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Abstract

Background: Kriippel-like Factor 3 (KLF3) is a broadly expressed zinc-finger transcriptional repressor with diverse
biological roles. During erythropoiesis, KLF3 acts as a feedback repressor of a set of genes that are activated by
Krippel-like Factor 1 (KLF1). Noting that KLF1 binds a-globin gene regulatory sequences during erythroid maturation,
we sought to determine whether KLF3 also interacts with the a-globin locus to regulate transcription.

Results: We found that expression of a human transgenic a-globin reporter gene is markedly up-regulated in fetal and
adult erythroid cells of KIf3™~ mice. Inspection of the mouse and human a-globin promoters revealed a number of
canonical KLF-binding sites, and indeed, KLF3 was shown to bind to these regions both in vitro and in vivo. Despite
these observations, we did not detect an increase in endogenous murine a-globin expression in K3~ erythroid tissue.
However, examination of murine embryonic fibroblasts lacking KLF3 revealed significant de-repression of a-globin gene
expression. This suggests that KLF3 may contribute to the silencing of the a-globin locus in non-erythroid tissue.
Moreover, ChIP-Seq analysis of murine fibroblasts demonstrated that across the locus, KLF3 does not occupy the promoter
regions of the a-globin genes in these cells, but rather, binds to upstream, DNase hypersensitive regulatory regions.
Conclusions: These findings reveal that the occupancy profile of KLF3 at the a-globin locus differs in erythroid and
non-erythroid cells. In erythroid cells, KLF3 primarily binds to the promoters of the adult a-globin genes, but appears
dispensable for normal transcriptional regulation. In non-erythroid cells, KLF3 distinctly binds to the HS-12 and HS-26
elements and plays a non-redundant, albeit modest, role in the silencing of a-globin expression.
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Background

Krippel-like Factor 3 (KLF3/BKLF) belongs to the KLF
family of transcription factors, of which there are 17
members with diverse biological roles in development
and cellular differentiation [1,2]. KLFs are characterized by
a highly homologous C-terminal DNA-binding domain,
containing three C2H2 zinc fingers that direct binding to
CACCC boxes and related GC-rich sequences in the con-
trol regions of target genes [3]. KLF3 is predominantly a
transcriptional repressor which recruits a co-repressor
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complex containing C-terminal binding protein (CtBP)
to facilitate silencing of its target genes [4]. KLF3 is
broadly expressed and has been shown to have roles in
several processes, including erythropoiesis [5,6], adipo-
genesis [7,8], muscle cell differentiation [9], and B cell
development [10,11].

The KIf3 gene is highly expressed in the red blood cell
lineage due to the presence of an erythroid specific pro-
moter, which is driven by a related KLF, Kriippel-like Factor
1 (KLF1) [12]. KLF1 is a master regulator of erythropoiesis,
with functional roles in many facets of erythroid develop-
ment, including red blood cell structure, heme biosynthesis
and globin gene regulation [13,14]. Loss of KLF1 is em-
bryonic lethal, with KIfI™'~ mice dying in utero from
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lethal B-thalassemia, due to a failure of activation of
B-globin gene expression [15,16]. In addition to regulating
the 5-globin gene, KLF1 has been shown to bind the a-glo-
bin locus [17-19], as a component of a complex of factors
recruited when looping of enhancer elements to the prox-
imal promoter occurs and initiates high level gene expres-
sion [17,20]. Loss of KLF1 leads to reduced a-globin gene
expression and chromosome looping [21], although
these effects are notably less severe than the down-
regulation of (-globin expression, possibly due to func-
tional redundancy between other KLF family members
and related SP (specificity protein) factors [17]. In regu-
lating both the a-globin and f3-globin loci, it is probable
that KLF1 contributes to the maintenance of globin
chain balance, which is critical for red blood cell func-
tion and viability.

