the number of sam-
pled sites.

In our experimental LFP recordings, f(s) depended on the
location and inter-electrode distance of the subsampling
area. This suggests that the next neighbour propagation of
activity could play an important role in the statistics of
neuronal network activity. In line with this hypothesis,
the self organized critical FFM and ASM accounted better
for the activity patterns observed in the LFP data than the
RNM.

Subsampling affects the apparent branching parameter
When systems capable of SOC behaviour are fully sam-
pled, changes in their state from critical to sub- or super-
critical are sensitively reflected in the value of their
branching parameter . Here, we wanted to know whether
the branching parameter  observed under subsampling
would also truthfully reflect the unchanged true state of a
system or whether  would strongly change under sub-
sampling, despite the unchanged state. We also asked
whether  observed under subsampling would exhibit
similar apparent sub- and supercriticality as the corre-
sponding avalanche distributions for the subsampled
models did.

When fully sampled, all three SOC models that we used in
our simulations showed a  of approximately unity (fig-
ure 3B), as expected for systems in a critical state. With
larger bin size T,  decreased due to finite size effects as
described in equation (1.8). Upon subsampling,  was
always smaller than unity (figure 1D), in contrast to the
results obtained for full sampling. Under subsampling, 
initially increased with larger T because avalanches which
appeared on a single site of a subset of sampling sites
needed several time steps to reappear on a different site
later. Increasing the bin size thus concatenated these frac-

tions of an avalanche and led to an increased branching
parameter. For even larger bin sizes, finite size effects
(equation (1.8)) became dominant and  decreased
under subsampling conditions, as it did for full sampling
conditions.

Relation of apparently sub- and supercritical avalanche 
distributions to the observed branching parameters
Interestingly,  was largest when those subsets were sam-
pled which showed an 'apparently supercritical' avalanche
distribution f(s) (s2 of the ASM and c2 of the FFM, figure
1D). Still, the observed  under subsampling was smaller
than unity even when 'apparently supercritical' f(s) were
observed. A  smaller than unity is typical for subcritical
systems when they are fully sampled. Hence, we call a 
smaller than unity under subsampling conditions an
'apparently subcritical' . Our simulation results suggest
that the observation of an apparently subcritical branching
parameter  together with an apparently supercritical ava-
lanche distribution in an experimental system is a strong
indicator that the results in question might have been
affected by subsampling. Additional recordings, employ-
ing different recording geometries and more recording
sites, seem warranted in this case to avoid false classifica-
tions of the state of the system. Since  is an easily
obtained measure and since it depends in a non-linear
way on the internal dynamics and topology of the system
under investigation, it adds important information on the
dynamics of a system and should be evaluated together
with f(s) in any criticality analysis.

Using model specific subsampling effects for model 
selection
The differences in f(s) and  upon subsampling in the
three SOC models investigated here were caused by the
different underlying model dynamics and interaction
topologies: The RNM has no stable next neighbour con-
nections which govern the FFM and the ASM dynamics. In
addition, the FFM differs from the ASM in that it allows
only for a single expansion of an avalanche, while the
ASM can create two or more waves within a single ava-
lanche [50]. As a consequence, we found that effects of
sparse subsampling not only depended on the geometry
and location of the subset of sampling sites, but on the
specific dynamics of the SOC models as well. Despite
investigating only SOC models here, we propose that f(s)
and  may be particularly useful to test any set of physio-
logically motivated models of brain function that is sup-
posed to model available experimental data [e.g. [51,52]].
This is because the apparent avalanche distribution f(s)
and branching parameter  obtained upon subsampling
are highly complex measures of a system's topology and
dynamics. Nevertheless, f(s) and  are easily obtained
from the data. The representation of complex properties
of a system, the sensitivity to system dynamics and the
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computational simplicity, make f(s) and  particularly
useful to constrain degrees of freedom in physiologically
plausible models, and to gain a better insight into the
underlying dynamics of the recorded data, beyond the
analysis of criticality proper.

How do avalanche distributions and branching parameters 
from in vivo recordings compare to modelling results?
To date, simultaneous recordings of electrophysiological
data are still constrained to relatively few electrodes, given
the huge number of interacting circuits in the brain.
Hence, when analyzing data from these recordings, we
may deal with a heavily subsampled system and subsam-
pling effects may play an important role.

