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Abstract

Background: CCAAT/Enhancer Binding Proteind (C/EBPJ) is a member of the highly conserved C/EBP
family of leucine zipper (bZIP) proteins. C/EBPS is highly expressed in G, growth arrested mammary
epithelial cells (MECs) and "loss of function" alterations in C/EBPS have been associated with impaired
contact inhibition, increased genomic instability and increased cell migration. Reduced C/EBPS expression
has also been reported in breast cancer and acute myeloid leukemia (AML). C/EBPS functions as a
transcriptional activator, however, only a limited number of C/EBPS target genes have been reported. As
a result, the role of C/EBPS in growth control and the potential mechanisms by which "loss of function”
alterations in C/EBPS contribute to tumorigenesis are poorly understood. The goals of the present study
were to identify C/EBPS target genes using Chromatin Immunoprecipitation coupled with a CpG Island
(HCGI12K) Array gene chip ("ChlIP-chip") assay and to assess the expression and potential functional roles
of C/EBPS target genes in growth control.

Results: ChlP-chip assays identified ~100 C/EBPS target gene loci which were classified by gene ontology
(GO) into cell adhesion, cell cycle regulation, apoptosis, signal transduction, intermediary metabolism,
gene transcription, DNA repair and solute transport categories. Conventional ChIP assays validated the
ChlP-chip results and demonstrated that 14/14 C/EBPS target loci were bound by C/EBPS in G, growth
arrested MCF-12A MECs. Gene-specific RT-PCR analysis also demonstrated C/EBP3-inducible expression
of 14/14 C/EBPS target genes in G, growth arrested MCF-12A MECs. Finally, expression of endogenous
C/EBPS and selected C/EBPS target genes was also demonstrated in contact-inhibited G, growth arrested
nontransformed human MCF-10A MECs and in mouse HCI | MECs. The results demonstrate consistent
activation and downstream function of C/EBPS in growth arrested human and murine MECs.

Conclusion: C/EBPS target genes were identified by a global gene array approach and classified into
functional categories that are consistent with biological contexts in which C/EBPS is induced, such as
contact-mediated G, growth arrest, apoptosis, metabolism and inflammation. The identification and
validation of C/EBPS target genes provides new insights into the mechanistic role of C/EBPS in mammary
epithelial cell biology and sheds new light on the potential impact of "loss of function" alterations in C/EBPS
in tumorigenesis.
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Background

CCAAT/Enhancer Binding Proteind (C/EBPS) is a member
of the highly conserved C/EBP family of leucine zipper
DNA binding proteins [1-3]. Evidence accumulated since
their discovery in the late 1980's indicates C/EBP function
in the transcriptional control of genes that function in cell
growth, survival, differentiation, inflammation and apop-
tosis [1-3]. C/EBPS gene expression is increased in human
and mouse mammary epithelial cells in response to
growth arrest induction by serum and growth factor with-
drawal, contact inhibition and IL-6 family cytokine treat-
ment [4-11]. Ectopic C/EBPS expression induces growth
arrest of mouse mammary epithelial and human chronic
myelogenous leukemia cell lines [5,12]. Conversely,
reducing C/EBPS gene expression is associated with
delayed growth arrest, genomic instability, impaired con-
tact inhibition, increased cell migration and reduced
serum dependence [5,13]. Consistent with a role as a can-
didate tumor suppressor gene, "loss of function" altera-
tions in C/EBPS gene expression have been reported in
primary human breast cancer and acute myeloid leukemia
(AML) [11,14-18]. In vivo experimental studies indicate
that C/EBPS plays a complex role in mammary epithelial
cell fate determining programs as C/EBP$ is transiently
induced in the mammary gland during the early "reversi-
ble" phase of mammary gland involution and C/EBP3
knockout female mice exhibit mammary gland ductal
hyperplasia [19-22].

Studies focusing on the regulation of C/EBPS have
reported that C/EBPS is regulated at the transcriptional,
post-transcriptional and post-translational levels [6,23-
25]. These findings demonstrate that the content and
function of C/EBP3 is tightly controlled at multiple levels.
The goal of the present study was to gain new insights into
the functional role of C/EBPS in mammary epithelial cell
growth arrest by identifying C/EBPS downstream target
genes using a global gene array approach. The results iden-
tified candidate C/EBPS target genes that were classified
by gene ontology (GO) and functional annotation cluster-
ing into DNA binding, transcriptional regulation, cell
adhesion, cell cycle regulation, apoptosis, signal transduc-
tion, intermediary metabolism, DNA repair and transport.
These findings provide new insights into the broad range
of functions impacted by C/EBPS in mammary epithelial
cell biology and suggest new mechanisms by which alter-
ations in C/EBP3 could contribute to defects in growth
control, differentiation and tumorigenesis.

Results

CIEBP¢ is induced in growth arrested human mammary
epithelial cells

To identify C/EBPS target genes we used the ChIP-chip
assay, a technique that couples chromatin immunopre-
cipitation (ChIP) with (CpG) Island (CGI) microarray
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chip hybridization [26,27]. In the initial experiment, we
validated the increase in C/EBPS protein levels in MCF-
12A human mammary epithelial cells growth arrested by
contact inhibition for 24, 48 and 72 hours (Fig. 1a). We
next transfected MCF-12A human mammary epithelial
cells with a C/EBP3-v5 fusion construct and demonstrated
that the C/EBPS-v5 protein was present at 24, 48 and 72
hours in contact inhibited MCF-12A cells, paralleling the
results from experiments with endogenous C/EBPS pro-
tein levels (Fig. 1b and Fig. 1a). Because available com-
mercial and laboratory produced anti-C/EBPS antibodies
were not suitable for chromatin immunoprecipitation
reactions the ChIP-chip assays were performed in contact-
inhibited MCF-12A cells transfected with the C/EBP3-v5
construct and the antibody interaction step was per-
formed with a high affinity anti-v5 antibody. A schematic
overview of the ChIP-chip protocol and representative
microarray data images are presented (Fig. 1cd).

