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Abstract

Background: RNA Polymerase I| (RNAP Il) is recruited to core promoters by the pre-initiation
complex (PIC) of general transcription factors. Within the PIC, transcription factor for RNA
polymerase |IB (TFIIB) determines the start site of transcription. TFIIB binding has not been
localized, genome-wide, in metazoans. Serial analysis of chromatin occupancy (SACO) is an
unbiased methodology used to empirically identify transcription factor binding regions. In this
report, we use TFIIB and SACO to localize TFIIB binding regions across the rat genome.

Results: A sample of the TFIIB SACO library was sequenced and 12,968 TFIIB genomic signature
tags (GSTs) were assigned to the rat genome. GSTs are 20-22 base pair fragments that are derived
from TFIIB bound chromatin. TFIIB localized to both non-protein coding and protein-coding loci.
For 21% of the 1783 protein-coding genes in this sample of the SACO library, TFIIB binding mapped
near the characterized 5' promoter that is upstream of the transcription start site (TSS). However,
internal TFIIB binding positions were identified in 57% of the 1783 protein-coding genes. Internal
positions are defined as those within an inclusive region greater than 2.5 kb downstream from the
5'TSS and 2.5 kb upstream from the transcription stop. We demonstrate that both TFIIB and TFIID
(an additional component of PICs) bound to internal regions using chromatin immunoprecipitation
(ChIP). The 5' cap of transcripts associated with internal TFIIB binding positions were identified
using a cap-trapping assay. The 5' TSSs for internal transcripts were confirmed by primer extension.
Additionally, an analysis of the functional annotation of mouse 3 (FANTOMS3) databases indicates
that internally initiated transcripts identified by TFIIB SACO in rat are conserved in mouse.

Conclusion: Our findings that TFIIB binding is not restricted to the 5' upstream region indicates
that the propensity for PIC to contribute to transcript diversity is far greater than previously
appreciated.
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Background

The core promoter is the major regulatory element
responsible for determining transcriptional output. The
core promoter spans a region of 40-50 bases and encom-
passes the transcript start site [1]. The core promoter
assembles a pre-initiation complex (PIC) of general tran-
scription factors (GTFs) in a step-wise fashion to recruit
RNA polymerase I (RNAP II) [2,3]. Reconstitution assays
using purified factors demonstrate that TFIIB is required
for transcript initiation by RNAP II [4-7]. The importance
of TFIIB in transcript initiation was suggested by a co-crys-
tal structure showing that TFIIB positions the coding DNA
strand into the active site of RNAP II, thereby ensuring
proper TSS selection [8]. Additionally, TFIIB remains at
the promoter and does not track with the elongating
RNAP II complex [9,10]. Thus, TFIIB is an ideal factor to
localize core promoters.

Recently, the isolation and analysis of the mouse tran-
scriptome by the functional annotation of mouse 3
(FANTOM3) consortium indicates that most protein-cod-
ing genes produce multiple transcripts [11]. Importantly,
for most genes the 5' end of multiple internal transcripts
(as identified by the 5' cap structure) localized far down-
stream of the 5' TSS for the full-length protein-coding
transcript. It has been proposed that regulation of inter-
nally initiated and variant transcripts may occur through
alternative or multiple promoters [12-14].

In this report, we use serial analysis of chromatin occu-
pancy (SACO) to identify TFIIB binding regions in the rat
genome. SACO allows an unbiased and genome-wide
interrogation of transcription factor binding regions
[15,16]. In this method, a transcription factor (in this case
TFIIB) is cross-linked to its binding site using formalde-
hyde, and the DNA-protein complexes are isolated by
chromatin immunoprecipitation (ChIP). The DNA is
purified from the transcription factor and is then proc-
essed into 20-22 bp tags as in long serial analysis of gene
expression [17]. In SACO, these tags are referred to as
genomic signature tags (GSTs). The GSTs are concatamer-
ized and sub-cloned into a sequencing vector. The concat-
amers of TFIIB GSTs comprise the SACO library. The TFIIB
GSTs are aligned to the genome and only those with
unique assignments are further considered. The resolu-
tion of SACO is limited by the largest chromatin frag-
ments included in construction of the library (for this
library, approximately 2.5 kilobases). Therefore, a con-
servative estimate is that a TFIIB GST identifies a putative
TFIIB binding site within a 2.5 kilobase fragment of chro-
matin. In the current study, the sequencing and analysis of
a sample of the SACO library indicates that internal TFIIB
binding positions are a common feature of protein-cod-
ing genes.
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Results

