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Abstract

Background: The piggyBac transposable element is a popular tool for germ-line transgenesis of
eukaryotes. Despite this, little is known about the mechanism of transposition or the transposase
(TPase) itself. A thorough understanding of just how piggyBac works may lead to more effective use
of this important mobile element. A PSORTII analysis of the TPase amino acid sequence predicts a
bipartite nuclear localization signal (NLS) near the c-terminus, just upstream of a putative ZnF
(ZnF).

Results: We fused the piggyBac TPase upstream of and in-frame with the enhanced yellow
fluorescent protein (EYFP) in the Drosophila melanogaster inducible metallothionein protein. Using
Drosophila Schneider 2 (52) cells and the deep red fluorescent nuclear stain Draqg5, we were able
to track the pattern of piggyBac localization with a scanning confocal microscope 48 hours after
induction with copper sulphate.

Conclusion: Through n and c-terminal truncations, targeted internal deletions, and specific amino
acid mutations of the piggyBac TPase open reading frame, we found that not only is the PSORTII-
predicted NLS required for the TPase to enter the nucleus of S2 cells, but there are additional
requirements for negatively charged amino acids a short length upstream of this region for nuclear
localization.

Background nally demonstrated by utilizing the baculovirus genome

piggyBac is a short repeat, target-site-specific transposable
element originally isolated as mutational insertions
within baculovirus genomes that originated from the
infected TN-368 cells (Trichoplusia ni: Lepidopteran) [1].
This 2.4 kb transposable element is bounded by an asym-
metric repeat configuration consisting of terminal 13 bp
and sub-terminal 19 bp inverted repeats separated by
either a 5' 3 bp or 3' 31 bp spacer [1]. The single piggyBac
open reading frame is 1783 bp long, coding for a protein
of 594 amino acids with a predicated mass of 68 kDa
[1,2]. TPase catalyzed movement of piggyBac was origi-

in transfected Spodoptera frugiperda cell cultures as a target
for the transposed DNA, and subsequently repeated using
simple and rapid tests such plasmid excision assays [2]
and interplasmid transposition assays which test for the
removal of transposed DNA and its subsequent reinser-
tion into a different plasmid, respectively. The tests can be
carried out in both transfected insect cells and microin-
jected insect embryos [3].

The piggyBac element has several properties that make it
an ideal tool for transgenesis, including site-specific inte-
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gration and excision [2], proven large carrying capacity
[4], controllable remobilization [5], and the ability to
insert in heterochromatin and euchromatin throughout a
genome, in both regulatory and coding regions, greatly
facilitating enhancer trapping and random mutagenesis
studies [5-7]. This is not to say that all of these properties
are shared in all hosts for which they have been assayed.
It should be noted that despite the function of piggyBac in
the cells of Spodoptera frugiperda [8], attempts to transform
the species itself have yet to be successful [9]. Simple plas-
mid-based mobility assays have also shown piggyBac to be
active in human and other primate cells [4,10], in Zea
maize cells [11], in Saccharomyces cerevisiae [12], and in the
embryos of Aedes triseriatus [13], Heliothis virescens [14],
and Danio rerio [10]. Of the species amenable to piggyBac-
mediated germ-line or strain transformation, namely,
Plasmodium falciparum [15], Mus musculus [4], Tribolium
castaneum [5], Anopheles gambiae [16], Ceratitis capita [17],
Drosophila melanogaster [ 18], Bactrocera dorsalis [19], Musca
domestica [20], Lucilia cuprina [21], Bicyclus anynana [22],
Aedes aegypti [23,24], Anopheles albimanus [25], Anopheles
stephensi [26], Bombyx mori [27], Athalia rosae [28], Dro-
sophila willistoni [29], Pectinophora gossypiella [30], Anast-
repha suspensa [31], Aedes fluviatilis [32], Harmonia axyridis
[33], and the human blood fluke Schistosoma mansoni
[34], remobilization assays have only been attempted for
Aedes aegypti [35], which was unsuccessful, and Tribolium
castaneum [5], and Drosophila melanogaster [6], which both
demonstrated remobilization function. In cases of straight
transgene introduction, for example foreign protein pro-
duction by silkworms, or RNAi studies, stable germ-line
transformation is preferred. However, others situations,
such as enhancer trapping and saturation mutagenesis,
remobilization is desired. It is for these reasons piggyBac is
proving a valuable tool for functional genomics in D. mel-
anogaster [6] and quickly becoming the transposon of
choice for germ line transformation [36].

The piggyBac TPase is the archetype of a family of related
sequences [37] identified from both computer predictions
and EST libraries in a diverse array of organisms such as
Takifugu rubripes, Xenopus, Daphnia, and even Homo sapiens
[38]. At present, five piggyBac transposable element
derived (PGBD) genes, some with multiple isoforms, have
been identified among human ¢cDNA clones (Genbank
acc#: D88259, CR623168, AK074682, AK094816, and
CR597281, respectively) [37]. PGBD3, isolated from
human testis cDNA (Genbank acc#: BC034479), overlaps
with the excision repair cross-complementing 6 gene
(ERCC6), which codes for the cockayne syndrome B pro-
tein, CSB [39]. The first 465 residues of PGBD3 and
ERCC6 (1061 and 1493 amino acids, respectively) are
identical, and occur in the same place on the genome.
Cockayne syndrome is a devastating autosomal recessive
disease marked by premature physical aging, loss of hair,
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UV hypersensitivity, and mental retardation. Other signs
include severe tooth decay, a high predisposition for a
number of cancers, osteoporosis, demyelination of nerv-
ous tissue, calcification of the cortex and basal ganglia,
and neuronal loss [40].