Identification of and functional categories of C/EBPS
target genes

ChIP-chip results identified 289 candidate genomic
regions from the UNH HCG12K array using a 2 fold
enrichment threshold (C/EBP3-v5 vs IgG control). Of
these 289 genomic regions, 99 were identified in defined
gene promoter regions (Table 1). C/EBPS target genes are
located on all human chromosomes, suggesting a broad
and relatively unbiased distribution across the human
genome (Fig. 2a). C/EBPS target genes were identified and
assigned to functional categories (Functional Annotation
Clustering) using the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) Bioinformatics
Resource. C/EBPS target gene functional categories
include: signal transduction, metabolism, transcriptional
regulation, cell adhesion, DNA binding, cell cycle control,
apoptosis, and solute/metabolite transport (Fig 2b).

Chromatin immunoprecipitation (ChIP) and RT-analysis
of C/IEBPS target genes

We next used conventional chromatin immunoprecipita-
tion (ChIP) assays to confirm the interaction between C/
EBPS and selected candidate gene promoters in MCF-12A
mammary epithelial cells. MCF-12A cells were transfected
with the C/EBPS-v5 construct, growth arrested by contact
inhibition and conventional ChIP assays performed on 14
C/EBP38 candidate genes from diverse functional catego-
ries with proximal promoters containing at least one con-
sensus C/EBP binding site (Fig. 3a). ChIP assay results
were positive for 14/14 C/EBPS candidate target gene pro-
moters tested, although the degree of positive detection
varied across the 14 target genes (Fig. 3b).

ChIP-chip and direct ChIP assays address in situ protein/
DNA binding but do not determine if DNA binding
results in increased expression of the downstream target
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Dye swapping microarray images

C/EBPS expression and C/EBPS genomic target gene identification by ChIP-chip assay in MCF-12A cells. a. C/
EBPS protein levels in whole cell lysates from growing and confluent, contact-inhibited MCF-12A cells. Lanes: (1) Exponentially
growing; (2) Confluence (contact inhibition) induced growth arrest (24 hours); (3) 48 hours; (4) 72 hours. b. C/EBPS-v5 pro-
tein levels in transfected MCF-12A cells. Lanes: (1) MCF-12A cells transfected with pcDNA3 vector (CON, control), (2) Con-
fluent 24 hours, (3) Confluent 48 hour, (4) Confluent 72 hours. c. Schematic overview of the ChlIP-chip protocol. d. HCG 12K
Array probed with ChIP isolated DNA coupled with Alexa 555 or Alexa 647 dyes. The data presented were derived from dye

swapping experiments performed on the same microarray.

gene. To investigate the relationship between C/EBPS pro-
moter binding and C/EBPS target gene expression MCF-
12A cells were transfected with the C/EBPS-v5 construct,
growth arrested by contact inhibition and total RNA iso-
lated for RT-PCR analysis. The RT-PCR results demon-
strated that mRNA levels of 14/14 of the selected C/EBP3
target genes are significantly induced in MCF-12A cells
transiently transfected with the C/EBP8-v5 construct
under contact inhibition, growth arrest conditions (Fig.
3c). The degree of C/EBPJ target gene expression as
assessed by mRNA content was variable, possibly reflect-
ing the complex nature of individual target gene transcrip-
tional activation as well as individual target gene mRNA
stability. Taken together, the conventional ChIP and RT-
PCR results verified that the ChIP-chip assays identified
authentic C/EBPS target genes.

C/EBPS and C/EBP¢ target genes are induced in confluent
(contact inhibited) human and mouse mammary epithelial
cell lines

In previous work we reported that C/EBPJ expression is
highly induced in growth arrested and IL-6 cytokine
treated primary human mammary epithelial cells, MCF-
12A and MCF-10A mammary epithelial cell lines [9]. To
extend these findings in the current study we assessed the
expression of C/EBP3 and selected C/EBPS target genes in
48 hour confluent, G, growth arrested MCF-10A mam-

mary epithelial cells. The results demonstrated that G,
growth arrest was associated with an approximately 10-
fold induction of C/EBPd mRNA compared to exponen-
tially growing MCF-10A cells (Fig. 4). Consistent with the
growth arrest induction of C/EBPS, the mRNA levels of
selected C/EBPS target genes were also induced, with fold
induction of C/EBPS target genes varying from ~.5-12
fold induction (Fig. 4).

To extend the current results to mouse MECs we com-
pared C/EBPS and selected C/EBPS target gene mRNA lev-
els in growing and contact-inhibited, G, growth arrested
HCI11 cells, a nontransformed mouse mammary epithe-
lial cell line. The results confirmed the growth arrest
induction of C/EBPS and demonstrated parallel induction
of selected C/EBPS target gene mRNAs (Fig. 5a). The
growth arrest inducible induction of C/EBPS was dramatic
(~90 fold), the growth arrest induction of selected C/EBPS
target genes varied from ~3-50 fold (Fig. 5). These results
extend the association between C/EBPS and the expres-
sion of C/EBPS target genes to include both human and
mouse derived nontransformed mammary epithelial cell
lines.