TFIIB SACO library

Initially, we tested whether TFIIB binds promoters of
active genes in the rat insulinoma cell line, Rin-m. The
Rin-m cell line was established from radiation-induced rat
islet cell tumor maintained in athymic nude mice [18].
Using quantitative reverse transcriptase PCR (qRT-PCR),
we found that transcript levels of two genes known to be
expressed in Rin-m cells, insulin and cFos [18,19], were at
least two-to-three orders of magnitude higher than
repressed genes (the immune cell specific Fcgr2b and mus-
cle specific, myocardin, Mycd) (Figure 1A). TFIIB binding
was then tested in ChIP assays using promoter-specific
primers. In addition, an antibody directed against the
DNA binding domain of the yeast activator Gal4 was used
in parallel ChIPs as a control for specificity. TFIIB bound
to the insulin and cFos promoters, but not to the repressed
Fcgr2b and Mycd promoters (Figure 1B). ChIP assays using
antibodies specific for RNAP II confirmed that TFIIB asso-
ciated with transcribed genes. We then constructed a
SACO library with DNA isolated from TFIIB ChIPs.
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Figure |

TFIIB binds active genes in Rin-m rat insulinoma cells. (A)
RNA was isolated and cDNA was synthesized using reverse
transcriptase. Transcript levels of active (c-Fos and Ins/) and
repressed (Fcgr2b and Mycd) genes were measured by quanti-
tative real-time PCR. Levels of cDNA detected (black bars)
were determined using a standard curve generated with puri-
fied PCR amplicons. No reverse transcriptase controls
(white bars) indicate that signal generated was RNA-depend-
ent. The amount of Fcgr2b and Mycd was over 500-fold lower
than c-Fos and therefore represents background amplification
in the assay. (B) Real-time PCR quantitation of DNA frag-
ments precipitated in a ChlP assay using 3 g of TFIIB anti-
bodies (black bars), 3 ng of RNAP Il antibodies (gray bars), or
3 ug of Gal4 antibodies as a control IgGs (white bars). The
level of immunoprecipitated Ins |, c-Fos, Fcgr2b, and Mycd pro-
moters was measured by real-time PCR. The standard curve
was derived from PCR reactions using serially diluted input
chromatin DNA as the template. Error bars are SEM.
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The TFIIB SACO library contains approximately 10¢ GSTs
indicative of putative TFIIB binding regions. A portion of
the library corresponding to 19,204 GSTs was sequenced.
Of these, 12,968 (68%) could be assigned to a unique
position in the rat genome, similar to the fraction of
unique GSTs in previously characterized SACO libraries
[15,16]. We mapped the distribution of TFIIB GSTs on
each rat chromosome to determine whether this set of
identified regions represents an unbiased sample (see
Additional file 1). The chromosomes contain between
210 and 1416 TFIIB GSTs. The average number of TFIIB
binding sites per megabase of DNA ranges from approxi-
mately two on the X chromosome to eight on chromo-
some 16. We then focused on a sub-population of the
library that contains 2481 distinct TFIIB GSTs localizing to
1783 protein-coding genes in the reference sequence (Ref-
Seq) database. An alignment of TFIIB GSTs and corre-
sponding RefSeq genes on chromosome 10 demonstrate
that the entire length of the chromosome is represented in
the SACO library (see Additional file 2). A similar repre-
sentation was present at other chromosomes examined
(data not shown). Therefore, chromosome size and posi-
tion do not appear to bias TFIIB localizations identified in
our library.