The size of the piggyBac family, its wide utility as a trans-
gene vector, and the patterns of piggyBac related protein
expression in human tissues warrant a deeper investiga-
tion into the function of this obviously critical family of
proteins. Through stepwise mutagenesis we can identify
functional and catalytic domains for the TPase, and gain a
better understanding of the functional properties of other
members of the piggyBac family.

TPase catalyzed integration and excision occurs within the
eukaryotic nucleus, necessitating either diffusion or trans-
port of the protein across the nuclear envelope through
the nuclear pore complexes (NPC). While proteins below
a size threshold of 40-60 kDa can passively diffuse [41]
through these pores, those of greater mass must be
actively transported through pore complexes by nuclear
import proteins [42]. Actively transported proteins
require one or more nuclear localization signals (NLSs)
that facilitate their interaction, either directly or indirectly,
with nuclear transport proteins [43]. However, piggyBac
may also reside in the nucleus using a nuclear retention
signal. In this scenario, piggyBac avoids the requirement
for active nuclear transport and could only enter the
nucleus during mitosis when the nuclear envelope is not
present. While nobody has yet explored the possibility
that transposition may only occur during mitosis, and an
NLS is not needed, other TPases have already been shown
to have NLSs [44-50]. Since the piggyBac TPase has a dem-
onstrated mass of nearly 68 kDa [51], there is no selective
pressure for a nuclear retention signal in the absence of
active transport as TPase cannot passively diffuse out of
the nucleus once entered. We presume that if it is indeed
active in the presence of a nuclear envelope, it requires
active nuclear transport and therefore may contain a NLS.
We therefore find reasonable cause to suspect piggyBac
possesses an active NLS as well.

The mechanism for nuclear localization is highly con-
served among eukaryotes. With the exception of a few spe-
cialized NLSs [52], a cell can recognize the NLS of
exogenous proteins from highly divergent organisms [43].
Of those NLSs that have been identified, the two most
widespread and well characterized are the classic bipartite
and monopartite NLS [53,54]. Both of these signals rely
on a tract of negatively charged amino acids that are essen-
tial for interaction with nuclear importin receptors. The
wide host mobility for piggyBac suggests its TPase pos-
sesses a conserved NLS that conforms to at least one of the
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classical types of motifs and can operate in a large variety
of cells.

Sarkar et al. indicate a PSORTII [55] analysis of the piggy-
Bac TPase predicts a bipartite NLS that falls within a
twenty-one amino acid stretch ('PVMKKRTYCTYCPSKIR-
RKAN") of the C-terminus including residues 551 through
571 [37]. This region of the TPase, in fact, contains four
patterns matching characterized NLSs.

In this report we define the piggyBac NLS by constructing
a series of piggyBac truncations and deletions fused in-
frame and upstream of the fluorescent protein EYFP and
comparing their nuclear localizing properties to that of a
full length TPase-EYFP fusion in transfected Drosophila S2
cells. Using the PSORTII prediction as a starting point, we
demonstrate that the regions of the TPase responsible for
nuclear localization are located within the carboxy termi-
nal 94 amino acids. Deletion of the PSORTII-predicted
bipartite NLS, residues 551-571, eliminates nuclear tar-
geting of the TPase-EYFP fusion protein. However, this
sequence does not act as a NLS when placed at the amino-
terminus of EYFP. The minimum deletion fragment of the
piggyBac TPase required for nuclear localization of the
EYFP protein includes the last 94 amino acids (501-594).
Additional mutation analyses of piggyBac TPase-EYFP
fusions further refine the NLS to within amino acids 501-
571.

Point mutation analysis identifies at least three individual
amino acids located a short distance upstream of the pre-
dicted NLS that are essential for nuclear import, but like
the predicted NLS, are alone insufficient for nuclear local-
ization. Together these data establish that while the pre-
dicted NLS alone is too short to form a recognizable active
domain, in its native context within the TPase protein it
functions in the translocation of the protein to the nuclear
compartment.

Results

Full Length piggyBac

A PSORTII analysis of the predicted amino acid sequence
for the piggyBac TPase identified NLS patterns between res-
idues 551 and 571 that matched two known consensus
signals. The first identified sequence, located at amino
acids 554 through 571, is a region that is similar to the
bipartite NLS originally defined for Xenopus nucleoplas-
min [56] that is composed of 2 basic regions separated by
a non-specific 10 residue spacer. This particular region of
the TPase is so concentrated with basic amino acids that
the bipartite consensus match can begin at either amino
acid 554 or 555. In fact, the presence of basic residues in
this region is so ubiquitous that, in addition to the bipar-
tite signal, two regions consistent with the requirements
for a monopartite NLS can be found in the same stretch:
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'PVMKKRT' and 'PSKIRRK' at positions 551-557 and
563-569, respectively. These sequences resemble the
monopartite signal exemplified by the SV40 large T anti-
gen, which is defined as a proline followed by a basic
region containing either arginine or lysine in 3 out of 4
residues, and within 3 residues of the original proline
[54]. This result indicates that piggyBac has up to four pos-
sible classic NLS patterns in this short 21 amino acid
region.

