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Abstract
Background: The tumor suppressor gene PTEN has been found mutated in many types of
advanced tumors. When introduced into tumor cells that lack the wild-type allele of the gene,
exogenous PTEN was able to suppress their ability to grow anchorage-independently, and thus
reverted one of the typical characteristics of tumor cells. As these findings indicated that PTEN
might be involved in the regulation of anchorage-dependent cell growth, we analyzed this aspect of
PTEN function in non-tumor cells with an anchorage-dependent phenotype.

Results: We found that in response to the disruption of cell-matrix interactions, expression of
endogenous PTEN was transcriptionally activated, and elevated levels of PTEN protein and activity
were present in the cells. These events correlated with decreased phosphorylation of focal
adhesion kinase, and occurred even in the absence of p53, a tumor suppressor protein and recently
established stimulator of PTEN transcription.

Conclusions: In view of PTEN's potent growth-inhibitory capacity, we conclude that its induction
after cell-matrix disruptions contributes to the maintenance of the anchorage-dependent
phenotype of normal cells.

Background
The tumor suppressor gene PTEN (also called MMAC1)
has been found deleted or mutated in a great variety of hu-
man tumors and tumor cell lines [1–3], and its tumor sup-
pressing function has been confirmed in several in vitro
studies [4–10]. Mice which are homozygously deficient in
wild-type PTEN die during embryonic development and
harbor regions of increased cellular proliferation, whereas

heterozygous mice are viable but spontaneously develop
tumors of various origins [11,12].

PTEN has been shown to exhibit dual specificity protein
phosphatase activity, as well as lipid phosphatase activity
in vitro[13–18]. These enzymatic functions appear to be
involved in the regulation of at least two separate signal
transduction pathways. First, PTEN's protein phosphatase
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activity is able to down-regulate focal adhesion kinase
(FAK) phosphorylation, which leads to the inactivation of
the Ras/MAP kinase pathway [19–21]. Second, its lipid
phosphatase activity targets the second messenger phos-
phatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3]
and thereby blocks activation of the protein kinase B
(PKB/Akt) pathway [11,18,22–24]. Whereas both of the
above pathways are intimately involved in the control of
cell growth and survival, PTEN-regulated FAK activity fur-
ther appears to impinge on cell adhesion, cell migration,
and cell invasion [20,21]. It therefore emerges that the
loss of PTEN activity may confer increased survival ability,
proliferative potential, and invasive capacity on cells, and
thereby may promote progression towards a more malig-
nant phenotype.

A characteristic phenotype of tumorigenic cells is their
ability to grow anchorage-independently in suspension
culture, or embedded in soft agar, without the need for at-
tachment to the surface of a cell culture dish [25,26]. A
flurry of papers has established a close link between an-
chorage-independent growth and the activity of several
components of the cell cycle machinery, such as various
cyclins, cyclin-dependent kinases (CDKs), and the CDK
inhibitors p21Cip1 and p27Kip1[27–32]. There are indica-
tions that PTEN may be involved in these processes as
well. For example, mouse embryonal stem (ES) cells with
homozygous deletion of the PTEN gene exhibit increased
anchorage-independent growth as compared to normal
ES cells [12]. Similarly, transfer of a wild type PTEN gene
into anchorage-independent human glioblastoma cells
(which lack functional PTEN), results in their greatly re-
duced ability to form colonies in soft agar [4–6]. The in-
terpretation of these latter findings, however, is
complicated by the strong anti-proliferative effects of
PTEN even in monolayer culture, which is consistently
observed when the wild type version of this gene is intro-
duced into PTEN-negative tumor cells [4,6–10,18,33].
Moreover, in human glioma and breast cancer cell lines,
the ectopic expression of wild type PTEN leads to anoikis,
which is apoptosis initiated by the disruption of cell ma-
trix-interactions [23,34–36].