TFIIB binding occurs internally as well as 5' and 3’

A key question of interest was to identify the position of
TFIIB GSTs relative to RefSeq gene boundaries. We found
that TFIIB occupied internal and 3' positions in addition
to the more traditional 5' promoter region. One example
of the distribution of putative TFIIB binding sites is shown
in Figure 2A for genes of the gamma-aminobutyric acid A
receptor subfamily (Gabrs). We then localized all TFIIB
GSTs in the library relative to RefSeq gene boundaries.
TFIIB GSTs were classified as 5' promoter associated if they
were found in an inclusive region 2.5 kb outside and 2.5
kb inside the transcript start site (TSS), 3' promoter asso-
ciated if they were within a region 2.5 kb outside and 2.5
kb inside the 3' end, and internal if they were greater than
2.5 kb inside either the 5' or 3' ends of gene boundaries.
The 2.5 kb limit was chosen based upon agarose gel deter-
mination of the uppermost size of the chromatin frag-
ments included in library construction (see Additional file
3). There is a total of 1783 RefSeq genes with uniquely
assigned GSTs in the TFIIB SACO library. 21% of the genes
localized TFIIB binding to the 5' UTR relative to the char-
acterized TSS of the RefSeq gene (Figure 2B). 14% had 3'
UTR localizations thereby identifying potential promoters
that drive antisense transcripts. Surprisingly, most genes
(57%) contained internal TFIIB binding positions. More-
over, 8% of the RefSeq genes contained multiple TFIIB
binding regions; most with an internal position. There-
fore, internal TFIIB binding is a common characteristic of
protein-coding genes.
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Distribution of TFIIB GSTs relative to RefSeq gene annota-
tions. (A) A segment of chromosome 10 depicting internal
and 3' localization relative to four RefSeq genes from the
Gamma-aminobutyric acid A receptor (Gabrs) subfamily. Rectan-
gles are exons and horizontal lines introns with hatch marks
indicating the direction of transcription. (B) Locations of
TFIIB GSTs relative to each of the 1783 RefSeq genes identi-
fied in the SACO library. 5' UTR; 5' untranslated region, 3'
UTR; 3' untranslated region, Internal; Internal region, Multi-
ple; the RefSeq gene contains more than one TFIIB GST. Ref-
Seq genes comprising the "multiple” category contain TFIIB
GSTs that localize to 5' and internal regions, 3' and internal
regions, 5' and 3' regions, or 5', 3' and internal regions.

Confirmation of internal PIC binding and internal
transcripts

The high percentage of internal TFIIB GSTs prompted us
to further validate whether these TFIIB sites identified pro-
moter regions; i.e. whether they were associated with tran-
scriptional start sites. First, we performed ChIP assays to
confirm TFIIB binding to 18 internal positions of 9 genes
demarcated by TFIIB GSTs. TFIIB bound each of the 18
internal positions examined (Figure 3A). TFIIB also
bound a region at the 3' end of CBP. To test whether the
PIC was recruited to the internal TFIIB positions, we
assayed for TFIID binding by ChIP. TFIID plays a role in
promoter recognition within the PIC [3]. Like TFIIB,
TFIID bound each internal position tested (Figure 3A).
The levels of TFIIB and TFIID binding to the internal and
3' positions were similar to that at the 5' promoter of Ins1
and CBP. No significant binding for TFIIB or TFIID was
detected at the repressed HBB and IL2 genes.