Discussion
This study identified C/EBPS target genes using a "ChIP-
chip" global gene array approach. The functional catego-
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Table I: C/EBPJ Target gene functional categories

Signal transduction

Gene Name Gene Description Gene ID
ADM Adrenomedullin 133
BAI3 brain-specific angiogenesis inhibitor 3 577
DTNA dystrobrevin, alpha 1837
DVL3 dishevelled, dsh homolog 3 (Drosophila) 1857
EDGI endothelial differentiation, sphingolipid G-protein-coupled receptor, | 1901
GNGI0 guanine nucleotide binding protein (G protein), gamma |0 2790
IRAK2 interleukin- | receptor-associated kinase 2 3656
LOX lysyl oxidase 4015
NPASI neuronal PAS domain protein | 4861
CCL25 chemokine (C-C motif) ligand 25 6370
CDC42BPA CDC42 binding protein kinase alpha (DMPK-like) 8476
INTS6 integrator complex subunit 6 26512
GTPBP2 GTP binding protein 2 54676
EPSI5L2 epidermal growth factor receptor pathway substrate |5-like 2 55380
VACI|4 Vacl4 homolog (S. cerevisiae) 55697
ERBB2IP erbb2 interacting protein 55914
ROBO3 roundabout, axon guidance receptor, homolog 3 (Drosophila) 64221
C90rf89 chromosome 9 open reading frame 89 84270
SPSB3 splA/ryanodine receptor domain and SOCS box containing 3 90864
HSP90AAI heat shock protein 90 kDa alpha (cytosolic), class A member | 3320
FGF9 fibroblast growth factor 9 (glia-activating factor) 2254
SCAP2 src family associated phosphoprotein 2 8935
GPR160 G protein-coupled receptor 160 26996
VDR vitamin D (1,25- dihydroxyvitamin D3) receptor 7421

Metabolism

OXAIL oxidase (cytochrome c) assembly |-like 5018
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Table I: C/EBPS Target gene functional categories (Continued)
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RPP30 ribonuclease P/MRP 30 kDa subunit 10556
THBS4 thrombospondin 4 7060
CKAPI cytoskeleton associated protein | 1155
DLD dihydrolipoamide dehydrogenase 1738
ESD esterase D/formylglutathione hydrolase 2098
LRPI low density lipoprotein-related protein | (alpha-2-macroglobulin receptor) 4035
PSMBI proteasome (prosome, macropain) subunit, beta type, | 5689
RPL29 ribosomal protein L29 6159
MTMRé myotubularin related protein 6 9107
ADAMTS5 ADAM metallopeptidase with thrombospondin type | motif, 5 11096
GCAT lycine C-acetyltransferase (2-amino-3-ketobutyrate coenzyme A ligase) 23464
ADATI adenosine deaminase, tRNA-specific | 23536
FLRT2 fibronectin leucine rich transmembrane protein 2 23768
MRPL35 mitochondrial ribosomal protein L35 51318
OTUBI OTU domain, ubiquitin aldehyde binding | 55611
USP48 ubiquitin specific peptidase 48 84196
ACBDS5 acyl-Coenzyme A binding domain containing 5 91452
C9orfl03 chromosome 9 open reading frame 103 414328
GANC glucosidase, alpha; neutral C 2595
BCAT2 branched chain aminotransferase 2, mitochondrial 587
CRLF3 cytokine receptor-like factor 3 51379
ADPRH ADP-ribosylarginine hydrolase 141
Transcriptional regulation
KLFé6 Kruppel-like factor 6 1316
DBP D site of albumin promoter (albumin D-box) binding protein 1628
FLII Friend leukemia virus integration | 2313
MEF2B MADS box transcription enhancer factor 2, polypeptide B 4207
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Table I: C/EBPS Target gene functional categories (Continued)

POLR2F polymerase (RNA) Il (DNA directed) polypeptide F 5435
POU2FI POU domain, class 2, transcription factor | 5451
SOX4 SRY (sex determining region Y)-box 4 6659
TBP TATA box binding protein 6908
ZNF20 zinc finger protein 20 7568
CSDA cold shock domain protein A 8531
RFEXANK regulatory factor X-associated ankyrin-containing protein 8625
TAFIA TATA box binding protein (TBP)-associated factor, RNA polymerase |, A 9015
SSBP2 single-stranded DNA binding protein 2 23635
MKL2 MKL/myocardin-like 2 57496
TGIF2 TGFB-induced factor 2 (TALE family homeobox) 60436
IRX6 iroquois homeobox protein 6 79190
ESXI extraembryonic, spermatogenesis, homeobox | homolog (mouse) 80712
ZNF573 zinc finger protein 573 126231
ALX4 aristaless-like homeobox 4 60529
Transporters

KCND2 potassium voltage-gated channel, Shal-related subfamily, member 2 3751
PCMI pericentriolar material | 5108
TUSC3 tumor suppressor candidate 3 7991
SLC25A14 solute carrier family 25 (mitochondrial carrier, brain), member 14 9016
HGS hepatocyte growth factor-regulated tyrosine kinase substrate 9146
HCN4 hyperpolarization activated cyclic nucleotide-gated potassium channel 4 10021
SLC40AI solute carrier family 40 (iron-regulated transporter), member | 30061
MCARTI mitochondrial carrier triple repeat | 92014
CCBEI collagen and calcium binding EGF domains | 147372