Because essentially all of these previous studies have ana-
lyzed PTEN function by introducing the cloned version of
the gene back into PTEN-deficient cells, essentially noth-
ing is known about the regulation of the endogenous
PTEN gene in response to alterations of cell-matrix inter-
actions. For example, it is unclear whether PTEN is consti-
tutively active or becomes activated in response to
changes in the cellular microenvironment. Here, we
present our findings that in normal anchorage-dependent
fibroblast cells, the expression and activity of endogenous
PTEN is increased when cellular adhesion to matrix is dis-
rupted. In parallel, phosphorylation of FAK, a known tar-

get of PTEN, is greatly reduced. In view of PTEN's potent
growth-inhibitory capacity, we conclude from our study
that the increased expression and activity of endogenous
PTEN in response to the disruption of cell-matrix interac-
tions contributes to the maintenance of the anchorage-de-
pendent phenotype of normal cells.

Results
A model to study cell regulatory events during anchorage-
independent growth is the culture of cells in suspension,
i.e. on HEMA-coated plates that prevent cells from attach-
ment to the matrix of the cell culture dish [37]. Several
studies have employed this approach and characterized
the regulation of various cell cycle-regulatory proteins af-
ter the transfer of cells to such suspension culture [27–32].
Here, we have used this model to analyze the potential in-
volvement of the tumor suppressor PTEN.

Figure 1
PTEN protein level
s in suspension culture cells MDAH or 10T1/2 cells were
transferred to suspension culture conditions for the times
indicated. Total cellular lysate was prepared and analyzed by
Western blot with PTEN specific antibodies. In addition, dif-
ferent cell cycle-regulatory proteins were analyzed in parallel
as indicated. The top panel shows lysates from 10T1/2 cells,
whereas MDAH cells are represented in the bottom panels.
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The murine cell line 10T1/2 and the human cell line
MDAH, both of which are anchorage-dependent fibrob-
lasts, were detached from their tissue culture dishes and
cultured further on HEMA-coated plates. As shown in Fig-
ure 1, this transfer to suspension culture resulted in elevat-
ed expression of PTEN protein in each cell line. This
increase was apparent within the first four hours and con-
tinued for several more hours. In parallel, the expression
of cyclin A, an essential component of certain cyclin-de-
pendent kinases and absolutely required for the progres-
sion of cells through the cell cycle [38,39], was down-
regulated under these conditions (Figure 1), consistent
with earlier observations [27,28,31]. Furthermore, expres-
sion of the CDK inhibitor p27Kip1 was strongly increased
in suspension cells (Figure 1), similar to what has been
observed in other cell types after the disruption of cell-ma-
trix interactions [29,31,32]. Finally, as we have reported
before [31], the expression of cdk4, one of the catalytic
subunits of CDKs, was not significantly altered in suspen-
sion culture cells and therefore could be used as a loading
control for the Western blot analysis. As expected in the
case of anchorage-dependent cells, the activity of cyclin-

dependent kinases was strongly reduced and cell prolifer-
ation was inhibited under these suspension culture condi-
tions (not shown).

To analyze whether the observed induction of PTEN pro-
tein was due to elevated expression of its mRNA, Northern
blot analysis was performed. In this case, increased expres-
sion was found as well (Figure 2). In MDAH cells in par-
ticular, the increase in PTEN mRNA closely correlated
with the observed increase in PTEN protein and encom-
passed both major mRNA species of 2.5 and 5.0 kb. In the
mouse cells, only the shorter mRNA species appeared to
be induced. In order to determine the relative increase in
PTEN mRNA levels, the Northern blots were stripped and
re-hybridized with control probes for β-actin and choA,
the latter a highly abundant mRNA of unknown function
[40]. We consistently found that the amount of β-actin
mRNA was somewhat reduced during suspension culture,
whereas the amount of choA remained relatively stable.
We therefore used choA as the loading control and calcu-
lated the increase in PTEN mRNA with reference to choA.
Using this approach, we determined that PTEN mRNA

Figure 2
PTEN mRNA levels in suspension culture cells MDAH or 10T1/2 cells were transferred to suspension culture conditions for
the times indicated. Poly A+ RNA was harvested and subjected to Northern blot analysis. To detect PTEN mRNA, a radioac-
tively labeled PTEN cDNA fragment was used. To control for the amounts of mRNA loaded in each lane, the filters were
stripped and rehybridized to a probe for β-actin, as well as a probe for choA.
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was increased up to 5-fold in MDAH cells and 4-fold in
10T1/2 cells. This induction was comparable to the in-
crease observed in Western blot analysis and therefore in-
dicated that the levels of PTEN protein were elevated due
to the increased expression of PTEN mRNA. Although
clearly induced in both cell lines, the kinetics of PTEN in-
duction in 10T1/2 and MDAH cells were somewhat differ-
ent at later time points; i.e., there was a slight reduction of
PTEN mRNA and protein in MDAH cells at 36 hours, pos-
sibly indicating some cell type-specific differences.