We found that the avalanche distributions calculated from
up to 16 simultaneously recorded LFP channels did not
show a power law (figure 1C). This behaviour was
expected in the light of our results from subsampling SOC
models if the brain indeed operated in a critical state.
Importantly, avalanche distributions f(s) from the ASM,
but not from the FFM and RNM reproduced the experi-
mental findings best (table 1). These best matching ava-
lanche distributions were obtained using subsampling
geometries in our models that resembled the electrode
configuration in our LFP recordings (i.e. square sampling
geometries as opposed to rectangular or linear ones). In
addition, we searched for the distance d in the subsam-
pling geometry on the ASM that would result in the most
similar avalanche distribution for each of the experimen-
tally obtained avalanche distributions f(s). We found that
subsets of sampling sites with small d in the ASM best
matched f(s) obtained from LFP recordings with small
inter-electrode distance, and subsets with large d best
matched f(s) obtained from LFP recordings with large
inter-electrode distance.

These findings have various implications: First, various
models of SOC exist, and these differ quite strongly when
subsampled. Consequently, it is not enough to ask
whether the brain might be in a critical state, but it would
be more precise to ask, in which critical state the brain
might be, since different groups of SOC systems exist (for
renormalization groups see [53,54]). Second, the dynam-
ics of the ASM and those of LFPs are expected to have fea-
tures in common which are not present in the FFM or
RNM. Probably, the dynamics of LFP activity are domi-
nated by next neighbour propagation of activity, and
might exhibit multiple activations of a single site during a
single avalanche, because these were the prominent fea-
tures of the ASM that led to the observed specific subsam-
pling effects. Furthermore, the observation of 'apparently
supercritical' distributions f(s) in combination with
'apparently subcritical' branching parameters in both, the

ASM and the LFP data, suggests that avalanches in both
systems are generated by similar mechanisms.

While we demonstrated that the ASM might have more
features in common with the LFP activity than the other
SOC models investigated here, the ASM is still not a phys-
iologically plausible model for LFP activity. Models which
resemble LFP activity better and in addition have the
properties of SOC are to be developed for a better under-
standing of LFP dynamics, and for assessing the potential
existence of a critical state in the brain.

Differences between avalanche distributions observed in 
the three monkeys
Avalanche distributions from M1 and M2 differed with
respect to the observation of peaks that were only found
in M1. This difference can be well explained by the
increased inter electrode distance in M2 and is in line with
predictions from modelling (figure 1). The avalanche dis-
tributions from M1 and M3 also differed and we observed
no peaks in M3, despite the fact that the geometry of the
recording grid was identical to M1. However, electrodes in
M3 were placed in a different cortical area (dorsolateral
prefrontal cortex in M3, ventral prefrontal cortex in M1
and M2). A different connectivity in this area may have led
to the diverging results.

Interestingly, avalanche distributions from M2 and M3
both did not show peaks, although data from M3 were
recorded with the small electrode distance. This finding
nevertheless is compatible with our findings in the ASM,
where we showed that avalanche distributions can be sim-
ilar, even when sampled with different distances between
sites (figure 1A, s5 and c2). The underlying mechanisms
leading to the similar f(s) despite of different electrode
distances can be manifold, however. We think that the
most probable reason is perhaps that the electrodes were
located in different areas (dorsolateral and ventral PFC).
In addition, we currently do not know whether the brain
is in an SOC state at all, and whether the cortex can be
considered as one large system or whether we should con-
sider it as being composed of smaller relatively independ-
ent units. Hence, another possible explanation of our
findings would be that our electrodes in M3 were placed
close to the edge of such a module and we indeed
observed finite size effects.

In sum, we would only like to stress that the finding of
similar avalanche distributions despite different electrode
distances does not exclude that the brain is in a critical
state
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Comparison to in vivo results from the anaesthetized 
developing brain
In a recent study Gireesh and Plenz investigated the occur-
rence of neuronal avalanches in the developing rat cortex
both in vitro and in vivo [4]. They observed power law sta-
tistics in their in vivo data while we did not observe a
power law, raising the question about the reason for this
difference in results. There are several differences between
the study of Gireesh and Plenz and our study that make a
direct comparison difficult. First, Gireesh and Plenz
obtained their data from the developing cortex while we
measured in the adult animal. Second, Gireesh and Plenz
used at least 32 electrodes for their recordings, while we
could evaluate only up to 15 channels. A larger number of
sampling sites reduces subsampling effects (figure 4).
However, even with their 32-site recordings, f(s) showed
a peak at s = 32 (their figure 1E). These peaks suggest, that
subsampling affects their data and their observed power
law exponent might not be the same in the fully sampled
system (compare our figure 4). Third, the anaesthetic Ure-
thane used by Gireesh and Plenz acts on GABA, Glycin
and Nicotinic receptors as well as on a large variety of
other ion channels and interacts with other neuro-phar-
macological agents [55]. In addition, Urethane may lead
to damage in the developing brain [56]. Hence, the alter-
ation of neuronal and circuit function is possibly pro-
found and we think that the use of anaesthesia is possibly
the most important factor behind the differences between
the two studies.

