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Abstract

Background: Numerous microRNAs (miRNAs) have heterogeneous ends resulting from imprecise cleavages by
processing nucleases and from various non-templated nucleotide additions. The scale of miRNA end-heterogeneity
is best shown by deep sequencing data revealing not only the major miRNA variants but also those that occur in
only minute amounts and are unlikely to be of functional importance. All RNA interference (RNAi) technology
reagents that are expressed and processed in cells are also exposed to the same machinery generating end-
heterogeneity of the released short interfering RNAs (siRNAs) or miRNA mimetics.

Results: In this study we have analyzed endogenous and exogenous RNAs in the range of 20-70 nt by high-
resolution northern blotting. We have validated the results obtained with northern blotting by comparing them
with data derived from miRNA deep sequencing; therefore we have demonstrated the usefulness of the northern
blotting technique in the investigation of miRNA biogenesis, as well as in the characterization of RNAi technology
reagents.

Conclusions: The conventional northern blotting enhanced to high resolution may be a useful adjunct to other
miRNA discovery, detection and characterization methods. It provides quantitative data on distribution of major
length variants of abundant endogenous miRNAs, as well as on length heterogeneity of RNAi technology reagents
expressed in cells.

Background
MicroRNAs (miRNAs) are endogenous short RNAs
(~22 nt) that control gene expression at the posttran-
scriptional level. There is growing evidence that miR-
NAs regulate various physiological processes and are
frequently misregulated in many diseases [1-9]. The bio-
genesis of animal miRNAs includes two RNA cleavage
steps (reviewed in [10-13]). First, in the nucleus, primary
miRNA transcripts (pri-miRNA) are cleaved into
approximately 60 nucleotide-long pre-miRNA precur-
sors by the ribonuclease Drosha acting together with
DGCR8 protein within the complex named Micropro-
cessor [14,15]. Then, the pre-miRNAs are exported to
the cytoplasm by Exportin-5 [16,17] and cleaved further
by the ribonuclease Dicer protein complex into ~20
nucleotide-long miRNA duplexes [18,19]. One of the
two RNA strands becomes functional miRNA via

Argonaute protein binding, and the other is released
and degraded [20,21]. Mature miRNAs are heteroge-
neous in length, varying between 19 and 25 nt [22-25].
The primary source of miRNA length heterogeneity is
imprecise cleavage by the ribonucleases Drosha and
Dicer [26]. Further, miRNA 5’-end selection occurs
upon Argonaute protein binding [27]. The miRNAs that
differ in their 5’-ends have different seed sequences and
may regulate different sets of targets [24,28-30]. Detec-
tion of the cellular levels of individual length variants of
miRNAs with high precision is therefore very important.
Similarly, determination of the exact length distribution
of reagents released from the vectors used in RNAi and
miRNA technologies is of importance because it may
influence their performance in cells [31]. It is also
advantageous to monitor the lengths of reagents
released from the vectors with regard to the off-target
effects that these products may cause [32,33].
Numerous reports have described various improve-

ments of the northern blotting technique [34-39]. In
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this study, we use the method refined for extremely
high-resolution detection of miRNAs, pre-miRNAs, siR-
NAs released from vectors, and any short RNAs of cor-
responding lengths. We demonstrate the usefulness of
this northern blotting procedure by showing examples
of its application in miRNA and RNAi fields to evaluate
the precision of Drosha and Dicer cleavages.

Results and discussion
We show here that northern blotting of short RNAs that
are 20-70 nt in length may provide insightful informa-
tion on the distribution of individual length variants of
siRNAs, miRNAs and their precursors in cells. We first
show that high-resolution northern blotting and deep
sequencing give similar results for abundant miRNAs.
Then, we advance our recent observations showing uti-
lity of this northern blotting protocol for evaluating pre-
cision of Drosha and Dicer cleavages during human
miRNA biogenesis [26]. Finally, we put special emphasis
on the need for better characterization of reagents
released from expression constructs used to activate
RNAi in cells.