By using nuclear run-off analysis, we further determined
that the induction of PTEN was regulated at the transcrip-
tional level, i.e. the transcription of the PTEN gene was
significantly higher in cells that were transferred to sus-
pension culture conditions (Figure 3).

We next analyzed whether the elevated quantity of PTEN
protein would indeed be reflected in increased phos-
phatase activity in suspension culture cells. In order to es-
tablish whether PTEN protein phosphatase activity could
be reliably measured in vitro, we first transfected PTEN-
negative U87 cells with an expression vector harboring
PTEN cDNA. As a control, the cells were also transfected
with empty vector. Then, PTEN was immunoprecipitated
from the respective cellular lysates and the antigen-anti-

body complex was analyzed for protein phosphatase ac-
tivity. As shown in Figure 4A, only cells transfected with
PTEN cDNA exhibited significant enzymatic activity.
Non-transfected U87 cells, or cells transfected with vector
alone, did not exhibit protein phosphatase activity above
background levels.

After having established that PTEN protein phosphatase
activity could be determined specifically, we transferred
MDAH cells to suspension culture conditions and meas-
ured PTEN activity at various times afterwards. As shown
in Figure 4B, there was an increase in PTEN activity that
could be detected as early as four hours after detachment
and reached its maximum at around 12 hours. It is notice-
able that the activity at the onset of the experiment (0
hours, cells attached to tissue culture plates) was higher
than background, which likely indicates some basal activ-
ity of PTEN in attached cells. This basal level activity was
not detectable in PTEN-negative U87 cells (compare Fig-
ure 4A).

Focal adhesion kinase (FAK) is a known substrate for
PTEN and has been shown to be dephosphorylated by this
phosphatase in vitro and in vivo [20,21,34]. We therefore
determined whether the increased PTEN phosphatase ac-
tivity would correlate with decreased phosphorylation of
FAK in our cells. This was indeed the case. As shown in
Figure 5, the detachment of MDAH cells from their matrix
resulted in decreased tyrosine-specific phosphorylation of
FAK. The overall amount of FAK protein in these cells did
not change under these conditions, indicating that the
loss of tyrosine phosphorylation was not caused by re-
duced amounts of protein.

In light of a recent report establishing the tumor suppres-
sor p53 as a transcriptional activator of PTEN expression
[41], we investigated whether this protein would affect the
observed induction of PTEN in our cell system. As MDAH
cells themselves are p53-negative, we used MDAH cells
stably transfected with a tetracycline-regulated p53 gene,
called TR9-7 [42]. These TR9-7 cells were pre-treated with
or without tetracycline in monolayer culture. After the in-
duction of p53 was maximal, the cells were transferred to
suspension culture conditions and analyzed for their ex-
pression of PTEN. As shown in Figure 6, the degree of
PTEN induction was essentially the same in the absence or
presence of p53, indicating that p53 did not affect the in-
duction of PTEN protein under these conditions. In paral-
lel, MDAH cells were also treated with tetracycline and
transferred to suspension culture. In this case as well, tet-
racycline treatment had no effect on the induction of
PTEN, confirming that tetracycline by itself did not affect
PTEN expression (Figure 6). In conclusion, MDAH cells
(p53-negative), 10T1/2 cells (p53-positive), and TR9-7
cells (high or low levels of p53) all exhibited similarly in-

Figure 3
PTEN mRNA transcription in suspension culture cells
MDAH cells were transferred to suspension culture condi-
tions for 12 hours. To analyze the transcription of the PTEN
gene, nuclei were harvested and nuclear run-off analysis was
performed essentially as described [64]. As a control, the
radiolabeled RNA was also hybridized to a DNA sequence
representing the choA gene, as well as to non-gene-specific
sequences from the plasmid pBluescript (pBs).
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creased expression levels of PTEN in response to the dis-
ruption of cell-matrix interactions. Therefore, we
conclude that the observed induction of PTEN occurs in-
dependent of p53.