Cell cycle regulation

SEPT7 septin 7 989

Page 6 of 16

(page number not for citation purposes)



BMC Molecular Biology 2008, 9:83 http://www.biomedcentral.com/1471-2199/9/83

Table I: C/EBPS Target gene functional categories (Continued)

RCCI regulator of chromosome condensation | 1104
PAPD5 PAP associated domain containing 5 64282
DIRAS3 DIRAS family, GTP-binding RAS-like 3 9077
DNA binding
TOP2B topoisomerase (DNA) Il beta 180 kDa 7155
HIST I H4F histone |, H4f 8361
KCMFI potassium channel modulatory factor | 56888
XPC xeroderma pigmentosum, complementation group C 7508
MSH5 mutS homolog 5 (E. coli) 4439

Cell Adhesion

GP5 glycoprotein V (platelet) 2814
ITGB8 integrin, beta 8 3696
PCDH9 Protocadherin 9 5101
RSHLI radial spokehead-like | 81492
THBS4 thrombospondin 4 7060
Apoptosis

TIAI cytotoxic granule-associated RNA binding protein 7072
BCL2LI BCL2-like | 598
RNF34 ring finger protein 34 80196

Miscellaneous

HSPCA heat shock protein 90 kDa alpha (cytosolic), class A member | 3320

OTOF otoferlin 938l
LOHI2CRI loss of heterozygosity, 12, chromosomal region | 118426
MYEOV2 myeloma overexpressed 2 150678
TMEMBS87A transmembrane protein 87A 25963

MTPN myotrophin 136319
DISCI disrupted in schizophrenia | 27185
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Chromosomal localization and functional categories
of C/EBPS target genes. A. Chromosomal localization of
C/EBPS-v5 bound candidate genomic targets identified by the
C/EBP3-v5 ChlP-chip assays using the UNH HCGI 2K array.
b. C/EBPS target genes were verified in authentic gene pro-
moter regions and assigned to Functional Categories using
the Database for Annotation, Visualization and Integrated
Discovery (DAVID). The list of genes assigned to each cate-
gory is presented in Table I.

ries of a significant number of the C/EBPS target genes are
consistent with known biological responses associated
with C/EBP3 expression and function. A significant
number of studies have demonstrated that C/EBPS gene
expression is induced in contact-inhibited cells and the
"ChIP-chip" analyses performed in this study identified
C/EBPS target genes that function in cell adhesion, a key
aspect contact inhibition mediated growth arrest includ-
ing, IGTB8, LOX, PCDH9, THBS4, and RSHL1 (Table 1)
[28]. C/EBPS induction of IGTB8 (Integrin B8) may be
particularly relevant in breast cancer as IGTB8 inhibits
epithelial cell growth by activating TGF-f [29,30]. In addi-
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tion, LOX (lysyl oxidase), a cell-associated enzyme that
functions in extracellular matrix biology has been identi-
fied as a tumor suppressor gene in gastric cancer [31].
However, the role of LOX is cancer biology is complex as
LOX has also been shown to enhance breast cancer cell
migration [32].

Additional C/EBPS target genes function in the regulation
of growth factor signaling, tumor suppression and tran-
scription including: ERBB2IP, IRAK2, EDGI1, INTSG,
SCAP2, VDR, KLF6, MKL2, FLI1, TUSC3 and SOX4 (Table
1). ERBB2IP (Erbin) inhibits growth factor signaling by
disrupting Sur-8/Ras/Raf complex formation interaction
[33]. INTS6 (DICE1), a DEAD box protein that exhibits
tumor suppressor activity, is hypermethylated and down-
regulated in prostate cancer [34]. VDR (vitamin D recep-
tor), a member of the steroid hormone nuclear receptor
superfamily, functions in calcium and noncalcium related
cellular responses to vitamin D [35]. It is of interest that
the VDR is required for vitamin D-induced growth arrest
of breast and prostate derived cell lines and C/EBPS is
required for vitamin D-induced growth arrest of human
breast (MCF-7) and prostate (LnCAP) cells [36,37]. These
results indicate that C/EBPS target genes play key roles in
growth inhibitor signaling, cell-cell and cell matrix inter-
actions and transcriptional regulation.

The C/EBPS ChIP-chip results also identified three genes
(BCL2L1, TIA-1, RNF34) that function in apoptosis.
Reports from our lab and others demonstrate that C/EBPS
is expressed at the onset of mouse mammary gland invo-
lution [20,21,38]. It is of interest that BCL2L1 (bcl-x), a
gene associated with pro- and anti-apoptotic functions
was identified as a C/EBPS target gene by the ChIP-chip
assay. The primary BCL2L1 transcript can be alternatively
spliced into two variants that encode proteins with oppos-
ing functions: Bcl-xL (anti-apoptotic) and Bcl-xS (pro-
apoptotic) [39,40]. Bcl-xL is the most abundant Bcl-2 fam-
ily member expressed in mammary epithelial cells and
conditional deletion of the bcl-x gene from the mouse
mammary epithelium enhances apoptosis during the ini-
tial phase of mammary gland involution [41]. Interest-
ingly, Bcl-xS levels increase during mammary gland
involution, resulting in a decrease in the Bcl-xL/Bcl-xS
ratio in the involuting mammary gland [42]. A second
apoptosis-related C/EBPS target gene identified was TIA-1,
an RNA binding protein that exhibits both pro- and anti-
apoptotic activity [43,44]. These results suggest that C/
EBP8 may function in the transcriptional control of
BCL2L1 and TIA-1 but the pro- or anti-apoptotic func-
tions are determined by posttranscriptional events. The
third apoptosis-related C/EBPS target gene identified in
study is RNF34, an anti-apoptotic protein that is associ-
ated with activation of nuclear factor-«B (NF-xB) and
increased levels of Bcl-xL [45]. In addition to the identifi-
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Figure 3