Experimental identification of nuclear localization signals
To obtain representative examples of what to expect with
a nuclear localizing protein, and a diffuse protein, we first
imaged the full piggyBac protein fused to EYFP, and the
EYFP protein alone. Confocal imaging confirmed nuclear
localization of the 96.5 kDa full length piggyBac TPase-
EYFP fusion protein, coded by pMT/pBac-EYFP (fig. 1; fig.
2). The nucleus was readily evident in each picture,
marked by the red emitting nuclear stain, Draq5. Yellow
fluorescence was entirely absent from the cytoplasm and
concentrated in the nucleus, which was visible by staining
with Draq5. The 96.5 kDa pBac-EYFP fusion protein was
well over the molecular weight threshold for passive dif-
fusion of proteins into the nucleus, suggesting active
nuclear transport was required. The distribution pattern
observed for the pBac-EYFP product was distinctly differ-
ent from that of the 28 kDa EYFP non-fusion protein con-
trol which yielded an evenly dispersed fluorescence in
both cytoplasmic and nuclear compartments consistent
with passive diffusion into and out of the nucleus (fig. 2).
These results confirm an active nuclear localizing capabil-
ity for the piggyBac TPase that facilitates nuclear import of
proteins beyond the passive diffusion limit of 40-60 kDa.

Truncation mutation analysis

We constructed both amino-terminal and carboxy-termi-
nal deletion series for the piggyBac TPase to experimentally
verify the location of a functional NLS within the 1782 bp
piggyBac TPase open reading frame. We deleted piggyBac
from either side in roughly 300 bp increments (fig. 1:
PMT/NLS-1 through pMT/NLS-10) in two separate series
of deletions. Each of these deletion series were fused
upstream and in-frame with EYFP, and positioned for
expression within the pMT vector.

The compartmentalization pattern for each expressed
TPase truncation-EYFP fusion protein from either the N-
terminal or C-terminal series was observed following tran-
sient expression of transfected S2 cells using confocal
microscopy. Cells transfected with vectors expressing
fusion proteins that retained the 94 carboxy-terminal
amino acids of piggyBac exhibited yellow fluorescence that
concentrated within the nucleus, while no significant
nuclear localization was evident for EYFP fusions that did
not contain these 94 carboxy-terminal amino acids. The
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PVMKKRTYCTYCPSKIRRKAN

1 100 200 300 400 500 594

| | | | | | | Nuclear?
PMT/pBac-EYFP | N
PMT/NLS-1 N
PMT/NLS-2 4
PMT/NLS-3 +
PMT/NLS-4 A1-400 +
pMT/NLS-5 A1-500 +
pMT/NLS-6 A497-594 -
pMT/NLS-7 A401-594 -
pMT/NLS-8 A301-594 -
pMT/NLS-9 A197-594 -
pMT/NLS-10 A102-594 -

Figure |

piggyBac truncations. The piggyBac TPase is shown as an N-terminal fusion to the enhanced yellow fluorescent protein

(EYFP). The PSORTII-predicted NLS region is indicated by solid black. The name of each vector is to the left of the visual dia-
gram with the actual changes made listed to the right of the diagram. The observed nuclear localization pattern is indicated in
the right column. Sizes and distances are not necessarily to scale. Numbers represent amino acid positions with respect to the

piggyBac start codon.

smallest contiguous TPase fragment sufficient to yield dis-
tinct nuclear localization activity was the c-terminal 94
amino acid sequence expressed in pMT/NLS-5 (A1-500;
fig. 2), while the largest TPase fusion of the C-terminal
deletion series that failed to localize to the nucleus was
PMT/NLS-6 (A497-594; fig. 2). The difference in localiza-
tion patterns between the diffuse EYFP-only protein and
the larger, nuclear-concentrated pMT/NLS-5 expressed
protein was plainly visible. These results demonstrated

that the nuclear localization signal must be located down-
stream of amino acid 500.

Analysis of the carboxy-terminus

The N-terminal and C-terminal truncations provided evi-
dence that the carboxy terminal 94 amino acids of the pig-
gyBac open reading frame were both necessary and
sufficient to cause the nuclear localization of piggyBac.
This sequence included the PSORTII-predicted NLS. We
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Transmitted EYFP Draq5 Overlay

NLS-13
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Confocal microscopy. Confocal microscope images for vectors described in the text. Vector names and their corresponding
images are shown. The first column is a transmitted black and white image of the cell. The second column shows EYFP fluores-
cence pattern observed as a fusion protein with the piggyBac TPase. The third column is the nuclear stain Draq5 while the
fourth column is an overlay of the EYFP fluorescence and Draq5 stain. All microscopy work was performed approximately 48
hours post induction. All images are the result of 6 lines averages performed by the imaging software. Each image is zoomed
and cropped on the cell or cells of interest but all remain otherwise unenhanced and unaltered.

analyzed this region in detail to more accurately define
the boundaries and function of the predicted piggyBac
NLS. We constructed an in-frame fusion of the NLS-dele-
tion upstream of the EYFP ORF to create pMT/NLS-11
(A551-571; fig. 3). Deletion of the entire PSORTII-pre-
dicted NLS eliminated expressed fluorescence from the
nucleus of S2 cells (fig. 2) which confirmed the necessity
of the PSORTII-predicted segment for nuclear localiza-
tion. Interestingly, this fusion protein appeared to aggre-
gate, forming small but distinct foci in the cytoplasm
when viewed under higher magnifications. This aggrega-
tion differed significantly from the distribution obtained
with the expressed EYFP control protein, which exhibited
a diffused, homogenous fluorescence throughout both
the nucleus and cytoplasm.

Next, we directly investigated the functionality of solely
the PSORTII-predicted piggyBac NLS by fusing this short
encoding segment between amino acids 551 and 571,
inclusive, to EYFP to yield pMT/NLS- 12 (A1-550, A572-

594; fig. 3). Although the molecular weight of the protein
(28 kDa) was below the 40-60 kDa threshold for passive
diffusion into the nucleus, the resulting protein was
observed in both the nucleus and the cytoplasm (fig. 2),
clearly different from pMT/pBac-EYFP. The failure of this
fusion protein to concentrate solely in the nucleus indi-
cated an inability of these residues to form a functional
NLS domain, suggesting the function of this sequence is
context-dependent.