Given that KLF3 is required for normal erythropoiesis
and is known to repress a subset of KLF1-driven target
genes [5], we investigated whether KLF3 can also bind
and repress the a-globin gene. In support of this, we
found that expression of a GFP reporter transgene, driven
by the human a-globin promoter and regulatory elements
[22] is significantly up-regulated in KIf3”'~ mice. Further-
more, inspection of the a-globin promoter revealed numer-
ous KLF3 consensus recognition sites and we confirmed
that KLF3 binds to this region both in vitro in electro-
phoretic mobility shift assays and in vivo by chromatin
immunoprecipitation. However, despite demonstrating
an in vivo interaction of KLF3 with the a-globin locus,
we did not detect de-regulated endogenous a-globin expres-
sion in KIf3”'~ erythroid tissue. In contrast, examination of
a-globin mRNA levels in KIf3”'~ murine embryonic fibro-
blasts revealed a significant increase in expression. In fibro-
blasts, KLF3 was found to bind not at a-globin promoter
regions, but at the upstream HS-12 and HS-26 regulatory re-
gions. Together, these results suggest that KLF3 may have a
role in the silencing of the a-globin locus in non-erythroid
tissue.

Methods

Mouse lines

The generation of GFP Line3 [22] and Klf3’/ ~ [8] lines
have been described previously. Mice were maintained
on the FVBN/J background and animal work was carried
out under the approval of the Animal Care and Ethics
Committees of the University of Sydney (project numbers
L02/1-2005/3/4048, 1L02/6-2006/3/4344 and L02/7-2009/
3/5079) and the University of New South Wales (approval
number 09/128A).

Cell sorting and flow cytometry

Flow cytometry was performed using a FACSCalibur
Flow Cytometer (BD Biosciences, San Jose, CA) and data
were analyzed using CellQuest Pro (BD Biosciences) or
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FlowJo v7.6.5 software (TreeStar, Ashland, OR). TER119
antibody was supplied by BD Biosciences and titrated
to optimal concentration. TER119" cells were purified
from embryonic day 14.5 fetal liver (KIf3*'*, KIf3*'~
and KIf3”'~ littermates) using Magnetic Activated Cell
Sorting with Anti-TER119 MicroBeads (Miltenyi Biotec
Australia Pty Ltd, Macquarie Park, NSW, Australia) by
positive selection using MS columns as per the supplier’s
instructions.

Cell culture

Mouse and human primary erythroblasts, murine erythro-
leukemia (MEL) cells and interspecific MEL hybrids (con-
taining a copy of human chromosome 16) were cultured
and differentiated as previously described [17]. K562 cells
were cultured at 37°C in RPMI medium and COS-7 cells
were cultured in Dulbecco’s Modified Eagle Medium
(DMEM), each supplemented with 10% (v/v) fetal calf
serum (FCS) and 1% (v/v) penicillin, streptomycin and
glutamine solution (PSG) (Gibco-BRL Life Technologies,
Grand Island NY). Murine embryonic fibroblasts (MEFs)
were prepared from littermate E12.5 embryos (KIf3*'",
KIf3*"~ and KIf3”""). Briefly, heart, liver, intestinal, lung
and brain tissue were removed and remaining embryonic
tissue was homogenized in 3 mL trypsin/EDTA using an
18-gauge needle. MEFs were subsequently incubated for
2-3 minutes at 37°C and were then transferred to
100 mm plates containing 7 mL DMEM (10% ECS, 1%
PSQG). The cells were then left undisturbed for 48 h at
37°C and were passaged every 2-3 days. MEF cells
(passage 2 or 3) were immortalized by transfecting with
5 ug pRSV-T [23] using the FuGENES6 transfection reagent
protocol (Roche Diagnostics Australia Pty Ltd, Castle Hill,
NSW, Australia). Immortalized KIf3”'~ MEFs that have
been stably rescued with KLE3-V5, or pMSCVpuro empty
vector (Clontech Laboratories, Mountain View, CA) as a
negative control, have been described previously [24].

RNA extraction and cDNA synthesis

RNA extraction was performed using TRI-Reagent, ac-
cording to the manufacturer’s guidelines (Sigma, St. Louis,
MO). RNA samples were further purified using RNeasy
columns (Qiagen, Victoria, Australia) and by treating with
DNase I (Ambion, Austin, TX). Subsequently, cDNA was
prepared using Superscript VILO c¢DNA synthesis kit
(Invitrogen, Carlsbad, CA), according to the manufac-
turer’s instructions.