Peaked avalanche distributions: previous experimental 
observation
In the past it has often been tacitly assumed that a suffi-
cient fraction of an experimental system was sampled to
classify its state unambiguously, ignoring possible sub-
sampling effects. A notable exception is the study by Beggs
and Plenz who found a power law distribution for popu-
lation spike avalanches sampled from slice cultures of rat
cortex in vitro in simultaneous recordings with 60 elec-
trodes [2,32]. For these recordings, they investigated the
effects of subsampling by evaluation of the activity sam-
pled on a half or a quarter of the electrodes. Although the
authors do not specifically comment on this, their ava-
lanche distributions for compact subsets of sampling sites
showed a small peak at the total number of electrodes
used for the evaluation. These peaks were more pro-
nounced the smaller the subset of sampling sites was (fig-
ure 3c in reference [32]). With larger distances between
the sites, the peaks vanished (figure 3d in reference [32]).
Both, an increase of peak height with a smaller compact
set of sampling sites, and a disappearance of the peaks
with larger distances between the sites, is in full agreement
with the behaviour we observed when subsampling the
critical ASM, and when evaluating LFP activity recorded in
the awake monkey. Thus, we interpret these peaks

observed in f(s) of the slice culture recordings by Beggs
and colleagues as a first experimental observation of this
specific kind of subsampling effect. Their results also dem-
onstrate that an increase of the number of recording sites
leads to a better approximation of a power law for f(s) in
an experimental system that probably is in the critical
state. This is in accordance with the behaviour of all three
SOC models, where an increase of sampling sites leads to
a continuous approximation to a power law for the ava-
lanche distribution (figure 4).

The role of local interactions for inter event interval and 
avalanche distributions
In our SOC models, there exist only three possible inter
event intervals (IEI) [e.g. [2,31]] when the system is fully
sampled. During an avalanche, the IEIs are always zero or
one simulation steps, and between subsequent ava-
lanches, the IEI is infinity (infinite separation of times-
cales). Evaluating the ASM on a single site only, however,
reveals that the IEI distributions of each site have expo-
nential tails like Poisson processes even in the critical
models (figure 6A). Hence, single site statistics that
approximate Poisson statistics in time (IEIs) are fully
compatible with SOC behaviour that is organised spatio-
temporally. Due to the approximately poissonian single
site statistics, destroying the multivariate dependency
between the sites of the model system results in the
expected exponential distribution of avalanche sizes, both
in experimental and model data (figure 5).

In a critical system the processes on connected sites are
extremely dependent on each other, however, due to the
local interactions. Therefore, when looking at the IEI dis-
tribution calculated for events across all electrodes or all
sites of a subset, we see a deviation from an exponential
distribution (figure 6B, C): We find convex curves in the
log-linear plots, indicating a surplus of both, extremely
small and extremely large IEI compared to the exponential
distribution. Therefore we expect that the IEI distribution
calculated for any sufficiently large number of sites of a
SOC system will not be exponential. However, the f(IEI)
evaluated from very few sampling sites in a SOC system
may be similar to that of independent Poisson processes.
However, observing an exponential IEI distribution upon
sparse subsampling is not sufficient to state that the sys-
tem is not SOC.