Importance of sequences flanking the NLS

Since fusion of TPase amino acids 551 through 571 to the
N-terminus of EYFP did not allow direct confirmation of
a NLS function for the PSORTII-predicted sequences,
additional flanking amino acids likely contribute to the
activity of this sequence, most likely through facilitation
of proper folding. To confirm this hypothesis we con-
structed two TPase deletion mutations that omitted
amino acids either upstream or downstream of the pre-
dicted NLS by PCR amplification of the pMT/pBac-EYFP
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497 52 536 550 572 594
f I | I | Nuclear?
pMT/pBac-EYFP +
pMT/NLS-11 A551-571 -
pMT/NLS-12 A1-550;A572-594 -
pMT/NLS-13 A579-594 +
pMT/NLS-14 A497-550 -
pMT/NLS-15 A497-522:A572-594 +
PMT/NLS-16 A497-536:A572-594 ;
K525A
pMT/NLS-17 A497-522:A572-594 .
R526A
pMT/NLS-18 A497-522:A572-594 i
Figure 3

piggyBac mutation and truncation refinements. Vectors used in the investigation of the nuclear localization pattern of
piggyBac in and around the PSORTII-predicted NLS. Deletions are represented by bridged lines. Mutations are specifically indi-
cated. The name of each vector is to the left of the visual diagram with the actual changes made listed to the right of the dia-
gram. The observed nuclear localization pattern is indicated in the right column. Sizes and distances are not necessarily to
scale. Numbers represent amino acid positions with respect to the piggyBac start codon.
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plasmid using inverse-facing primers bounding the area to
be deleted. Deletion mutation pMT/NLS-13 (A572-594;
fig. 3) contained all the amino acids upstream of the pre-
dicted NLS. The pattern of fluorescence obtained with this
deletion-fusion (fig. 2) was indistinguishable from that of
the full length piggyBac-EYFP fusion protein, demonstrat-
ing that amino acids downstream of the predicted NLS are
dispensable for efficient nuclear trafficking.

A second deletion-fusion, pMT/NLS-14 (A497-550; fig.
3), removed 54 residues upstream of the predicted NLS.
The pMT/NLS-14 fusion protein (fig. 2) remained dis-
persed in the cytoplasm, demonstrating that the 54 amino
acid sequence upstream of the NLS is likely involved in
the proper presentation or functioning of the NLS
domain.

Two additional deletion fusions in this 50 amino acid
flanking sequence were also examined for possible contri-
butions to the nuclear localization activity. The specific
boundaries of the deletion constructs pMT/NLS-15 and
PMT/NLS-16 were chosen based upon the presence of a
proline residue at positions 522 and 537, respectively.
Deletion fusions pMT/NLS-15 (A497-522, A572-594;
fig. 3) and pMT/NLS-16 (A497-536, A572-594; fig. 3)
were created by deleting portions of the piggyBac open
reading frame between amino acid 497 and either proline
522 or proline 537, inclusive, utilizing the deletion plas-
mid, pMT/NLS-13 as the template. pMT/NLS-15 trafficked
efficiently to the nucleus (fig. 2) while the fusion protein
lacking the more lengthy segment, pMT/NLS-16,
remained confined to the cytoplasm (fig 3). We empha-
size that both of these fusion proteins had predicted
masses well over the size threshold required for passive
diffusion into the nucleus. Taken as a pair, the localiza-
tion patterns of these two deletion proteins could be inter-
preted to indicate the NLS is between amino acids 523
and 535. However, pMT/NLS-11 also fails to enter the
nucleus, suggesting that both these regions are required
for nuclear localization. These results identified the seg-
ment of piggyBac required for proper presentation of the
predicted NLS as contained somewhere between amino
acids proline 522 and glutamic acid 550.

Importance of basic amino acids proximal to the predicted
NLS

The inability of the isolated TPase PSORTII-predicted NLS
motif to cause nuclear localization suggested a role for the
adjacent amino acids in the formation of a functional
nuclear localization motif. Our deletion plasmids pMT/
NLS-15 and pMT/NLS-16 confirmed the requirement for
upstream amino acids. Investigation of the area between
proline 522 and glutamic acid 550 revealed three basic
amino acids K525, R526, and R529. These basic amino
acids lie among a stretch of largely neutral residues.
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Substitution of these residues with neutral amino acids
would reveal any specific requirement for these in the
nuclear localization of piggyBac. Two plasmids were cre-
ated: pMT/NLS-17 (A497-522, A572-594, K525A,
R526A, R529A; fig. 3), and pMT/NLS-18 (A497-522,
A572-594, R526A, R529A; fig. 3). Simple replacement of
these amino acids with uncharged residues disrupted the
nuclear localization activity of fusion proteins that were
otherwise trafficked to the nucleus, including those con-
taining the predicted NLS (fig. 2). The altered fluorescence
patterns for pMT/NLS-17 and pMT.NLS-18 reveals that
while the bipartite signal may contribute the core nuclear
localization activity to piggyBac TPase, additional flanking
amino acids are somehow involved in the proper function
of this signal.