Primers and real-time RT-PCR

Primer sequences for real-time RT-PCR were: mouse a-
globin, 5'-GTCACGGCAAGAAGGTCGC-3" and 5'-G
GGGTGAAATCGGCAGGGT-3"; mouse f-actin, 5'-GC
TTCTTTGCAGCTCCTTCGT-3" and 5'- CCAGCGCA
GCGATATCG-3’; mouse 18S, 5'-CACGGCCGGTACA
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GTGAAAC-3" and 5'-AGAGGAGCGAGCGACCAA-3’;
mouse Gapdh, 5'-GTCTCCTGCGACTTCAGC-3" and
5"-TCATTGTCATACCAGGAAATGAGC-3’; and as
described previously for Kif3, KiIf8 and Fam132a [7,12,25].
Quantitative real-time PCR was performed using Power
SYBR Green PCR Master Mix and the 7500 Fast Real-
Time PCR System (Applied Biosystems, Foster City, CA),
as described previously [26]. Data were analyzed using
7500 Software v2.0.4 (Applied Biosystems).

Electrophoretic mobility shift assays (EMSAs)

EMSAs were carried out as described previously [27].
COS-7 cells in 100 mm plates were transfected with 5 pg
vector (pMT3-empty or pMT3-KIf3 [28]) using FuGENE6
(Roche Diagnostics Australia Pty Ltd) as per the manufac-
turer’s protocol. Nuclear extracts from COS-7, uninduced
K562, uninduced MEL and MEF cell lines were harvested
as previously described [28]. Oligonucleotides used in the
synthesis of radiolabelled probes were: human a-globin
promoter, 5'-CGCAGGCCCCGCCCGGGACTC-3" and
5'-GAGTCCCGGGCGGGGCCTGCG-3"; mouse a-globin
promoter, 5'-TGGAGGACACGCCCTTGGAGG-3" and
5 -CCTCCAAGGGCGTGTCCTCCA-3’; mouse HS-26
probe 1, 5'-AGGTGTACACACCCAGGCCAA-3" and
5-TTGGCCTGGGTGTGTACACCT-3’, and; HS-26 probe
2, 5'-AGGCCAAGGGTGGAGCAGACCA-3" and 5'-TGG
TCTGCTCCACCCTTGGCCT-3". Supershift recognition
of KLF3 was achieved using specific antiserum that has
been described previously [27]. Probe sequences were
identified using CLC Main Workbench software ver-
sion 6.6.2 (CLC Bio, Cambridge, MA).

Chromatin immunoprecipitation (ChIP)

ChIP assays were carried out as previously described
[17,29], using the previously described anti-KLF3 anti-
body [27]. KLF3 ChIP-Seq analysis has previously been
described [24] and enrichment tracks were visualized
using Integrative Genomics Viewer [30].

Western blotting
Western blots of nuclear extracts from MEF, MEL and
COS-7 cells were performed as previously described
[31] using KLF3 anti-serum [27]. Full-Range Rainbow
Molecular Weight Marker was supplied by GE Healthcare
(Piscataway, NJ).

Results

KLF3 regulates expression of a human transgenic a-globin
promoter in vivo

To begin our investigation into potential regulation of the
a-globin gene by KLF3, we made use of an existing well-
characterized transgenic mouse model, termed Line3, in
which a GFP reporter gene is expressed under the control
of the human a-globin proximal promoter and HS-40
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enhancer region [22]. The red blood cells of Line3 mice
express GFP and it is possible to accurately measure the
level of expression by flow cytometry in either adult per-
ipheral blood or erythroid cells purified from tissues, such
as the fetal liver. To determine whether KLF3 has a role in
regulating expression of the reporter gene, we introduced
the homozygous transgene into KIf3~'~ mice [8] by breed-
ing and compared GFP expression in KIf3""*, KIf3"/~ and
KIf3™"~ erythrocytes.