Correlation between high-resolution northern blotting
and deep sequencing results
An increasingly popular high-throughput technology for
miRNA discovery and expression profiling is deep
sequencing [22-25]. To validate high-resolution northern
blotting as a suitable method for miRNA length hetero-
geneity studies, we compared the results obtained using
this method with the deep sequencing results obtained
by others using Illumina sequencing-by-synthesis plat-
form for miRNA discovery in mice [24]. The following
endogenous mouse miRNAs that differ in length hetero-
geneity have been analyzed: miR-9, miR-9*, miR-29,
miR-124, miR-132 and miR-137 specific for neuronal
tissues, as well as miR-1 and miR-206 specific for mus-
cle tissues (Figure 1). Total RNAs were extracted from
selected brain sections (cortex, cerebellum, striatum and
thalamus) or muscle tissues (heart and skeletal muscles
from legs), and the miRNAs abundantly expressed in
these tissues were detected by northern blotting with
specific probes. To evaluate relative levels of miRNA
heterogeneity, radioactive northern blotting signals were
quantified by phosphorimaging and the percentages of
individual length variants in the miRNA fractions were
calculated. Similarly, the distribution of miRNA length
variants was calculated from deep sequencing data [24]
(Additional file 1: Supplemental Table S1). These two
datasets correlated well with each other (Figure 1).
However, it should be borne in mind that the degree of
correlation may vary when a different sequencing plat-
form and/or data filtering system is used. Of all the ana-
lyzed miRNAs, length heterogeneity was greatest for

miR-124, which is in accordance with deep sequencing
results showing that some miRNAs have multiple iso-
forms [22,24,25]. In contrast to deep sequencing, north-
ern blotting shows only the most abundant miRNA
variants. This feature may be considered advantageous
because only highly expressed miRNA variants are of
functional importance [24].

Application of northern blotting in studies of miRNA and
pre-miRNA length heterogeneity
Northern blotting analysis with single-nucleotide resolu-
tion makes it possible to detect both miRNA and pre-
miRNA length variants. We have therefore found this
method useful in our studies of molecular sources of
miRNA length heterogeneity [26]. Such heterogeneity
has already been observed by deep sequencing in the
case of miRNAs [23,29] and by cloning in the case of
pre-miRNAs [40]. The pre-miRNA heterogeneity has its
primary source in the imprecise pri-miRNA cleavage by
Drosha [41,42]. The miRNA heterogeneity results from
imprecise cleavages by both Drosha and Dicer and can
be further biased at the AGO2 programming step [27]
and by various post-cleavage modifications, such as an
untemplated nucleotide addition [22,43]. Here, we show
examples of northern blots of endogenous mouse miR-
NAs (Figure 1A), as well as of miRNAs and pre-miR-
NAs overexpressed from vector constructs (Figure 2).
We used the miRNA overexpression system because
only a limited number of known miRNAs are expressed
in a given cell line or tissue, and only a fraction of these
miRNAs are expressed at levels detectable by northern
blotting. Hence, the use of a miRNA overexpression sys-
tem may assist miRNA biogenesis studies by increasing
cellular levels of miRNAs and, more importantly, facili-
tating the detection of miRNA precursors. The miRNAs
and pre-miRNAs, shown here as examples, reveal differ-
ent levels of length heterogeneity. Specifically, three
length variants were observed for miR-191 and miR-496,
whereas only one was seen for miR-93 (Figure 2A).
Similarly, individual pre-miRNAs differed in the number
of length variants (Figure 2B). The level of length het-
erogeneity observed here is in agreement with the
results of our large-scale analysis of Drosha and Dicer
cleavage specificities [26]. The length heterogeneity
detected by northern blotting can be quantitatively
evaluated by analyzing appropriate signal intensities
(Figure 2, right panels), making high-resolution northern
blotting an even more reliable method.

High-resolution northern blotting in siRNA studies
Short hairpin RNAs (shRNAs) may be constructed in two
ways; they may have antisense (guide) strands in the 3’ or
5’ arm of the shRNA stem (discussed in [44]). We designed
both sense-antisense (R-type) and antisense-sense (L-type)
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shRNAs having the same guide sequence specific for spino-
cerebellar ataxia type 3 (ATXN3) mRNA (for simplicity,
these shRNAs are hereinafter referred to as R-shSCA3 and
L-shSCA3) and cloned them into a pSilencer vector
(Ambion). To estimate the length of siRNAs excised from
the shRNAs by Dicer, we transfected HEK 293T cells with
the vector constructs and performed high-resolution
northern blotting analysis. Probes detecting either the
sense or antisense strand of R-shSCA3 and L-shSCA3 were
used for northern blotting (Figure 3A). The siRNAs gener-
ated from both types of shRNAs were heterogeneous in
length, and their length variants were easily distinguishable
at 1-nt resolution. The hybridization signals obtained by
detection with appropriate probes were unequal in inten-
sity, but the distribution of particular length variants was
only slightly different, regardless of the location of the

shRNA guide strand. It should be borne in mind that the
observed siRNA length heterogeneity may result not only
from imprecise Dicer cleavage of the shRNA but also from
heterogeneity at its 3’end to which the PAZ domain of
Dicer anchors. Therefore, the monitoring of RNA reagents
released from shRNAs is important. The shRNAs encoded
by appropriate vectors are transcribed from U6 or H1
RNA polymerase III (Pol III) promoters [45]. The start of
transcription is strictly defined as the +1 position of the
promoter in the vector, but termination is less accurate
and occurs within a short stretch of several uracil residues
in the transcript [46]. Hence, the length heterogeneity
of shRNAs may be solely the result of the different lengths
of the oligo-U tails at the 3’ end. Using high-resolution
northern blotting, we analyzed shRNAs and their siRNA
products generated from vectors with transcription