Discussion

Eukaryotic proteins that bind with or interact with DNA
must be capable of entering the nuclear compartment.
NLSs have been identified in several eukaryotic TPases
including Hermes of Musca domestica [44], mariner of Dro-
sophila mauritania [45], BmTc1 of Bombyx mori [46], Mu
[47] and Activator [48] of Zea maize, Tagl of Arabidopsis
Thaliana [49], and the reconstructed salmonid transpo-
son, Sleeping Beauty [50]. Previous studies have demon-
strated the nuclear localization capacity of Minos of D.
hydei [57]. Analysis of Minos by PSORTII predicts 4 sepa-
rate amino acid sequences consistent with standard pat-
terns. These are monopartite signals: 'PRDKRQL', 'KKKR',
and 'PKRVKCV' at amino acid positions 67, 130, and 325
respectively and a bipartite signal, 'RKRSETYHKD-
CLKRTTK', at 172. Many prokaryotic recombinases and
integrases exhibit enhanced activity in eukaryotic cells
when they are linked with eukaryotic nuclear importation
signal sequences. For example, recombination activity of
the ¢ C31-integrase is enhanced in eukaryotic cells when
the SV40 T-antigen archetypical NLS is fused to the car-
boxy terminus [58]. Because the piggyBac TPase is larger
than the threshold size for passive diffusion it also must
be actively targeted to the nucleus to be effective in target
site recognition and transposition.

A PSORTII examination of the piggyBac TPase sequence
predicted multiple mono- and bi-partite NLSs. The classic
pat4 monopartite signal pattern is composed of three or
four basic residues (K or R) followed by a H or P. Addi-
tionally, the monopartite signal can adhere to the pat7
pattern, having a P residue followed closely by a four res-
idue stretch that contains at least three basic amino acids
[54]. The bipartite signal follows a somewhat more
defined consensus pattern with two basic amino acids fol-
lowed by a ten residue spacer that connects to at least
three out of five basic amino acids [56]. There is consider-
able variability in the ten residue spacer, allowing for a
number of different motifs to be located within the bipar-
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tite NLS signal. Our data cannot rule out that either or
both of the predicted monopartite signals are the true
NLSs of the piggyBac TPase each with a requirement for the
upstream basic amino acids for proper function.

The NLSs and nucleic acid binding domains of most pro-
teins that exhibit both activities either overlap or are
located immediately adjacent to each other [53]. This fre-
quent overlap appears to result from co-evolution of the
DNA interacting domain and nuclear localization signal
for a given protein [59]. Several examples of overlap or
close proximity between the two signals have been charac-
terized [60]. In some cases the NLS may be too short to
form an independent functional domain and may have
additional requirements for adjacent residues to present a
successful secondary structure for nuclear targeting. For
example, the bipartite NLS of the human androgen recep-
tor is fully dependent on the presence of the overlapping
ZnF, which itself is responsible for DNA binding [61].
Cokol and colleagues (2000) analyzed publicly available
protein motif information and concluded that for 90% of
proteins in which both the DNA binding domain and NLS
are known, these signals overlap. The flexibility of the ten
residue spacer in the bipartite signal allows different DNA
sequences to be targeted while preserving the underlying
NLS pattern and function.

In fact, the location of the predicted bipartite NLS and the
second predicted monopartite NLS of the piggyBac TPase
overlap a ZnF motif 'CTYCPSKIRRKANASCKKCK-
KVICREHNIDMCQSCF' found at the very C-terminus of
piggyBac TPase starting at residue 559. This ZnF is a novel
match for the well-known RING-finger motif which, in
the case of piggyBac TPase, starts in the spacing region of
the bipartite signal and extends downstream to the end of
the TPase. ZnFs are classically implicated in the DNA
binding, while the RING-finger variant is more apt to be
part of a protein-protein domain, a function that piggyBac
would require either by itself or through interacting host
factors in order to carry out transposition [62]. Previous
work by our lab with western blots, co-immunoprecipita-
tion, and the yeast two-hybrid system suggests a mul-
timerization capacity of the TPase (unpublished). For
instance, piggyBac has a proven ability to catalyze the
transposition of a wide range of load sizes, implying that
domains which interact with the piggyBac ITRs are not at a
fixed distance relative to each other. Additionally, when
used in a cartridge with one upstream ITR and a choice of
either a proximal or a distal downstream ITR, piggyBac
shows no particular preference for either ITR [51].

Deletion of the PSORTII-predicted bipartite NLS, located
between amino acids 551 and 571, inclusive, eliminates
nuclear targeting of the piggyBac TPase-EYFP fusion pro-
tein. However, addition of this same sequence at the
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amino-terminus of EYFP is insufficient to provide nuclear
targeting. Fusion of a series of systematic deletions from
both the carboxy and amino termini of the piggyBac TPase
upstream of the marker protein EYFP allows us to define
the minimum sequence sufficient for nuclear trafficking
as the carboxy-terminal 94 residues. In addition, deletion
of the last 23 amino acids of the piggyBac open reading
frame, encompassing everything downstream of the
bipartite NLS, demonstrates this region is unnecessary for
nuclear localization. The fact that piggyBac is active in a
wide range of host cells and species would indicate that
any NLS it possesses is readily recognized by conserved
nuclear importing machinery. We find no logical reason
to suspect that an NLS displaying such a wide tropism
would be any less conserved. We therefore conclude a
functional NLS is contained within the 71 amino acids
from 501 to 571, and in light of the wide activity of piggy-
Bac, the active NLS is most likely one or more of the 4
common patterns predicted by PSORTII.

Our results also demonstrate that a segment of the TPase
upstream of the predicted bipartite NLS is also essential
for nuclear localization. We therefore attempted to define
the involvement of these upstream sequences using point
directed mutation analysis and further deletions.