As previously reported [22], we found that GFP is
expressed in Line3:KIf3"*erythrocytes with a broad, but
consistent and reproducible profile. These cells can be
classified as expressing low, intermediate or high levels
of GFP (Figure 1). Loss of a single allele of KIf3 had no
effect on transgene expression, as we did not find any
notable difference between the GFP profiles of Line3:
KIf3*"*and Line3:KIf3*'~ mice (Figure 1A and 1C). How-
ever, analysis of red blood cells from homozygous Line3::
KIf3™'~ animals revealed a significant increase in GEP ex-
pression (Figure 1A). On average, we found that 46% of
KIf3™"~ cells express high levels of GFP, compared to
18% in KIf3"*animals (Figure 1C). We also examined
newly formed erythrocytes in the erythroid fetal liver.
We purified TER119+ cells from the fetal livers of
Line3:KIf3**and Line3:KIf3~'~ mice and again observed a
significant increase in transgenic promoter activity in the
absence of KLF3 (Figure 1B and 1D). Together, these data
suggest that KLF3 directly or indirectly represses the hu-
man transgenic a-globin promoter in this mouse model.

KLF3 binds the human and mouse a-globin promoters
in vitro and in vivo
Having determined that KLF3 influences the expression
of a transgene driven by a-globin gene regulatory se-
quences in vivo, we next investigated whether KLF3 inter-
acts directly with the a-globin promoter. We inspected the
human and mouse a-globin proximal promoters to iden-
tify potential high affinity KLF3 binding sites, which match
the KLF consensus sequence, 5'-NCN CNC CCN-3’ [32].
This analysis revealed the presence of several sites, with
the human promoter in particular containing 14 potential
interaction motifs (Figure 2A and 2B). We then used our
sequence analysis to design probes for electrophoretic mo-
bility shift assays (EMSA) to investigate binding of KLF3
to the a-globin promoter in vitro. To assess binding to the
human promoter, we based our probe on the most fre-
quently seen consensus sequence, 5'-NCC CGC CCN-3’,
which occurs four times (Figure 2A). In the case of the
mouse promoter, where there are noticeably fewer poten-
tial KLF3 binding sites (Figure 2B), we used the sequence
5'-NCA CGC CCN-3’, which is found twice, to inform
our probe design.

We began our investigation into in vitro binding by
expressing KLF3 in COS-7 cells and assessing the ability
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Figure 1 Loss of KLF3 results in up-regulation of the human a-globin gene in a transgenic mouse model. Line3 mice, containing a GFP
transgene under the control of the human a-globin proximal promoter and HS-40 enhancer [22], were crossed with KIf3"/~ mice to generate
Line3:KIf3™*, Line3:KIf3*~ and Line3:KIf3~ mice, all homozygous for the transgene. Erythroid GFP fluorescence was then measured by flow
cytometry. Shown are representative fluorescence profiles of (A) peripheral blood from mice at 3 weeks of age and (B) TER119" sorted
erythrocytes from embryonic day E14.5 fetal liver. The populations were gated to identify cells expressing low, intermediate and high levels of
GFP. Statistical analysis of these gated populations is shown for (C) erythrocytes from mice at 3 weeks of age and (D) TER119" fetal liver cells. For
erythrocytes analyzed at 3 weeks of age, n =32 for Line3:KIf3"*, n =48 for Line3:KIf3"~ and n =8 for Line3:KIf3~'~. For the analysis of fetal
erythrocytes, n =3 for Line3:KIf3™*and n =4 for Line3:KIf3™~. Error bars represent standard deviation and * represents P < 0.05 (two tailed t-test).