Discussion
In light of the close correlation between the anchorage-in-
dependent phenotype and the tumorigenicity of trans-
formed cells, it is important to fully understand the
cellular mechanisms that are involved in cell growth arrest
after the disruption of cell-matrix interactions. Many pre-
vious studies in this area have focused on the contribution
of various components of the cell cycle machinery. Collec-
tively, they have established that the expression of cyclin
A and cyclin D, in combination with the activity of the cy-
clin-dependent kinase inhibitors p21Cip1 and p27Kip1, is
a crucial determinant of anchorage-dependent cell growth
culture [27–32]. However, while the above elements
clearly are essential executioners of cell cycle progression,
it is conceivable that other elements, directly or indirectly,
might be involved in anchorage-dependent growth con-
trol as well. In this regard, a report from our laboratory
has indicated a role for the serine/threonine specific pro-
tein phosphatase type 2A (PP2A) [43].

In this current study, we investigated the response of the
PTEN tumor suppressor to changes in cell-matrix interac-
tions of anchorage-dependent human and mouse fibrob-
last cells. Previous studies by others had shown that the
ectopic expression of PTEN in anchorage-independent tu-
mor cells greatly reduced their ability to grow in soft agar
[4–6]. In this latter situation, however, the forced expres-
sion of ectopic PTEN effectively impairs cellular prolifera-
tion in general, even under two-dimensional culture
conditions where the cells are attached to substratum

Figure 4
Protein phosphatase activity of PTEN (A) In order to deter-
mine the specificity of the PTEN phosphatase assay, PTEN-
negative U87 glioblastoma cells were transiently transfected
with pCMV-PTEN expression vector (PTEN) or with pCMV-
blue vector without PTEN cDNA insert (Vector). As a fur-
ther control, non-transfected U87 cells were used in parallel
(U87). 24 hours after transfection, cellular lysates were har-
vested and subjected to immunoprecipitation with PTEN
specific monoclonal antibodies. The collected antigen was
assayed for tyrosine phosphatase activity as described in
Materials and Methods. Shown is the amount of radiolabeled
phosphate released from the substrate (mean of three exper-
iments the quantity of phosphate released in the absence of
added antigen. (B) In order to determine PTEN phosphatase
activity in suspension cells, MDAH cells were transferred to
suspension culture conditions for the times indicated. Total
cellular lysates were prepared and subjected to immunopre-
cipitation with PTEN specific monoclonal antibodies. The
collected antigen was assayed for tyrosine phosphatase activ-
ity as described in Materials and Methods. Shown is the
amount of radiolabeled phosphate released from the sub-
strate (mean of three experiments ± sd). released in the
absence of added antigen.
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Figure 5
Phosphorylation status of focal adhesion kinase in suspension
cells MDAH cells were transferred to suspension culture
conditions for the times indicated. Total cellular lysate was
prepared and analyzed by Western blot with antibodies spe-
cific for the tyrosine-phosphorylated form of focal adhesion
kinase (p-tyr-FAK) or for the overall levels of focal adhesion
kinase protein (FAK) as indicated.
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[4,6–10,18,33,44]. It was therefore difficult to discern
from these experiments how effectively and selectively
PTEN participates in anchorage-dependent growth con-
trol. As an alternative to the forced expression of ectopic
PTEN in anchorage-independent, PTEN-negative tumor
cells, our study has focused on the regulation of endog-
enous PTEN in anchorage-dependent mouse and human
fibroblasts. We found that upon detachment, both cell
lines exhibited increased levels of PTEN expression, due to
the transcriptional activation of the PTEN gene. The in-
creased levels of PTEN protein resulted in strongly in-
creased intracellular PTEN phosphatase activity. Thus, our
results revealed a close correlation between the disruption
of cell-matrix interactions and the subsequent activation
of the PTEN phosphatase. In light of the well-established
growth-inhibitory effects exerted by increased levels of
this phosphatase, it is reasonable to conclude that this ac-
tivation of PTEN significantly contributes to the anchor-
age-dependent phenotype, i.e., to the inhibition of cell
proliferation after detachment from matrix.