Conventional ChIP and RT-PCR analysis of selected C/EBPS ChIP-chip target genes. a. C/EBPS ChlP-chip target
gene promoters. C/EBPS target gene promoters are shown with gene-specific primers (—) and computer predicted C/EBP
consensus sites (») Gene-specific human primer pairs are presented in Table 2. b. Conventional ChIP assays. Whole cell
lysates were isolated from MCF-12A cells transfected with pCDNAZ3.[-hC/EBP3-v5 and growth arrested by contact inhibition.
Conventional ChlIP assays performed with anti-v5 and IgG (negative control) antibodies. Input lane is derived from direct PCR
amplification of genomic DNA. c. C/EBPS target gene expression: RT-PCR analysis. Total RNA was isolated from MCF-12A
cells transfected with pCDNAZ3.|-hC/EBP3-v5 and cultured under exponentially growing (GR) or contact inhibition conditions.
Total RNA was reverse transcribed and PCR amplified using gene-specific primers. No RT = PCR amplification of RNA sam-
ples without RT. GAPDH was used as a non-C/EBPS inducible RNA expression control.
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Table 2: Forward (F-) and reverse (R-) primers for ChIP and RT-PCR assays (human)

Gene name Primers for ChIP

Primers for RT-PCR

DIRAS3 F- ctcacaggcaagggagaaag; F- ccgaagggccaagtggaggaagc;

R- tacaggttggggaggaactg R- tggtgaggcagccecgttgtt
ASAHL F- gcagagacacaccagcagag; F- gtggctcaagactccagagg;

R- gtaagccgtggaggaggag R- tgcttcgaagttttccgact
BCAT2 F- aagaggccttgtgaggtcaa; F- ccgctgaatggtgttatect;

R- ctcgctggaaagagetgagt R- tctccttcagetecttctgg
BCL2LI F- agagctcttgcgtctggaag, F- agagctcttgegtctggaag;

R- ggacttctcaatggggttca R- ggacttctcaatggggttca
CCRNA4L F- cctgaccatgtctttgctea; F- ctggagcccattgatcctaa;

R- cgcaggcggtctaaaataag R- ggtaggccaggatttcttcc
SEPT7 F- ggagtgtgagctccaagagg; F- aatagttgataccccaggat;

R- cttgcttacgcacgctacag R- gagcaatgaagtataaacaacac
FGF9 F- ctctcgcagtgcatctttca; F- tgagaagggggagctgtatgga;

R- tcccatccgaccgtaataag R- gtgaatttctggtgcegtttagtc
GPR160 F- aaggttgcccgtctctgac; F- gctctegettegtectacac;

R- gccteggaaaacaaatagec R- taggggctggtttgtttgac
ITGB8 F- caagtcctcacacccatcct; F- gctctcgettcgtectacac;

R- ccttcccagtaaacggaaca R- taggggctggtttgtttgac
MKL2 F- ctctgtcctgtgtgecattc; F- ctgtcctccccacaaacact;

R- cgtgactgggaagggttaaa R- gatctgcagttgcaggaaca
MSH5 F- atgttcaccgctttgagtcc; F- gagacgctgctgatgtacca;

R- ccagcctagagatccgacag R- cctgatgagttgggtccagt
OXAIL F- agcctcccaaagtgatgaga; F- agaatgatgcccctgataacctt;

R- gtcgcgattgtcctetgatt R- gacgcgtcatttcagcatttttc
SCAP2 F- cgagctcagaggccatcgtagggt; F- ctcccaaagatgctgaaga;

R- gaagatcttcccggecccagaaga R- tgcttgttagtggattgcttat
VDR F- ctggatgattttgtgagca; F- cagtttgggaggtcgaggta;

R- aattttcatcgaccgtegtc

R- gaatgagagtgggggtctga

cation of growth control/tumor suppressor genes, the C/
EBPS ChIP-chip analysis identified eight inflammation
related genes, including ADM, IRAK2, CCL25, OTUB]I,
KLF6, DBP, RFXANK and GP5 (Table 1). These findings
are consistent with a well-established functional role of C/
EBP3 in the acute phase response, inflammation and
wound healing [23,46,47].

The ChIP-chip analysis also identified C/EBPS target genes
that encode proteins that function in general energy
metabolism, including lipid metabolism, metabolite
transport and mitochondrial energy-related functions

(Table 1). These results are consistent with early reports
documenting the key role of C/EBPS in the 3T3-L1 fibrob-
last — adipocyte differentiation program [48,49].