J

of nuclear extracts purified from these cells to interact
with the human and mouse a-globin promoter se-
quences by EMSA. We found that the nuclear extracts
bound both human and mouse probes with high affin-
ity and confirmed that this interaction was specific to
KLF3 by supershift with anti-KLF3 antibody (Figure 3,

lanes 2-3 and 7-8). Minimal background binding was
observed for nuclear extracts from mock transfected
COS-7 cells (Figure 3, lanes 1 and 6). We next deter-
mined whether endogenous KLF3 present in erythroid
cell lines also binds to the human and mouse a-globin
promoter probes by preparing nuclear extracts from
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Figure 2 The a-globin promoter contains many consensus KLF3 binding sites. The human HBA2 (A) and mouse Hba-a2 (B) a-globin
proximal promoter sequences, immediately 5’ to the transcriptional start site, were inspected for consensus binding sites, conforming to the
sequence 5-NCN CNC CCN-3'. The position and direction of binding sites are indicated by grey arrows. The sequences used in the design of
probes for electrophoretic mobility shift assays are shown by black arrows. Also indicated are CAAT and TATA boxes. Sequences are numbered
with respect to the transcription start site at +1.

human K562 and murine erythroleukemia (MEL) cells.
We tested binding of the K562 nuclear extracts to the
human a-globin probe and the MEL nuclear extracts to
the mouse probe. Again, we found that proteins in
both extracts bound to the promoter sequences and

confirmed the identity of a KLF3 complex by super-
shift with an anti-KLF3 antibody (Figure 3, lanes 4-5
and 9-10).

Having established that KLF3 can bind to both the hu-
man and mouse a-globin proximal promoters in vitro,
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Figure 3 KLF3 binds the a-globin promoter in vitro. The binding of KLF3 to the a-globin promoter was assessed by EMSA, using radiolabeled
probes designed from analysis of the human and mouse a-globin proximal promoter sequences (Figure 2). KLF3 was either expressed in COS-7
cells (lanes 2, 3, 7 and 8) or endogenous KLF3 was harvested in nuclear extracts from K562 (lanes 4 and 5) and MEL (lanes 9 and 10) erythroid cell
lines. Nuclear extracts from mock transfected COS-7 cells have been included as a negative control (lanes 1 and 6). Binding to the human promoter
sequence is shown in the left hand panel whilst binding to the mouse sequence is shown on the right. akLF3 indicates an anti-KLF3 antibody used to
validate KLF3 specific binding by supershift. Additional bands in lanes 4, 5,9 and 10 (denoted by asterisks) most likely represent SP1 and SP3 as in [12].
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we carried out chromatin immunoprecipitation (ChIP)
assays on a number of erythroid cell types to determine
whether KLF3 binds to the a-globin locus in vivo. Our
approach was to conduct a primer walk across the locus,
in which we used TagMan real time RT-PCR probes to
assess binding at the upstream HS (DNase hypersensi-
tive) enhancers, the proximal promoter, the coding se-
quence, and at a number of control sites, including the
a-globin intergenic region, and the B-actin and f-globin
genes.

First, we investigated KLF3 binding to the a-globin locus
in uninduced MEL cells and found only background bind-
ing at each of the sites we examined (Figure 4A). However,
when we chemically induced erythroid maturation in
these cells, we observed a marked enrichment of KLF3
at the a-globin proximal promoter (Figure 4B), consist-
ent with what we have previously reported [6]. An exam-
ination of mouse primary erythroblasts confirmed that
KLF3 also binds this site in vivo (Figure 4C). We then
made use of an interspecies hybrid MEL cell line into
which human chromosome 16, containing the a-globin
locus, has been introduced [17,33]. Again, we saw only
background binding of KLF3 across the locus in unin-
duced cells but observed noticeable enrichment at the hu-
man a-globin proximal promoter following erythroid
maturation (Figure 4D and E). Finally, we assessed binding

in human primary erythroblasts and once again found high
enrichment at the a-globin proximal promoter (Figure 4F).

KLF3 represses a-globin expression in non-erythroid
tissue

Having confirmed that KLF3 can bind to the a-globin pro-
moter in vitro and in vivo, we next asked whether loss of
KLF3 results in de-regulation of endogenous a-globin gene
expression. We first compared a-globin mRNA levels in
red blood cells purified from the erythroid fetal liver of
KIf3*"*, KIf3*'~ and KIf3”~ embryos (E14.5) by real time
qRT-PCR. Despite our observation that KLF3 binds the
a-globin gene promoter in vivo, we did not detect any
up-regulation of a-globin expression in KIf3~~ eryth-
roid cells (Figure 5A). In addition, we have previously
analyzed the expression of multiple globin genes at an
earlier stage of development (E13.5) and similarly ob-
served no change in adult a-globin transcripts in the
absence of KLF3 [6].