Next, we mapped the 5' ends of 18 internal transcripts for
the 9 genes in Figure 3A with internal TFIIB binding
regions. Using a modified cap trap assay [20,21], we
found that the 5' ends of all 18 internal transcripts sur-
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TFIIB and TFIID bind internal positions in RefSeq genes and
are associated with internally initiated transcripts. (A) Real-
time PCR quantitation of DNA fragments precipitated in a
ChIP assay using 3 ug TFIIB antibody (black bars), 10 pl of
TFIID antibody (gray bars) or 3 ug Gal4 antibody as a control
IgG (white bars). Regions interrogated correspond to a sub-
set of genes with internal sites that were chosen at random.
The levels of Ins| and CBP 5' promoters precipitated are
included as controls. Negative regions included the
repressed HBB and IL2 genes. Data is presented as percent
input and error is SEM. 5', internal, and 3' refer to the posi-
tions of the TFIIB GST relative to RefSeq gene boundaries.
(B) An agarose gel of the amplified transcript from an inter-
nally initiated CBP transcript identified by a modified cap trap-
ping procedure (see methods). Two independent PCR clones
(lanes | and 2) mapped the start site to nucleotide | 1687697
on chromosome 10.

veyed were associated with TFIIB GSTs. A representative
agarose gel is shown for the cap-trapped TSS of an internal
transcript from CBP (Figure 3B). This indicates that the
internal TFIIB positions are associated with TSSs. We also
mapped the TSS for an antisense CBP transcript identified
by proximity to a 3' TFIIB GST.

The cap-trapping experiments confirmed that transcripts
were initiated at internal positions within the protein-
coding genes identified by TFIIB SACO. We then used
primer extension to confirm the cap-trapping results with
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an alternative method. Primer extension requires an oli-
gonucleotide that anneals downstream of a TSS to prime
a cDNA synthesis reaction. The reverse transcriptase
extends the cDNA until it reaches the 5' end of the tran-
script. The resulting products are ultimately run on a poly-
acrylamide gel. We isolated five capped transcripts
associated with TFIIB GSTs for CBP. Four of the GSTs were
associated with internal-sense transcripts and one with an
antisense transcript. For the primer extension assay, the
characterized 5' promoter was included as a control. We
detected transcripts that initiated from the internal and
antisense promoters, in addition to the known 5' pro-
moter (Figure 4). Moreover, CBP int-1 and the CBP 3'
antisense transcript appeared to be more abundant that
the CBP transcript derived from the 5' promoter.

Internal promoters are evolutionarily conserved

We then utilized data from the FANTOM3 consortium as
an independent source to validate our findings and to
determine whether the internal transcripts we identified
in rat are conserved in mouse. The FANTOM3 consortium
recently determined the 5' and 3' boundaries for over
180,000 unique RNAs comprising the mouse transcrip-
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Figure 4

Primer extension analysis of transcripts derived from the rat
CBP locus. RNA was isolated from Rin-m cells and primer
extension analysis was performed based on TSSs determined
by cap-trapping. Products were resolved by denaturing poly-
acrylamide gel electrophoresis. Marker (M): End labeled ®
X174 Hinf | digested DNA. 5', internal, and 3' refer to the
position of the TFIIB GST and TSS relative to CBP gene
boundaries.
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tome [11]. Using NCBI's Homologene, we identified
1462 RefSeq mouse homologs of the rat genes in our
TFIIB SACO library. Of the mouse homologs, 1284 (88%)
had cap analysis of gene expression (CAGE) evidence for
internal TSSs. We then positionally co-aligned the rat
TFIIB GSTs identified in our TFIIB SACO screen with the
mouse TSSs reported by the FANTOM3 consortium. Over-
all, with respect to distance, 84% of the GSTs were within
2.5 kb of a TSS (80% of these sites were within 750 bp).
To illustrate this co-alignment, we considered CBP as an
example (Figure 5). Rat CBP had the most TFIIB GSTs and
the highest number of experimentally confirmed TSS by
our modified cap-trapping method. The rat TFIIB GSTs
and the rat TSS that we identified in CBP were mapped to
mouse CBP. We then overlaid transcript start positions
within mouse CBP identified by FANTOMS3. The positions
of internal TSS in mouse CBP co-align with TFIIB GSTs
and TSS in rat CBP, suggesting that the internal promoters
are conserved across the two species. Together, this analy-
sis suggests that full-length protein-coding transcripts may
comprise only a fraction of the transcripts derived from a
gene.