The ChIP-chip analysis also identified a significant
number of C/EBPS target genes that function as transcrip-
tional regulatory proteins. These results suggest that C/
EBPS initiates a biological response that is amplified by C/
EBPS target genes that also function as transcriptional reg-
ulatory proteins. Five C/EBPS target genes are classified as
homeobox genes (POU2F1, TGIF2, IRX6, ESX1L and
ALX4) (Table 1). The potential role of C/EBPS in the
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Figure 4

C/EBPS and C/EBPS target gene mRNA levels are expressed in confluent, G, growth arrested human mam-
mary epithelial cells. Growing MCF-10A cells were maintained at ~50% confluence in CGM; confluent MCF-10A cells were
grown to confluence and maintained in CGM for 48 hours. Real Time PCR analysis was performed using the LightCycler 480
Real Time PCR System. The gene specific human primers pairs are presented in Table 3.

expression of homeobox genes suggests that C/EBPS may
influence cell fate or cell lineage determination. It has
recently been shown that C/EBPS inhibits growth and
promotes self renewal of human limbic stem cells, sug-
gesting a potential role for C/EBP3 in the maintenance of
stem cell pluripotency [50]. These results suggest that C/
EBPS may play a previously unrecognized regulatory role
in cell lineage determination in the mammary gland or
possibly in mammary gland stem cell populations.

The ChIP-chip results identified C/EBPS target genes that
function specifically in neuronal differentiation and

development (FGF9, MTPN, ROBO3, NPAS1, and DVL3)
(Table 1). Early studies in our laboratory found that
mouse brain expresses relatively high levels of C/EBPS
mRNA compared to other C/EBP family members [51]. In
addition, the initial report that described the phenotype
of C/EBPS -/- mice reported selectively enhanced contex-
tual fear conditioning, suggesting a role for C/EBPS in
learning or memory [52]. It is of interest that DTNA, a
gene that functions in neuromuscular synaptic transmis-
sion was also identified as a C/EBPS target gene and that
C/EBPS target genes were identified that function in differ-
entiation and development of muscle cells and pattern
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Table 3: C/EBPS and C/EBPS target gene primers (mouse)

http://www.biomedcentral.com/1471-2199/9/83

Sequence (5'-3") Length (bp)? Accession No.P

C/EBP3 Fw CGACTTCAGCGCCTACATTGA 171 bp NMO007679
RV CTAGCGACAGACCCCACAC

ASAHL Fw GTCCTCCTGACTTCCTGG 225 bp NM025972
RV CCTGCCACTAAGCCTCAC

BCAT2 Fw ATGAAGGCAAGCAACTCC 227 bp NMO009737
RV TGGACAGACCTTTCCCTATT

GP5 Fw CGCCAGCCTGTCGTTCT 185 bp NMO008148
RV GCCTGTTATTGGGACTTTCAC

ITGB8 Fw TTCTCCTGTCCCTATCTCCA 302 bp NM177290
RV TGAGACAGAT TGTGAGGGTG

MKL2 Fw CTGTGGTCGTCAAGCAAGA 398 bp NMI53588
RV TGTGTTTGGTGCCGAGTTT

MSH5 FwW CGACTCCTGAGCCACATC 295 bp NMO013600
RV TGGCATCTATGTCAGGGTC

OXAIL FW CGGTTCTATTGCCGTTGG 225 bp NM026936
RV CACCCACTCCTCTTTCCTTT

PCDH9 FwW ACAGCCACCACGGTCCTCTA 219 bp NM001081377
RV CCCTTGTTGTTCCCGCTCAC

SCAP2 Fw AGTGAAGATGGACGAGCAA 199 bp NMO018773
RV TCCTACCCACCAGCCATA

TIAI Fw GAGAAGGGCTATTCGTTTG 208 bp NMO009383
RV GTCCATACTGTTGTGGGTTT

VDR Fw CAACGCTATGACCTGTGAA 299 bp NM009504
RV GCAGGATGGCGATAATGT

XPC Fw TCCTGGGAGATACCTTCG 337 bp NMO00953 |
RV AAAGAGCAGCAGGCAGTA

GAPDH Fw CTCACTGGCATGGCCTTCCG 293 bp XM001473623
RV ACCACCCTGTTGCTGTAGCC

Note. FW: forward primer; RV: reverse primer.
aAmplicon length in base pairs.
bGenbank accession number of corresponding gene, availabe at http://www.ncbi.nlm.nih.gov
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formation of limb buds including MKL2, MEF2B and
ALX4 [53]. These results suggest that epithelial cells may
express a subset of genes that retain residual neural related
or neuromuscular-related functions.

Conclusion

This is the first report to utilize the ChIP-chip assay to
identify C/EBPS target genes. The new C/EBPS target genes
identified by the ChIP-chip analysis are associated with
biological responses previously associated with C/EBP3
expression, such as growth arrest, cell adhesion, inflam-
mation, energy metabolism and apoptosis. Gene expres-
sion analyses performed in human and mouse mammary
epithelial cell lines confirm the link between the expres-
sion of C/EBPS, C/EBS target genes and the G, growth
arrest state. These results provide new insights into the
functional role of C/EBP3 and C/EBP§ target genes in
mammary epithelial cell growth control and suggest new
avenues of investigation to define the role of C/EBP3 and
C/EBPS target genes in mammary tumorigenesis.