Comparing the experimentally obtained  for LFP 
recordings to the model  upon subsampling
The branching parameter  is a well defined and easily
obtained measure in any dynamical system with binary
events. We calculated  for the various toppling dynamics
of the models as well as for the binary events extracted
from the LFP activity (figure 1D). Similar to results from
subsampling the ASM, we found that  obtained from the
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LFP recordings was smaller than unity for small bin sizes
T and increased with larger T. In addition, we found that
the experimentally obtained  was most similar to that
obtained from subsampling the ASM on s2 and s5 for
recordings from M1 and M2, respectively. This is in agree-
ment with the similarities between the respective ava-
lanche distributions from the experiments and those
obtained from the models upon subsampling (table 1).
However, a further increase of the bin size T led to  > 1
for recordings from all three monkeys (additional file 2).
This is in contrast to the findings in the critical models
upon subsampling, since none of the subsets of sampling
sites showed  > 1 upon subsampling. However, Beggs
and Plenz found a similar behaviour for the branching
parameter  calculated from the population spike activity
of their slice culture preparations (figure 7D in reference
[2]):  increased with larger bin sizes T and exceeded unity
for T > 4 ms. The increase of the apparent branching
parameter obtained from our experimental data and from
slice culture recordings by Beggs and Plenz [2] above a
value of unity may either be explained by subsampling
effects not present in the specific critical models investi-
gated here, or it might suggest that the brain is rather in a
supercritical state, since supercriticality implies a larger
branching parameter, and consequently, an apparent
branching parameter larger than unity might be expected
in supercritical systems even upon subsampling. How-
ever, further investigations, comparing subsampling
effects in critical, subcritical and supercritical models are
necessary to distinguish better these three states in experi-
mental systems that can not be fully sampled.

Does the brain operate in a SOC state?
Several features which are common in SOC systems are
indeed found in measures of brain activity in vivo. Never-
theless, we are still a long way from deciding whether an
experimental system under investigation truly qualifies as
SOC. Apart from our limited knowledge about the behav-
iour of SOC measures in subsampled systems, other fun-
damental problems exist for the case of the brain. Jensen
stated that SOC can be expected in slowly driven, interac-
tion dominated threshold (SDIDT) systems, and that SOC
systems should show a separation of time scales, that is,
the relaxation process (i.e. the avalanche) should be much
faster than the drive to the system [17] – otherwise the
dynamics would be dominated by the external drive.
While a separation of time scales is easily implemented in
models like the ASM, the distinction between drive
applied to the system and its internal relaxation dynamics
is far from being clear for the case of brain activity, even at
a conceptual level. Hence, it is extremely difficult to assess
whether the concept of an SDIDT system capable of a crit-
ical state is applicable to brain activity at all. Rigorous tests
for the various defining features and ingredients of a SOC
system like separation of time scales, cooperativity and

Distribution of inter event intervals (IEIs)Figure 6
Distribution of inter event intervals (IEIs). (A) IEIs eval-
uated for data obtained from a single site in M1 (olive), M2 
(dark green), M3 (light green), and of the ASM (black). (B) 
IEIs evaluated for the data obtained from all electrodes in M1 
(olive), M2 (dark green), and M3 (light green). (C) IEIs evalu-
ated for data obtained by subsampling the ASM on s2 (black), 
s5 (dark grey), and c2 (light grey).
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the self-organizing property need to be developed. At a
practical level, the complex and non-linear scaling of the
avalanche distribution and the branching parameter upon
subsampling poses additional challenges to the correct
classification of the operating state of a system.

Conclusion
Neither a power law nor a branching parameter of unity
are necessarily observable in subsampled SOC systems.
This may ultimately render efforts to establish the pres-
ence or absence of critical self-organized behaviour in
brain function futile when relying on these properties of
SOC systems alone. Nevertheless, subsampling effects are
highly specific for the connection topology and for the
dynamics of the local interactions of the system under
investigation. In addition, changing subsampling effects
by varying the subsampling geometries provides rich
additional information. Thus, measures derived from
SOC system theory like branching parameters and ava-
lanche distributions provide information on complex sys-
tem properties in a computationally efficient, compact
and non-trivial way, and are useful beyond the scope of
SOC theory. The subsampling geometry can be used as an
experimentally accessible additional free parameter to
gain further information. We suggest to use measures
from the theory of SOC systems as powerful constraints to
select between various models proposed for a certain real-
world system under investigation. In this regard, the
extremely specific subsampling effects observed in the in
vivo data may help to establish which features of model
SOC systems are 'brain-like', assisting us to constrain
models of brain function in future research. On the exper-
imental side, future research using massively parallel
recordings with hundreds of electrodes will be necessary
to fully understand subsampling effects in detail and to
exploit this knowledge to foster our understanding of
brain function.
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