It should be noted that the fibroblast cells lines we used
remain fully viable after detachment and transfer to sus-
pension culture [31,43]. This is in contrast to most epithe-
lial cells which undergo anoikis, i.e., apoptotic cell death
after the disruption of cell-matrix interactions [45]. It is of
interest that some anchorage-independent tumor cells,
most of which are of epitheloid origin, become suscepti-
ble to anoikis after the introduction of exogenous PTEN
[23,34–36]. These observations are in line with the estab-
lished ability of PTEN to down-regulate the phosphati-
dylinositol 3-kinase (PI3-K)/PKB survival pathway
[11,46]. The absence of anoikis in our two cell lines may
reflect inherent cell type specific differences, i.e., the supe-
rior ability of fibroblasts to survive under suspension cul-
ture conditions. One could speculate that increased levels
of PTEN might favor growth arrest in fibroblasts versus ap-
optosis in epitheloid cells. Furthermore, it appears that
the specific experimental or physiological conditions of
cellular attachment or detachment might influence the
precise function of PTEN in these processes. For example,
it was shown recently that the reduction of PTEN expres-
sion levels by antisense oligonucleotides in a colon carci-
noma cell line generated differential effects on cell
adhesion, depending on whether the cells were kept un-
der static or hydrodynamic conditions of fluid flow [47].

One of the established in vivo substrates of PTEN, FAK, is
known to play a major role in growth-regulatory signal
transduction initiated by cell surface integrin receptors
[48,49]. As we observe a correlation between increased
PTEN activity and decreased levels of FAK phosphoryla-
tion (compare Figure 4B and Figure 5), it is likely that the
dephosphorylation of FAK in response to the disruption
of cell-matrix interactions is accomplished by increased

PTEN activity. Such a scenario would plausibly explain
some of PTEN's growth-inhibitory effect. Additional
growth-inhibitory effects of increased PTEN activity are
likely to occur through the stimulation of the cell cycle in-
hibitor p27Kip1. This protein acts as inhibitor of cyclin-de-
pendent kinases (the "cell cycle engine" [50]), and its
elevated expression has been consistently demonstrated
in different cell types after the disruption of cell-matrix in-
teractions (compare Figure 1 and [31,32,51,52]). Further-
more, p27Kip1 is an established target of PTEN signaling,
i.e., its activity has been found increased after the forced
expression of exogenous PTEN [53–56]. In combination
with the data presented in this manuscript, it therefore ap-
pears that PTEN contributes to anchorage-dependent
growth control by a two-fold approach: the dephosphor-
ylation of the signaling molecule FAK in combination
with the stimulation of the cell cycle inhibitor p27Kip1.

Conclusions
In view of PTEN's potent growth-inhibitory capacity, we
conclude that its induction after cell-matrix disruptions
contributes to the maintenance of the anchorage-depend-
ent phenotype of normal cells. The underlying processes
involve the stimulation of expression of p27Kip1 and the
dephosphorylation of FAK.

Materials and Methods
Materials
HEMA (poly-HEMA; poly(2-hydroxyethyl methacrylate)
was obtained from Sigma (St. Louis, MO) and dissolved
in ethanol at 10 mg/ml.

Cell lines and culture
C3/10T1/2 mouse fibroblasts were obtained from the
American Tissue Culture Collection (ATCC, Rockville,
MD). MDAH human fibroblasts from Li Fraumeni pa-
tients (p53-negative), and the same cells stably transfected
with a tetracycline-regulated p53 expression vector (TR9-
7) [42], were obtained from W.R. Taylor and G.R. Stark
(Cleveland Clinic Foundation, Cleveland, OH). The U87
glioblastoma tumor cell line has been described [57] and
was obtained from Webster K. Cavenee (UC San Diego, La
Jolla, CA).