The amino acid proline breaks the periodic structure of a-
helices and B-sheets, dividing the structure of a protein
from one functional domain to the next [63]. If the NLS
of the piggyBac TPase lies within a larger conformational
domain, then the start of such a domain may be indicated
by a proline. Examination of prolines located upstream
from the predicted bipartite signal for their possible
involvement in delineating regions responsible for the
proper presentation of the piggyBac NLS defined a smaller
region comprised of amino acids 522 through 571 that is
sufficient for nuclear localization. This region includes the
predicted bipartite NLS and the 29 amino acids immedi-
ately upstream. Nuclear localization was unaffected by
deletions upstream of proline-522, but removal of the res-
idues between proline-522 and proline-537 completely
abolished nuclear localization. However, these data alone
cannot rule out an alternate interpretation that all four
PSORTII-predicted NLSs are, in fact, necessary but non-
functional, and that the upstream flanking basic amino
acids constitute the true NLS by interacting in a novel
manner with conserved importin machinery.

Alteration of the basic amino acids between proline-522
and proline-537 confirmed their importance in nuclear
trafficking. The changes K525A;R526A;R529A and
R526A;R529A each prevented the EYFP fusion proteins
from entering the nucleus. Therefore, these arginines are
somehow involved in the formation of a functional
nuclear localizing domain within the context of a pBac-
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EYFP fusion. This requirement for proximal amino acids
for the function of an NLS is not without precedent [61].

Conclusion

We conclude from these findings that the piggyBac TPase
has a functional NLS located between amino acids 551
and 571. However, our deletion and mutation constructs
do not allow for a complete examination of the function-
ality of the monopartite signals either alone or in tandem,
separate from the predicted bipartite NLS. Some NLSs
function with non-native proteins when they are simply
appended to the C-terminus [58], and some require flank-
ing amino acids from their native context to retain nuclear
import activity [61]. This short segment of amino acids in
the piggyBac TPase is most likely the critical component of
the nuclear localization function through its binding,
either directly or through an adapter molecule, to a mem-
ber of the importin family of proteins.

We have demonstrated a requirement for the presence of
at least two basic amino acids located proximally
upstream of the predicted bipartite signal. One conclu-
sion which cannot be ruled out by these data is that these
upstream basic amino acids could constitute a novel NLS,
with a requirement for the predicted NLS in an auxiliary
capacity. To hold true, this interpretation requires all four
PSORTII-predicted NLSs to be non-functional and the
new putative NLS formed by these amino acids to be con-
served across kingdoms and recognized by all cells in
which piggyBac functions. The role of NLSs can be influ-
enced by proximal amino acids or tertiary configurations.
Therefore, a simpler interpretation of these data is that
one or more of the four predicted NLSs is functional and
the identified upstream arginines are required for their
activity.

Finally, sequencing analysis reveals the presence of an
overlapping ZnF motif. When taken in the context of pre-
vious studies [53] this co-localization suggests the puta-
tive ZnF motif may constitute the piggyBac DNA binding
domain. This is a logical arrangement when considered in
the context of TPase evolution: allowing a TPase to carry
out excision and reinsertion in the nucleus even while its
sequence recognition sites are changing, giving rise to new
family members. There is also the possibility that the ZnF
may not function in DNA binding at all, but may be
responsible for protein-protein interactions such as
dimerization of the piggyBac TPase, binding host auxiliary
factors, or heterochromatin interactions. Further investi-
gation into this ZnF will need to be performed to elucidate
its exact function, if any, in piggyBac transposition.
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Methods

Plasmid construction

The EYFP open reading frame was obtained through PCR
amplification of pXL-Bac-EYFP [64] using Pfx high-fidelity
polymerase (Invitrogen, Carlsbad, CA) with primers sup-
plying EcoRI (Note: all restriction enzymes obtained from
New England Biolabs, Ipswich, MA) and Notl restriction
sites at the 5' and 3' ends, respectively (table 1). The result-
ing PCR product was band isolated from a 9% agarose
TAE gel, purified with QIAquick Gel Extraction columns
(Qiagen, Valencia, CA) and digested with Notl and EcoRI.
The inducible D. melanogaster metallothionein promoter
vector pMT/V5-HisA (Invitrogen) was digested with the
restriction enzymes Notl and EcoRI and treated with calf
intestine alkaline phosphatase. The EYFP open reading
frame was subsequently ligated into this vector to obtain
PMT/EYFP. Sequencing and restriction analysis of the
plasmid verified the presence and integrity of the EYFP
open reading frame in pMT/EYFP. Functional fluores-
cence was tested by transient transfection of S2 cells with
Cellfectin (Invitrogen) according to manufacturer's proto-
col. Expression of EYFP was induced by addition of
CuSO, (Sigma-Aldrich, St Louis, MO) to the medium at a
final concentration of 500 uM. Fluorescence was observed
with a Nikon Diaphot microscope.

The native piggyBac open reading frame sequence was PCR
amplified from p3E1.2 [1] with end specific primers sup-
plying an EcoRlI site at either end (table 1). The PCR prod-
uct was band isolated in 9% agarose TAE gel and digested
with EcoRI. The vector pMT/EYFP was linearized with
EcoRl, treated with calf intestine alkaline phosphatase and
ligated to the piggyBac open reading frame to create a
fusion consisting of the full length piggyBac open reading
frame joined on its C-terminus to EYFP to form pMT/
pBac-EYFP.