Discussion

The TFIIB SACO approach described in this report
allowed us to ascertain experimentally the prevalence of
TFIIB binding and PIC localization among protein-coding
genes. We found that the majority of protein-coding genes
were characterized by internal TFIIB binding (Figure 2).
Several lines of evidence demonstrate that the internal
positions represent core promoters. First, repeat ChIP
assays performed using antibodies against TFIIB and

chromosome 10 | 11685000 | 11690000 | 11695000 | 11700000 | 11705000 | 11710000 | 11715000 | 11720000 |

- i
<
rat TFIIB-GST I | 1 I I I
mouse- TSS I [ [ I I 1 [ B monn

rat CBP |
mouse CBP |

Figure 5

Internal transcripts associated with TFIIB GSTs in rat are
conserved in mouse. Diagram depicting the spatial relation-
ship between TFIIB GSTs and the 5' end of sense and anti-
sense transcripts determined by cap-trapping. The 3' portion
of rat CBP is shown in black with exons as rectangles and
introns as a horizontal line. Black vertical lines indicate the
position of the feature listed. Black vertical lines with an
arrow conferring direction of the transcript indicate the 5'
nucleotides of cap-trapped transcripts. Rat sense and anti-
sense CAP are the positions of the experimentally capped
transcripts. Mouse-TSS are the positions of the 5' nucleotides
of mouse CBP transcripts identified by cap analysis of gene
expression (CAGE). The mouse TSS data was obtained from
the FANTOMS consortium [I1].
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TFIID demonstrate that each of the 18 internal sites of 9
RefSeq genes chosen at random was occupied by PIC in
vivo (Figure 3). Second, we experimentally isolated eight-
een 5' capped transcripts closely associated with internal
TFIIB positions from nine RefSeq genes. Third, 88% of the
mouse homologs identified in our screen had CAGE evi-
dence for internal TSSs [11]. These findings in conjunc-
tion with the earlier FANTOMS3 transcript analysis
reiterate that alternative promoters are a common feature
of protein-coding genes. Thus, our localization of PIC via
TFIIB binding suggests that positional diversity of core
promoters has been underestimated.

In the last few years, we have begun to understand the
complexity and diversity of core promoters that reside in
the mammalian genome [22]. This is in stark contrast to
the early emphasis on three key motif elements that
defined a core promoter: a TATA box, an initiator (Inr)
element, and a downstream promoter element (DPE). In
comparison with D. melanogaster (in which much of the
core promoter architecture was originally characterized),
mammalian core promoters less frequently contain TATA
boxes, have a lower frequency of pairing TATA with Inr
elements, and many promoters, including those within
CpG islands, appear to lack all three of these core ele-
ments [23]. Two TFIIB recognition elements (BREs) have
been demonstrated to mediate TFIIB binding within core
promoters. BRE!is upstream of the TATA box and BREd is
downstream. It is known that both the BREu and the BREd
modulate promoter activity but that this effect is depend-
ent on the specific composition of elements present
within a core promoter [24]. This core promoter heteroge-
neity has made motif analysis of promoters challenging. A
recent study by Kim et. al. demonstrates this issue [25].
Using a TAF1 antibody to identify core promoters using a
ChIP-coupled microarray, it was discovered that the TATA
box was not significantly enriched among 10,567 active
promoters in fibroblast cells. Whether or not there will be
a uniform code of motifs that determine whether a stretch
of DNA is predicted to function as a core promoter await
further experimentation. Informative motif analysis of
genome-wide studies, like Kim et. al. [25] or this study,
will likely require experimental assays to categorize the
vast array of sequences into putative classes of core pro-
moters.