Methods

Cell culture and transient transfections

The immortalized, nontransformed MCF-12A and MCEF-
10A human mammary epithelial cell lines were obtained
from American Type Culture Collection. MCF12A and
MCEF-10A cell lines were cultured in DMEM/F-12 phenol
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Figure 5

C/EBPS and C/EBPS target gene mRNA levels are
increased in confluent, G, growth arrested mouse
mammary epithelial cells. Growing HCI | cells were
maintained at ~50% confluence in CGM; confluent HCI |
cells were grown to confluence and maintained in CGM for
48 hours. Real Time PCR analysis was performed using the
LightCycler 480 Real Time PCR System. The gene specific
primers are presented in Table 3. Real Time PCR data is nor-
malized to the GAPDH control.
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red free media (Invitrogen) supplemented with 5% horse
serum, 20 ng/ml human recombinant EGF, 100 ng/ml
cholera toxin, 10 ug/ml bovine insulin, 500 ng/ml hydro-
cortisone, 100 U/ml penicillin and 100 pg/ml streptomy-
cin (Complete Growth media, CGM). Growth arrest was
induced by culturing confluent MCF-12A or MCF-10A
cells in CGM or switching near confluent cultures to
media containing 0.5% horse serum plus antibiotics
(Growth arrest media, GAM). MCF-12A cells were tran-
siently transfected with 5 pg of a v5 tagged C/EBPS expres-
sion construct (pCDNA3.1-hC/EBP3-v5) using the
Lipofectamine Plus transfection system (Invitrogen).
Three hours later transfected cells were washed with 1x
PBS, returned to CGM for 48 hours. All transfection exper-
iments were performed in triplicate and repeated 2-3
times. HC11 cells (mouse immortalized mammary epi-
thelial cell line) were grown in complete growth media
(CGM) containing RPMI 1640 medium (Invitrogen) con-
taining 10% FBS and supplemented with 10 ng/ml epider-
mal growth factor, 10 pg/ml insulin, 50 units/ml
penicillin, 50 pg/ml streptomycin and 500 ng/ml fungi-
zone in a humidified incubator at 37°C and 5% CO,.
Exponentially growing HC11 cells were cultured at 30-
50% confluence in CGM, confluent HC11 cells were
grown to confluence and retained in CGM for 48 hours.

Chromatin immunoprecipitation CpG island microarray
("ChIP-Chip") and ChIP assays

Isolation of C/EBP3&-associated genomic DNA was per-
formed using the Chromatin Immunoprecipitation Assay
Kit (Upstate) and following Upstate ChIP protocols. Anti-
v5 epitope antibody (Invitrogen) (non-cross reactive with
endogenous MCF-12A proteins) was used in the primary
immunoprecipitation reaction. Mouse nonspecific IgG
(Upstate) was used as a non-specific antibody control for
the ChIP assays. Briefly, 5 x 106 MCF-12A cells were cross-
linked with 1% formaldehyde (10 minutes, 37°C),
washed 2x with PBS (4°C), pelleted by centrifugation and
resuspended in 200 pl SDS lysis buffer supplemented with
protease inhibitors. Cell lysates were sonicated to shear
DNA to 0.5-2.0 kb in length (verified by agarose gel anal-
ysis). Sonicated lysates were centrifuged to remove debris,
diluted 1:10 in dilution buffer and used for IP with 2 pg
anti-v5 antibody or nonspecific mouse IgG control. After
immunoprecipitation, pellets were washed with 1 ml Low
Salt Immune Complex Wash Buffer, High Salt Immune
Complex Wash Buffer and LiCl Immune Complex Wash
Buffer and TE buffer. Bead precipitates were eluted twice
with fresh elution buffer (1% SDS, 0.1 M NaHCO,) and
eluates were pooled and heated at 65°C for 4 hours to
reverse protein-DNA crosslinks. DNA was purified by phe-
nol extraction and ethanol precipitation. To confirm C/
EBPd/target promoter binding, optimized, nested PCR
was performed with 2.5 ul of the 50 u1 DNA preparation
plus promoter specific primers. Specific PCR products
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were assessed by agarose gel electrophoresis. An opti-
mized two-step PCR amplification was then performed on
the ChIP recovered DNA. The first amplification step
involved a 3 cycle random primer amplification includ-
ing: 8 ul ChIP DNA, 2 u1 5x Sequenase Buffer, 1 p1 of 40
pM primer A (5'-GIT TCC CAG TCA CGA TCN NNN
NNN NN), 1.5 p1 10 mM DNTP's, and 1 pl Sequenase
(US Biochemical, Sequenase Kit Ver. 2.0) was incubated at
94°C for 2 min, 10°C for 5 min followed by 37°C for 8
min. The random primer incorporation reactions were
then increased to a final volume of 60 1 by the addition of
40 1 of RNAse/DNAse-free water (Invitrogen). The second
amplification step included 15 pl of the DNA product
from step one, 8 ul1 MgCl,, 10 ul1 10x PCR Buffer, 2 pl
50x aa-dUTP/dNTP's, 1 ul Primer B (5'-GTT TCC CAG
TCA CGA TC 100 pm/ul), 1 nl Taq polymerase (QIA-
GEN) plus 63 p1 of RNAse/DNAse-free water. The follow-
ing amplification/nucleotide incorporation program was
used: 92°C for 30 s, 40°C for 30 s, 50°C for 30 s, 72°C
for 1 min x 34 cycles. A confirmatory agarose gel was run
with 5 p1 of PCR product to visualize the DNA and con-
firm the size range of ~300-1000 bp in length.