The vector pMT/EYFP was cut with EcoRI and treated with
calf intestine alkaline phosphatase in preparation for the
insertion of piggyBac sequences. The C-terminal piggyBac
open reading frame truncations pMT/NLS-1 through
PMT/NLS-5 (A1-100, A1-200, A1-302, A1-400, and A1-
500, respectively) were all obtained by PCR amplification
of p3E1.2 with Pfx high-fidelity polymerase, using a for-
ward primer specific for the start of the piggyBac open
reading frame and a reverse primer specific for each trun-
cation as listed in table 1. The N-terminal truncations
PMT/NLS-6 through pMT/NLS-10 (A497-594, A401-
594, A301-594, A197-594, and A102-594, respectively)
were also PCR amplified using a forward primer specific
for each truncation (table 1) and a reverse primer specific
for the end of the piggyBac open reading frame minus the
stop codon.
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Table I: Primers and oligos used in this study

http://www.biomedcentral.com/1471-2199/9/72

Primer |

Primer 2

pMT/EYFP ACTGGAATTCATGGTGAGCAAGGGCGAGGAGCTG
pMT/pBac-EYFP TAGAATTCTCGTGACTAATATATAATAAAATGGGT

pMT/NLS-I AAGAATTCGGGATGGCTTCAAAGTCCACGAGGCGTAGC
pMT/NLS-2 CAGAATTCGTCATGGATCGATCTTTGTCAATGGTGTA
pMT/NLS-3 TGGAATTCAACATGCGTACGAAGTATATGATAAATGGA
pMT/NLS-4 TTGAATTCAACATGGCCCTTACTCTCGTCTCATATAAA
pMT/NLS-5 AGGAATTCAGTATGGAAAAATTTATGAGAAACCTTTAC
pMT/NLS-6 TAGAATTCTCGTGACTAATATATAATAAAATGGGT
pMT/NLS-7 TAGAATTCTCGTGACTAATATATAATAAAATGGGT
pMT/NLS-8 TAGAATTCTCGTGACTAATATATAATAAAATGGGT
pMT/NLS-9 TAGAATTCTCGTGACTAATATATAATAAAATGGGT
pMT/NLS-10 TAGAATTCTCGTGACTAATATATAATAAAATGGGT
pMT/NLS-11 ATATGGATCCGCATCGTGCAAAAAATGCAAAAAAGTT
pMT/NLS-13 TTTGGATCCATTTGCCTTTCGCCTTATTTTAGAGGGGC
pMT/NLS-14 CCCGGATCCAACCTTTTCTCCCTTGCTACTGACATTATGGC
pMT/NLS-15 TTTTGAGCTCAACCTTTTCTCCCTTGCTACTGACATTATGGC
pMT/NLS-16 TTTTGAGCTCAACCTTTTCTCCCTTGCTACTGACATTATGGC
pMT/NLS-17 TTTTGAGCTCAACCTTTTCTCCCTTGCTACTGACATTATGGC
pMT/NLS-18 TTTTGAGCTCAACCTTTTCTCCCTTGCTACTGACATTATGGC
pMT/NLS-12 AATTCGTAATGGGGCCAGTAATGAAAAAACGTACTTACTGTAC

TTACTGCCCCTCTAAAATAAGGCGAAAGGCAAATG
AATTCATTTGCCTTTCGCCTTATTTTAGAGGGGCAGTAAGTAC
AGTAAGTACGTTTTTTCATTACTGGCGCCATTACG

CTAGAGTCGCGGCCGCTTTACTTGTA
ATTAGTGAATTCGAAACAACTTTGGCACATATC
ATTAGTGAATTCGAAACAACTTTGGCACATATC
ATTAGTGAATTCGAAACAACTTTGGCACATATC
ATTAGTGAATTCGAAACAACTTTGGCACATATC
ATTAGTGAATTCGAAACAACTTTGGCACATATC
ATTAGTGAATTCGAAACAACTTTGGCACATATC
CGGAATTCAACCTTTTCTCCCTTGCTACTGAC
AGGAATTCGGGTCCGTCAAAACAAAACATCG
GTGAATTCGTCACACATCATGAGGATTTTTAT
AGGAATTCTGTGGACATGTGGTTATCTTTTCT
GTGAATTCTGAAGTTGACCAACAATGTTTATT
TTTGGATCCCTCTTCAGTACTGTCATCTGATGT
ACC
AAAGGATCCGAAATGGTGAGCAAGGGCGAGG
AGCTG
CCCGGATCCCCAGTAATGAAAAAACGTACTTA
CTGTACTTACTGCCCC
TTTTGAGCTCCCTACTTTGAAGAGATATTTGCG
CGAT
TTTTGAGCTCCCAAATGAAGTGCCTGGTACAT
CAGATG
TTTTGAGCTCCCTACTTTGAAGGCCTATTTGGC
CGATAATATCTCTAATATTTTG
TTTTGAGCTCCCTACTTTGGCCGCTTATTTGGC
CGATAATATCTCTAATATTTTG

Primers used to make each of the vectors described in the text. Vector names are listed on the left with the cooresponding primers used to make
the vector given on the right. In the case of pMT/NLS-12, ordered oligos were used as part of the final vector and not for PCR priming, as described

in materials and methods.

The PCR product bands were isolated by 9% agarose TAE
gel electrophoresis, cut with EcoRI and ligated into the
prepared pMT/EYFP vector to obtain a chimeric open
reading frame consisting of the piggyBac insertions fused
upstream and in-frame with the downstream EYFP.
Sequencing and restriction analysis verified the resulting
ligations.