It is possible that in erythroid cells, loss of KLF3 has
little effect because a-globin is expressed at maximal
levels. We therefore turned our attention to non-erythroid
cells, namely murine embryonic fibroblasts (MEFs), which
express only low levels of a-globin transcripts. In both pri-
mary and immortalized MEFs lacking KLF3, we observed
a modest de-repression of a-globin gene expression (by
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Figure 4 KLF3 binds the human and mouse a-globin promoters in vivo in chromatin immunoprecipitation assays. An anti-KLF3 antibody
was used to immunoprecipitate chromatin from the following cell types: (A) uninduced MEL cells, (B) induced MEL cells, (C) mouse primary
erythroblasts, (D) uninduced interspecific MEL hybrids containing a normal copy of human chromosome 16, (E) induced interspecific MEL hybrids,
and (F) human primary erythroblasts. The y-axis represents enrichment over input DNA, normalized to a control sequence in the Gapdh gene
(mouse) or 18S (human). The x-axis represents the positions of the TagMan probes used. The coding sequence is represented by the three exons
(Promoter/Ex1, Ex2, and Ex3) of the a-globin genes. HS- primer sets refer to upstream DNase-hypersensitive regions. Zeta pr refers to the mouse
and human embryonic a-globin promoters (Hba-x and HBZ). Inter, refers to the intergenic region (between mouse Hba-al and Hba-a2). 5' and 3'
are negative controls flanking the a-globin gene. 3-actin and B-globin denote control sequences at the 3-actin gene and S-globin promoter
respectively. Error bars correspond to +1 standard deviation from at least two independent ChlPs.

6.3-fold and 4.9-fold respectively compared to KIf3*'*cells)
(Figure 5B and 5C). Furthermore, stable rescue of 1(1]‘3’/ -
MEFs with V5-tagged KLF3 resulted in a significant dim-
inution of a-globin mRNA expression (Figure 5D).

To explore KLF3’s potential mode of regulation at the
a-globin locus in non-erythroid cells, we analyzed re-
cently generated KLF3 ChIP-Seq data from MEF cells
[24]. We found that in these cells, KLF3 was not bound
to the adult a-globin promoters (Hba-al and Hba-a?2),
but showed significant occupancy at the upstream HS-12
and HS-26 regulatory regions (Figure 5E). This con-
trasted with our observation from a series of erythroid
cells (Figure 4), in which KLF3 was primarily found at
the a-globin promoter. Analysis of the HS-26 region re-
vealed two sites resembling the KLF binding consensus
via which KLF3 might be recruited. Indeed, EMSA experi-
ments confirmed that both of these sites are recognized
by both KLF3 expressed in COS-7 cells and endogenous
KLF3 in MEFs (Figure 5F). Taken together, these findings
suggest that in non-erythroid cells, KLF3 binds the HS-12
and HS-26 regulatory regions and may be involved in

repressing and thereby maintain physiologically low levels
of a-globin expression in these cells.

Lastly, we also analyzed the DNA-binding capacity of
KLF3 extracted from erythroid (MEL) and non-erythroid
(MEEF) cells (Figure 6A and B). Equivalent levels of KLF3
from these two cellular sources exhibited comparable
DNA-binding activity at sites in both the murine a-glo-
bin promoter and the HS-26 regulatory element. This
suggests that the differing in vivo occupancy of KLF3
across the a-globin locus in erythroid and non-erythroid
cells (compare Figures 4B and 4C with Figure 5E) is not
due to intrinsic differences in KLF3’s ability to bind
DNA.