PCR amplified anti-v5 and IgG ChIP isolated DNA was
purified using the CyScribe GFX Purification Kit (Amer-
sham, catalogue # 27-9602-02). DNA was resuspended
and vortexed in vials containing Alexa 647 (green fluores-
cent) or Alexa 555 (red fluorescent) dye (Molecular
Probes) in 2 pul 100% DMSO (Sigma). Following com-
plete dissolution of the dye 8 u1 aa-dUTP was added and
the sample was vortexed and incubated for 1 hour at room
temperature in the dark. Following dye-coupling, samples
were purified separately using the CyScribe GFX Purifica-
tion Kit (Amersham) and the eluent volume reduced to 5
ul for hybridization by SpeedVac (45 min, medium heat
setting). Hybridization of the labeled DNA sample to the
UHN 12 k Human CpG Arrays was performed by the
Ohio State University Comprehensive Cancer Microarray
Core Laboratory. Briefly, CPG array slides were prehybrid-
ized in a solution containing 100 p1 of DIG Easy Hyb
solution (Roche), 5 pl of 10 mg/ml calf thymus DNA
(Invitrogen) and 5 p1 of 10 mg/m1 L yeast tRNA (Invitro-
gen) at 65°C for 2 min and then cooled to room temper-
ature. The hybridization solution (85 pl total volume)
containing the pooled Alexa 647 and Alexa 555 labeled
DNA was mixed and incubated at 65°C for 2 min, cooled
to room temperature and the pipetted onto the CPG array
slides. A 24 x 60 mm glass coverslip (Corning) was placed
over the hybridization droplet and the arrays was place
into a hybridization chamber containing a small amount
of DIG Easy Hyb solution in the bottom to maintain a
humid environment. The arrays were incubated in a 37°C
incubator for 18 hours. After hybridization, the slides
were sequentially washed with 1x SSC and 0.1% SDS for
15 min in 50°C water bath, 1x SSC, and 0.1x SSC at room

http://www.biomedcentral.com/1471-2199/9/83

temperature. Slides were spun dry at 640 rpm for 15 min
and the fluorescent signal scanned using a GenePix 4000B
scanner. For each independent experiment the v5-anti-
body-ChIP DNA and the mouse IgG-ChIP control DNA
fluro dye labeling was swapped to reduce the effect of dye
bias on the microarray data. A 2 fold hybridization signal
intensity (antiv5 ChIP vs the IgG ChIP) was used to iden-
tify C/EBP3-v5 binding targets. Only those spots satisfying
the 2 fold cut-off value in both of the two dye swapping
microarray experiments were used for downstream bioin-
formatics analysis. Array spots with a size (diameter) less
than 70% of the normal size or having a signal-to-noise
ratio of less than 2.5 fold were eliminated from the analy-
sis. We also determined that no reliable signal was pro-
duced from control spots containing Arabidopsis DNA. The
conventional ChIP assays were performed by isolation of
C/EBP%-associated (C/EBP3-v5) genomic DNA using the
Chromatin Immunoprecipitation Assay Kit (Upstate) and
following Upstate ChIP protocols.

Bioinformatic and statistical analysis

CGI microarray gene information was obtained from the
UHN Microarray Center's CpG Island Database http://
data.microarrays.ca/cpg/. Genome sequences and annota-
tions were obtained from the UCSC Genome Bioinfor-
matics Site http://genome.ucsc.edu. All CGI hits were
mapped to promoter, exonic, intronic, and intergenic
regions according to the locations of RefSeq genes. Pro-
moters were defined as 5 kb upstream to the annotated
translation start sites. Statistical analysis was performed
using Excel based software. Functional gene categories
were identified and Functional Annotation Clustering
performed using resources available at the Database for
Annotation, Visualization and Integrated Discovery
(DAVID)  http://niaid.abcencifarf.gov/.  Hypothetical
genes and genes without GO assignments are not shown.
The Alibaba2 program located at the BIOBASE gene regu-
lation website http://www.gene-regulation.com was used
to identify potential C/EBP binding sites within the target
promoters. Information about C/EBP family transcription
factors was obtained from TRANSFAC 7.0-Public database
in the BIOBASE website. Three independent experiments
were performed.

Reverse transcription -PCR (RT-PCR)

Total RNA was isolated using RNABee (TelTest, Inc.). One
g RNA samples were treated with amplification grade
DNase I and reverse transcribed with an oligo(dT) primer
in 20 pl using the SuperScript First-Strand Synthesis Sys-
tem for RT-PCR from Invitrogen. One p1 ¢cDNA aliquots
were amplified by gene specific primers. PCR amplifica-
tion products were analyzed by agarose gel electrophore-
sis, and photographed using an Alpha Innotech Imagine
System.

Page 14 of 16

(page number not for citation purposes)


http://data.microarrays.ca/cpg/
http://data.microarrays.ca/cpg/
http://genome.ucsc.edu
http://niaid.abcc.ncifcrf.gov/
http://www.gene-regulation.com

BMC Molecular Biology 2008, 9:83

mRNA isolation and Real Time PCR

Total mRNA was isolated using RNAzol B (Tel-Test, Inc.,
Friendswood, TX) according to the manufacturer's proto-
cols. Total mRNA (1 pg) was reverse transcribed using the
reverse transcriptase kit (Invitrogen, Carlsbad, CA). The
reverse transcription products were amplified by Real-
time PCR using the LightCycler® 480 Real-Time PCR Sys-
tem (Roche, Indianapolis, IN). Amplification was per-
formed in a total volume of 20 pL containing 10 pL of a
2xSYBR Green PCR master mix, 0.2 uL of forward and
reverse primers and 1 pL. cDNA in each reaction. PCR spe-
cificity was verified by assessing the melting curves of each
amplification product. Real-time PCR data were normal-
ized to the glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA control. The primers used are presented
in Table 2. The fold change in specific mRNA levels was
calculated using the comparative CT (AACT) method.
Results presented as mean + SEM of the fold changes
derived from three experiments with triplicate analyses
performed for each treatment.
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