Figure 1 Correlation between high-resolution northern blotting and deep sequencing results. A) Appropriately cropped representative
northern pictures for endogenous mouse neuromiRs: miR-9, miR-9*, miR-29, miR-124, miR-132, miR-137, and myomiRs: miR-1, and miR-206 are
shown. B) Comparative analysis of the relative distribution of miRNA length variants. The percentage of the various length variants of mouse
miR-9, miR-9*, miR-29, miR-124, miR-132, miR-137, miR-1, and miR-206 observed in our high-resolution northern blot detections are shown as
black bars; equivalent miRNAs identified by deep sequencing are shown as gray bars. Relative shares of miRNA length variants (denoted as nt)
are calculated in percentage (%). Standard errors are from twelve independent northern blot samples for miR-9, miR-9*, miR-29, miR-124, miR-
132, miR-137, from nine samples for miR-1, and from three samples for miR-206. One-nucleotide discrepancy between northern blotting and
deep sequencing results observed in the case of miR-206 may be due to a difference in the migration rate of this miRNA, which probably results
from its nucleotide composition.
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termination signals composed of different numbers of thy-
midines (4T and 6T). We transfected HEK 293T cells with
vectors carrying either single stranded RNA composed of
nine CUG repeats (ssRNA CUG9) or double stranded
RNA forming a hairpin, composed of seven CAG/CUG
repeats (shRNA CAG/CUG7). These constructs were dri-
ven by the H1 promoter but with either 4T or 6T stretches
as the termination signal (Figure 3B). As we expected, the
ssRNA CUG9 transcript not forming a hairpin with a dis-
tinctive loop was not processed by Dicer, and we observed
heterogeneous products with a length range of ~30-35 nt
that were derived solely from unspecific transcription ter-
mination. We also observed length heterogeneity in siRNA
products released from both shRNA constructs. Moreover,
the pattern of length distribution varied. In the case of the
shCAG/CUG terminating at 4T, the longer siRNA variants
(~23-24 nt) dominated in the siRNA pool, whereas in the
case of the same shRNA terminating at 6T, shorter siRNA
variants (~22-23 nt) were more abundant. These examples
show that several obstacles to achieving effective shRNA
design still need to be overcome [47,48], and high-resolu-
tion northern blotting may be helpful in addressing these
issues. The imprecise processing of shRNAs in cells has
important implications for siRNA technology because it
results in the production of only a fraction of silencing

reagent with the desired sequence. This issue is especially
important for allele-specific applications of RNAi technol-
ogy in which a transcript is targeted at a single-nucleotide
polymorphism (SNP) linked to a mutation.

Conclusions
In this study we have shown that the optimized high-
resolution northern blotting can be used to analyze endo-
genous and exogenous RNAs in the range of 20-70 nt.
We demonstrated the usefulness of this technique in the
investigation of miRNA biogenesis as well as in the char-
acterization of RNAi technology reagents. We have vali-
dated the high-resolution northern blotting as a reliable
tool for length heterogeneity analysis of miRNAs and
their precursors and have presented examples of its
application in miRNA and siRNA studies. The method
can be used in a variety of applications to verify mechan-
isms of RNAi-mediated effects. However, we understand
that there is a limit to the interpretation of northern
blots, and other techniques have to be used to provide
complementing information. The techniques allowing
precise mapping of both 5’ and 3’ ends of processed pro-
ducts include deep sequencing, primer extension (5’) and
rapid amplification of cDNA ends (5’ and 3’ RACE).
These methods, when used jointly, will provide more