The most significant finding of our study is that TFIIB
binding localizes to positions other than the 5' promoter
of protein-coding genes. While the strong co-occurrence
of TFIIB GSTs with transcript start sites identified by the
FANTOM3 group suggest that these alternative positions
identify promoters, TFIIB has been shown to have addi-
tional roles outside of transcript start site selection. Singh
and Hampsey recently reported that TFIIB binding to ter-
minator sequences located downstream of protein coding

Page 5 of 8

(page number not for citation purposes)



BMC Molecular Biology 2007, 8:102

regions [26]. Instead of functioning as a core promoter to
drive an anti-sense transcript, TFIIB bound at this position
communicated with the 5' promoter via a loop structure.
The authors proposed that this loop between the 5' pro-
moter and 3' terminator plays a role in transcript re-initi-
ation. It will be of interest to determine whether TFIIB
binding at the 3' end of protein-coding genes identified in
our SACO screen, similarly cooperates with the 5' pro-
moter.

Conclusion

The results presented here provide the first genome-wide
mapping of TFIIB binding in a metazoan. Because TFIIB is
required for RNAP II dependent transcription, our SACO
screen provides an unbiased localization of promoter ele-
ments. Our finding that TFIIB occupation of internal
regions is common within genes suggests that the full-
length protein-coding transcripts may in fact represent a
fraction of the genetic output from these loci. Identifica-
tion of evolutionarily conserved internal promoters sug-
gests that adjacent transcripts may be subjected to
regulation that is independent of the 5' untranslated
region and promoter elements. Clearly we are only at the
very beginnings with our understanding of the transcrip-
tome and its regulation in higher eukaryotes.

Methods

Cell culture

Rin-m cells (ATCC #CRL-2057), passage 5-10, were
grown in RPMI 1640 (Invitrogen) supplemented with
10% FBS (Hyclone), 100 units/ml penicillin, 100 units/
ml streptomycin, and 5 mM L-glutamine. Cells were
maintained at 37°C and 5% CO, and were 70-75% con-
fluent at the time of harvesting.

Chromatin immunoprecipitation

Antibodies used for ChIP included: 3 ng TFIIB c18 (Santa
Cruz, sc-225), 3 ug RNAP II (Santa Cruz, sc-9001), 10 pl
TFIID (Upstate Cell Signaling solutions, 06-241), and 3
pg Gal4 (Santa Cruz, sc-577). According to the manufac-
turer the TFIID antibody is directed against TBP. ChIP
assays contained 5 x 10°¢ cells and were conducted as
reported [21,27]. Briefly, chromatin in formaldehyde-
fixed lysates was sonicated to an average size of approxi-
mately 750 bp using a sonic dismembrator 60 (Fisher Sci-
entific). Sonication was conducted for 5 x 20 sec, output
7, with 1 min intermittent rest periods. Lysates were clari-
fied by centrifugation at 20,000 x g for 10 min at 4°C and
then incubated with primary antibody overnight at 4°C.
Immunocomplexes captured with bovine serum albu-
min/glycogen-blocked protein A sepharose (Repligen)
were washed, and precipitated DNA fragments were iso-
lated with 10% w/v Chelex-100 (BioRad). Isolated frag-
ments were quantified by real-time PCR as previously
described [15]. Primers were designed using Primer3 soft-
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ware from the Massachusetts Institute of Technology
(MIT). Primers were synthesized at Integrated DNA Tech-
nologies (IDT), and sequences are available upon request.

SACO library

For a complete protocol for constructing a SACO library
see [15,21]. The TFIIB SACO library was subcloned into
the Sph1 site of pZERO2 (Invitrogen). A second Sph1 site
in the kanamycin resistance gene in pZERO-2 was
mutated using the Quikchange mutagenesis kit (Strata-
gene) prior to subcloning of the concatamers. The com-
plete list of genomic targets identified is available upon
request.

Sequencing
Sequencing was performed at High-Throughput Sequenc-
ing Solutions (Seattle, WA).