All cells were maintained in Dulbecco's modified Eagle's
medium (DMEM) supplemented with 10% calf serum,
100 U/ml penicillin, and 0.1 mg/ml streptomycin at 37°C
in a 5% CO2 atmosphere. For the disruption of cell-matrix
interactions, cells grown as a monolayer were either
trypsinized or scraped off the culture dish and dispersed
by pipetting. Then one half was seeded back into a culture
dish for re-attachment, the other half was cultured in
HEMA-coated plates which prevented the attachment of
cells [37].
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PTEN phosphatase assays
Phospho-tyrosine phosphatase assays were performed
similarly to previously described protocols [14,58]. For
the preparation of tyrosine-phosphorylated substrate, 7 ×
106 HTC-IR cells [59] were incubated with medium con-
taining insulin (50 nM/ml) and lysed with RIPA buffer.
Insulin receptor was immunoprecipitated with specific
antibodies, collected with protein A sepharose, and incu-
bated with polyGlu4Tyr1 peptides (Sigma, St. Louis, MO)
in the presence of [γ-32P]-ATP [14]. After completion of
the kinase reaction, the mix was centrifuged and the phos-
pho-peptide-containing supernatant precipitated with
20% TCA (w/v). After washing, the phospho-peptide was
solubilized in 30 mM Tris pH 8.0, and aliquots were dried
onto DE81 paper (1 × 1 cm).

For the phosphatase assays, PTEN was immunoprecipitat-
ed from cellular lysates using anti-PTEN mouse mono-
clonal antibodies [44], and incubated with the substrate
on DE81 paper for 5 min. at room temperature. The reac-
tion was stopped by adding 75 mM H3PO4 (5 ml). Both
the released as well as the retained radioactivity was deter-
mined with a scintillation counter.

RNA analysis
Total RNA was isolated using the guanidium thiocyanate
method [60], followed by poly A extraction using oligo dT
beads [61]. Equal amounts of each RNA sample were sep-
arated on formaldehyde/agarose gels and transferred onto
nitrocellulose membranes. For hybridization, specific ri-
boprobes were generated using T7 RNA polymerase ac-
cording to manufacturer's instructions. The hybridization
was carried out essentially as described [62]. After hybrid-

Figure 6
PTEN expression in cells with tetracycline-regulated p53 MDAH cells (which are p53-negative), or the same cells harboring a
tetracycline-regulated p53 gene (TR9-7), were kept in monolayer culture in the absence or presence of tetracycline (1 µg/ml)
for 24 hours. TR9-7 cells contain the tet-off system, i.e., in the presence of tetracycline, p53 is off (not expressed), whereas in
the absence of tetracycline, p53 is expressed [42]. After 24 hours of incubation with or without tetracycline, the cells were
transferred to suspension culture in the continued presence or absence of tetracycline. At 0, 12 and 24 hours after the onset
of suspension culture, cellular lysates were prepared and analyzed by Western blot for the expression levels of PTEN as indi-
cated. In order to verify proper control of p53 by tetracycline, the amount of p53 protein in each lysate was analyzed as well
(shown in the bottom panel). Furthermore, to establish that the elevated levels of p53 were indeed functional, the increased
expression of one of its target genes, p21Cip1[65], was confirmed by Western blot analysis; in this case, p21Cip1 was found to
be highly expressed in TR9-7 cells in the absence of tetracycline, but not in TR9-7 cells in the presence of tetracycline, nor in
MDAH cells with or without tetracycline (not shown).
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ization, the membranes were washed twice at 80°C in
0.2× SSPE and 0.5% SDS for 30 minutes, and subsequent-
ly exposed to Kodak X-AR autoradiographic film. After ex-
posure, the filters were stripped and rehybridized in order
to confirm that equal amounts of RNA were loaded in
each lane. For this purpose, two probes were used; one
was β-actin, the other was choA, which is clone A of a
group of highly expressed mRNAs from Chinese hamster
ovary (cho) cells [40]. The quantitation of the hybridized
blots was performed using the AMBIS Radioanalytic Imag-
ing System (Analytical Development Corporation, Colo-
rado Springs, CO).

Western blot analysis
Total cell lysates were prepared by lysis of cells with RIPA
buffer [63]. Thirty µg of each sample was processed by
Western blot analysis as described [31]. Antibodies
against cell cycle-regulatory proteins as well as those
against focal adhesion kinase were purchased from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA). Monoclonal
antibodies against PTEN were generated and used as de-
scribed previously [44]. The secondary antibodies were
coupled to horseradish peroxidase, and were detected by
chemiluminescence using the SuperSignal™ substrate
from Pierce (Rockford, MD).
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