To obtain the deletion mutations pMT/NLS-11 (A551-
571), pMT/NLS-13 (A572-594), and pMT/NLS-14
(A497-550), pMT/pBac-EYFP was PCR amplified using
Pfx high-fidelity polymerase with inverted primers as
noted in table 1. Briefly, pMT/pBac-EYFP was isolated
from the dam methylating bacteria DH10B and subse-
quently used as a template. The majority of the plasmid
except the deleted section was amplified and the resulting
PCR reaction ethanol precipitated, washed with 70% eth-
anol, and resuspended in nuclease free water. Following
resuspension, the DNA was cut with BamHI to prepare the
product ends for ligation, and Dpnl to digest the template.
After a second ethanol precipitation, 70% ethanol wash,
and resuspension in water, the PCR product was subject to

self-ligation to form the respective plasmids. Restriction
analysis and sequencing confirmed the integrity of the
plasmids.

The deletions pMT/NLS-15 (A497-522, A572-594) and
PMT/NLS-16 (A497-536, A572-594) were created by
PCR amplification of dam methylated pMT/NLS-13 with
inverted primers containing Sacl restriction sites at the 5'
ends (table 1). The PCR products were ethanol precipi-
tated, washed with 70% ethanol, and resuspended in
nuclease free water. Following resuspension, the DNA was
cut with Sacl to prepare the product ends for ligation and
Dpnl to digest the template. After a second ethanol precip-
itation, 70% ethanol wash, and nuclease free water resus-
pension, the PCR product was subject to self-ligation to
form the respective plasmids. Restriction analysis and
sequencing confirmed the integrity of the plasmids.

The plasmids containing the amino acid substitutions,
PMT/NLS-17 (A497-522, A572-594, K525A, R526A,
R529A) and pMT/NLS-18 (A497-522, A572-594, R526A,
R529A) within the pMT/NLS-15 deletion construct were
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made by PCR amplification of dam methylated pMT/NLS-
13 with inverted primers similar to the construction of the
PMT/NLS-15 deletion vector (table 1) Each ligation
resulted in a plasmid containing the A497-522, A572-
594 deletion open reading frame with the amino acid sub-
stitutions R526A, R529A and K525A, R526A, R529A
respectively.

The pMT/NLS-12 (A1-550, A572-594) (fig. 3) fusion vec-
tor was constructed by annealing two oligonucleotides
(table 1), to form a short double stranded DNA segment
corresponding to the upstream and downstream outer
boundaries of the PSORTII-predicted nuclear localization
signal with EcoRI sticky ends. Briefly, 400 pmol of each
oligo were combined in a total volume of 10 pl in a thin-
walled PCR tube and heated by floating in 400 mL of boil-
ing water. The water and oligos were then allowed to cool
to room temperature undisturbed to facilitate annealing
of the two oligos, keeping hairpinning and non-specific
binding to a minimum. pMT/EYFP was then cut with
EcoRI but not phosphatase treated. Combined with a large
molar excess of the oligo mixture and ligated, the resulting
vector was designated pMT/NLS-12.

Cell culture and transfection

D. melanogaster Schneider 2 (S2) cells were grown in Sch-
neider's medium (Gibco, Carlsbad, CA) supplemented
with 10% FBS, 1 mg/mL streptomycin, and 25 pug/mL
amphotericin at 28 degrees. Cells were transfected with
Cellfectin (Invitrogen) using the recommended manufac-
turer protocol. Briefly, sterile coverslips were placed in the
bottom of 9.4 cm? wells and used as the surface for cell
adherence. 1 ml of cells were seeded in at 6 x 10¢/ml in S2
medium supplemented with 10% FBS, 1 mg/mL strepto-
mycin, and 25 pg/mL amphotericin (Sigma-Aldrich). The
cells were allowed to adhere to the coverslip for 3 hours
before undergoing transfection. Adherent cells were
washed twice with serum-free S2 medium and resus-
pended in 800 pl serum-free S2 medium. For each trans-
fection, 3 pl of Cellfectin was hydrated for 15 minutes in
97 ul sterile nuclease free water and added to 5 pg of DNA
in 100 pl nuclease free water for a total volume of 200 pl.
The Cellfectin-DNA mixture was allowed to incubate at
room temperature for 20 minutes and added directly to
the cells in a drop-wise manner followed by agitation to
mix. The cells were incubated 18 hours at 28 degrees then
given fresh S2 medium supplemented with 10% FBS, 1
mg/mL streptomycin, and 25 pg/mL amphotericin, as
well as 500 uM CuSO, (final concentration) to induce
metallothionein promoter activity. Initial EYFP fluores-
cence was detectable at 4 hours post-induction through an
EYFP filter (Chroma Technology Corp cat #40128; Excita-
tion: 500 nm; Emission: 535 nm, Rockingham, VT) on a
Nikon Diaphot (Nikon, Melville, NY) inverted phase con-
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trast microscope, however the cells were analyzed at 48 h
to allow for maximum EYFP signal.

Confocal imaging

To prepare cells for confocal imaging, cells were trans-
fected on coverslips as described above. At 48 hours post-
induction, the media was aspirated from the coverslip,
200 pl of a 10 uM Draqg5 (Biostatus Ltd., Leicestershire,
UK) solution in 1x PBS was placed on the coverslip and
incubated at room temperature for 10 minutes. The cover-
slips were then rinsed gently with 1x PBS and a slide was
prepared with one drop of ProLong Gold antifade reagent
(Invitrogen). The coverslip was sealed to the slide with
nail lacquer and imaged with a Leica TCS SP2 True Con-
focal Scanner (Leica Microsystems, Bannockburn, IL) con-
focal microscope for EYFP and Draq5 fluorescence.
Digital images represent 6 line averages and are cropped
but otherwise remain unprocessed in the final images for
publication.
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