Discussion

Our data show that KLF3 binds the adult mouse a-globin
promoter in erythroid tissue in vivo. However, KLF3 does
not appear to functionally repress the endogenous pro-
moter in red blood cells. Similarly, we have previously ob-
served KLF3 occupancy at the adult S-globin (Hbb-bI)
promoter in erythroid cells and no associated perturbation
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Figure 5 a-globin gene expression is de-repressed in murine embryonic fibroblasts lacking KLF3. a-globin mRNA expression levels were
determined by real time qRT-PCR analysis of (A) TER119" erythrocytes purified from embryonic day E14.5 fetal liver (KIf3""n=3, KIf3"/~ n=5,
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KIf377). (E) KLF3 ChIP-Seq track across the murine a-globin locus in MEFs from [24]. The positions of the HS-12 and HS-26 regulatory regions
are indicated. (F) EMSA showing the binding of KLF3 to two sites within the HS-26 region. Nuclear extracts were obtained from COS-7 cells
that were mock-transfected (lanes 1 and 6) or transfected with pMT3-KIf3 (lanes 2, 3, 7 and 8). Nuclear extracts from MEFs are shown in lanes
4,5,9 and 10. Identification of KLF3:DNA complexes was achieved by addition of an antibody specific for KLF3 (aKLF3, lanes 3, 5, 8 and 10).
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of Hbb-b1 transcription upon ablation of KLF3 [6]. It is
notable that KLF3 binding is highest at the late stages of
erythroid maturation (compare Figure 4A with 4B, and
4D with 4E) when the adult globin genes are expressed at
very high levels and their promoters are presumably
highly accessible. This is also when KLEF3 levels peak
[5] and it is possible that KLF3 gains access to these
regions but is not sufficiently potent to limit KLF1
driven activation of the genes. This observation high-
lights the view that transcription factor binding sites
discovered by ChIP may not always have functional
relevance in the context in which they are identified, but
may instead reflect the dynamic nature of transcription
factor binding at permissive loci. Indeed, a number of re-
cent ChIP-Seq experiments, performed in association with
transcriptome analysis of gene knockout models have re-
vealed that transcription factor binding is not always asso-
ciated with changes in gene activity [34,35].

In contrast to the endogenous mouse a-globin pro-
moter, we have shown that KLF3 does appear to regulate
the expression of a human transgenic promoter in eryth-
roid cells. The transgene is driven by a minimal human
a-globin promoter and HS-40 and perhaps this subset of
elements is more reliant on repression by KLF3 than the
entire set of globin regulatory elements. In the case of
the endogenous a-globin locus, chromatin conformation
capture experiments suggest that gene expression is
dependent upon chromosomal looping of distal en-
hancers to the proximal promoter, in a process that is
dependent upon many regulatory factors [17]. The re-
moval of such complexity in the transgene most likely
offers a far greater opportunity for observing the con-
tribution that single factors make to expression levels.
Alternatively, it should be noted that the experiments
presented here primarily analyzed KLF3 function in
murine cells, and thus it remains possible that KLF3
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Figure 6 KLF3 from erythroid and non-erythroid cells display similar DNA-binding abilities in vitro. (A) EMSAs were employed to assess
the binding of KLF3 to the murine a-globin promoter (lanes 1-7) and a site in the HS-26 element from Figure 5 (lanes 8-14). Nuclear extracts
2) or erythroid MEL cells (lanes 6, 7, 13 and 14). Nuclear extracts from mock transfected

HS-26 probe 1

COS-7 cells (lanes 1 and 8) or cells expressing KLF3 (lanes 2, 3,9 and 10) were included as negative and positive controls respectively. The identity of
KLF3 was confirmed by specific antibody supershifts (lanes 3, 5, 7, 10, 12 and 14). (B) Western blot demonstrating the relative amounts of KLF3 in MEF
(lane 4) and MEL (lane 5) nuclear extracts used in the EMSAs in (A). As negative and positive controls, COS and COS-KLF3 nuclear extracts have been

included (lanes 2 and 3) at 20-fold lower relative amounts than in (A) to facilitate visualization. A size ladder is shown in lane 1.

may play a role in a-globin regulation in human eryth-
roid cells. Indeed, the related factor KLF4 has been
shown to positively regulate the human a-globin pro-
moter in reporter assays and to drive the endogenous
HBA gene in K562 cells [36].