Quantitative RT-PCR

5 x 106 Rin-m cells were lysed using a Qiashredder col-
umn (Qiagen) and RNA was isolated using the RNeasy kit
(Qiagen). Genomic DNA was removed using the DNA
free kit (Ambion). First strand ¢cDNA was synthesized
from 1 pug of DNA free RNA using a random hexamer
primer (Invitrogen) and Superscript III Reverse Tran-
scriptase (Invitrogen). Reactions lacking reverse tran-
scriptase were analyzed to survey the presence of genomic
DNA. Real-time PCR was conducted with 50 ng of cDNA
and the assay was capable of detecting 10-50 copies of
target cDNA.

Mapping of 5' capped nucleotides

A modification of the first choice RNA mediated rapid
amplification of cDNA ends kit (RLM-RACE, Ambion)
was used to identify 5' capped transcripts associated with
TFIIB GSTs as reported [20,21]. Total RNA was isolated
from Rin-m cells with TRIzol (Invitrogen) and 10 pg was
treated with calf intestinal phosphatase in a 20 ul reaction
at 37°C for 60 min to remove 5' phosphates of contami-
nating nucleic acids. The 5' cap structure of the remaining
RNA was removed by treatment with tobacco acid pyro-
phosphatase (TAP) in a 20 pl reaction at 37 °C for 60 min
which leaves a free 5' monophosphate. An oligonucle-
otide containing two nested primer sites was ligated to the
5' end with T4 RNA ligase in a 20 pl reaction at 42°C for
60 min. First strand cDNA synthesis with M-MLV reverse
transcriptase and random decamers was performed in a
20 pl reaction at 42°C for 60 min. The cDNA was was
amplified with 10 uM of a primer to the 5' cassette, and 10
UM of a gene-specific primer designed 700-1000 bp away
from the TFIIB tag. The products were further amplified by
nested PCR using a second internal primer to the 5' cas-
sette and a second gene specific primer. The amplicons
were gel purified, cloned into TOPO PCR2.1 (Invitrogen)
and analyzed by sequencing.
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Primer extension

Primer extension was performed with the primer exten-
sion/AMV reverse transcriptase system (Promega). Prim-
ers were designed approximately 50 bp downstream of the
5' capped nucleotide of CBP were end-labeled with 32P-y-
ATP (Perkin Elmer) using T4 polynucleotide kinase
(NEB). Unincorporated 32P-y-ATP was removed using a
NucAway spin column (Ambion) and specific activity of
the probes was determined using a 2200CA liquid scintil-
lation analyzer (Packard). Total RNA was isolated using
TRIzol (Invitrogen) and 10 pg was annealed to the radi-
olabeled primer at 58°C for one hour. cDNA was
extended using AMV reverse transcriptase (Promega).
Products were resolved on a 7 M urea/1x TBE (89 mM Tris
base, 2 mM EDTA, 89 mM boric acid)/8% polyacrylamide
denaturing gel using a sequencing gel apparatus (Gibco
BRL, Invitrogen). An end-labeled ®x HinfI digested ladder
was included for size reference.

Computational analysis

Initial processing and placement of the GSTs followed the
pipeline established for our previous SACO libraries
[15,16]. Chromosome locations, start, end, and orienta-
tion of rat RefSeq features aligned to the rn3 build of the
rat genome were obtained from the UCSC annotation
database. The 1783 RefSeq features that were identified to
be associated with putative internal TFIIB binding sites
were mapped to their homologs in mouse using Homol-
ogene. Genomic coordinates and orientation for mouse
RefSeq transcripts were obtained from the FANTOM3
build. The annotated 5' ends of transcripts were obtained
from the boundary_set dataset from the FANTOM3 study
[11]. The boundary_set dataset was also used to locate
internal TSSs for the mouse homologs. All TSS with evi-
dence of 1 or more CAGE tags (or had a reliability of 1
assigned by FANTOMS3 curators) were selected for further
analysis. Data and annotation from FANTOM3 were
based on the mmb5 build of the mouse genome.
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