The up-regulation of GFP expression in Line3:Kj]
mice shows that KLF3 can functionally repress the trans-
genic a-globin regulatory sequences in vivo, and may func-
tion as an epigenetic modifier of transgene expression.

KLF3 mediates repression of its target genes by binding
the co-repressor CtBP [4], which in turn recruits a repres-
sive complex that includes several epigenetic modifiers,
such as LSD1, G9A, EUHMT, PC2, HDAC1, and HDAC2
[37,38]. These factors facilitate histone methylation, de-
methylation and deacetylation, and are responsible for the
addition of repressive epigenetic marks and gene silencing.
It is possible that the absence of KLF3 in Line3:KIf3~~
erythrocytes prevents CtBP from being recruited to the
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transgene, and it is this that allows the rewriting of epigen-
etic marks permissive for transcription, resulting in the
up-regulation of GFP expression. Indeed, the Line3 mice
have frequently been used in ENU mutagenesis screens
for modulators of variegated expression, and these screens
have predominantly culminated in the identification of
epigenetic modifiers, including HDAC1 [39-43].

Another possible explanation for the lack of de-repression
of the endogenous a-globin gene in red blood cells is that
the locus is already fully open and maximally expressed, so
significant further de-repression cannot occur. In contrast,
the transgene contains only a limited subset of regulatory se-
quences, and may therefore be expressed at lower levels
allowing its up-regulation in the absence of KLF3. To cir-
cumvent this, we examined regulation in murine embryonic
fibroblasts, as a-globin mRNA expression is limited to
low but detectable levels in this cell type. In these non-
erythroid cells, we identified a modest but significant
increase in a-globin gene expression in the absence of
KLF3. Moreover, in support of a role for CtBP in the
regulation of the a-globin locus, we note that another
group have observed a similar de-repression (4-fold) of
a-globin gene expression from microarray analysis of
Ctbp~'~ murine embryonic fibroblasts [44].

Both the human and mouse a-globin loci lie in an open
chromosomal region, surrounded by a number of actively
expressed genes and in non-erythroid cells these loci re-
tain the hallmarks of constitutively accessible chromatin
[45]. This contrasts significantly with the more isolated
B-globin gene cluster, where in non-erythroid cells a si-
lent heterochromatic state is established and maintained.
It therefore appears that the a-globin locus employs differ-
ent silencing mechanisms to prevent expression in non-
red blood cells. In the case of the human locus, this is
achieved by targeted recruitment of the repressive poly-
comb complex, PRC2, to CpG islands in the promoter re-
gions [45]. However, these CpG islands have been
significantly eroded in the murine a-globin locus (Figure 2)
and recruitment of PRC2 has not been detected, most
likely due to loss of polycomb recruitment sites [46]. The
mechanism of a-globin gene silencing in non-erythroid
tissue in the mouse therefore remains unclear. Here we
suggest that KLF3 participates in this silencing and may
do so not through direct interaction with the a-globin
proximal promoter but via distal regulatory regions such
as HS-26. In erythroid cells, HS-26 is an enhancer element
that loops to the a-globin promoter and is required for ap-
propriate regulation of expression [17]. In non-erythroid
cells, such looping is disrupted and occurs at a much
lesser frequency [47]. Whilst these observations allude to
the functional importance of the HS-26 element, it should
be noted that loss of HS-26 only modestly deregulates
a-globin expression in erythroid cells and has not been
reported to perturb non-erythroid silencing [48,49].
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Thus it is likely that correct tissue-specific control of
the locus is achieved by a complex interplay between
multiple cis-acting regulatory regions and positively-
and negatively-acting trans factors such as KLF3 and
KLF1.

Conclusions

Excessive a-globin expression can be detrimental to cells
and thus it is important that mechanisms exist to limit
its expression. Collectively, the findings presented here
suggest that the broadly expressed transcriptional re-
pressor KLF3 may have a role in silencing the a-globin
locus in some but not all contexts, and in particular in
non-erythroid tissues. These results complement the pre-
vious observation that the KLF3 co-repressor CtBP is also
required for the appropriate control of a-globin expression
in non-erythroid cells [44].
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