Figure 2 Detection of heterogeneous miRNAs and pre-miRNAs. Examples of heterogeneous miRNAs and pre-miRNAs overexpressed in HEK
293T cells and detected with single-nucleotide resolution, as shown in the figure. A) miRNAs: miR-191, miR-496, miR-93 resolved in the range of
~17-25 nt. B) pre-miRNAs: pre-miR-191, pre-miR-496, and pre-miR-93 resolved in the range of ~60-70 nt. M-lanes denote the appropriate
radiolabeled RNA oligonucleotide markers (ORNs); M1 denotes 17, 19, 21, 23, 25-nt ORNs for miRNA detection (A) and M2 denotes 60/61 and 63/
64-nt ORNs for pre-miRNA detection (B). Quantitative representations of miRNA and pre-miRNA variants obtained from phosphorimaging
analyses are shown schematically.
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complete and more reliable information about the exact
lengths and end-sequences of miRNA and cell-expressed
siRNA variants. Such information is very important as
miRNA and siRNA variants having different 5’ ends may
differ in the potency to activate RISC [27,49], as well as
in downstream silencing effects. RISC programmed by
different miRNA 5’-end variants may regulate different
targets [24,28-30], and programmed by siRNA variants
may cleave mRNAs at shifted sites compromising the
allele-specific SNP-targeting applications.

Methods
Animals
The animals were kept under standard conditions with a
12-h light/dark cycle and water and food ad libitum.
The animals were sacrificed by placing them in a 70%
CO2 atmosphere. The original strains C57BL/6J and
C3H/HeJ were obtained from The Jackson Laboratory
(Bar Harbor, Maine; USA) and were bred to B6C3F1.

The study was carried out in strict accordance with
Polish Law on Animal Experimentation which complies
with EU standards. All procedures and animal handling
were carried out to minimize animal stress and were
approved and monitored by The Local Ethical Commis-
sion for Animal Experiments in Poznan (Decision
Number: 49/2010).

Cell culture
HEK 293T cells were obtained from the American Type
Culture Collection (ATCC) and grown in Dulbecco’s
Modified Eagle’s Medium (DMEM, Lonza) with 10%
fetal bovine serum (FBS, Sigma-Aldrich) and Antibiotic
Antimycotic Solution (Sigma-Aldrich) at 37°C in a
humidified atmosphere of 5% CO2.

DNA transfection
HEK 293T cells were grown to 90% confluence in T-25
flasks and transfected with 3 μg of either plasmid

Figure 3 Application of the high-resolution northern blotting in monitoring RNA reagents expressed in cells. A) Processing of antisense-
sense and sense-antisense shRNAs (L-shSCA3 and R-shSCA3, respectively). The 5’ and 3’ strands of each shRNA were analyzed by detection with
probes complementary to either siRNA strand, as indicated in the figure. One probe detected L-5’ and R-3’ strands (dotted line) while the other
probe detected L-3’ and R-5’ strands (dashed line). B) ssRNA CUG9 and shRNA CAG/CUG7 transcribed from vectors, having either 4T or 6T at
their termination sites. M denotes size markers; M1 denotes end-labeled 17, 19, 21, 23, and 25-nt synthetic RNA oligonucleotides and M2
denotes RNA Low Molecular Weight Marker (USB). Quantitative representations of siRNA length variants are shown in the bottom panel, using
peaks obtained from phosphorimaging analyses.
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constructs (System Biosciences) encoding appropriate
miRNA precursors or plasmid vectors (pSilencer 3.1-H.1
hygro, Ambion) containing specific expression cassettes
(shRNA) (Additional file 1: Supplemental Table S2),
using Lipofectamine 2000 (Invitrogen). The cells were
harvested 24 hours after transfection, and isolated RNAs
were analyzed by northern blotting.

RNA isolation and northern blotting of miRNAs and pre-
miRNAs
Total RNA was extracted from the cells and selected
mouse brain and muscle tissues using TRI Reagent
(MRC, Inc., BioShop) according to the manufacturer’s
instructions. RNAs (20-30 μg) were resolved on denatur-
ing polyacrylamide gels (12% PAA, 19:1 acrylamide/bis,
7 M urea) in 0.5 × TBE. Two separate electrophoresis
runs were performed, as described previously [26,50].
Briefly, a vertical electrophoresis gel system (II xi Cell,
BioRad) for resolution of miRNAs, and a model S2
sequencing gel electrophoresis apparatus (Gibco, Life
Technologies) for pre-miRNA separations were used.
Xylene cyanol dye (XC) migrated 10 cm and 30 cm, for
high resolution of miRNA and pre-miRNA fractions,
respectively. Marker lanes contained a mixture of simul-
taneously radiolabeled synthetic RNA oligonucleotides
(ORNs: 17-, 19-, 21-, 23-, 25-nt or ORNs: 60-, 61-, 63-,
64-nt) or RNA Low Molecular Weight Marker (USB).
RNAs were transferred to GeneScreen Plus hybridization
membrane (PerkinElmer) using semi-dry electroblotting
(Sigma-Aldrich), immobilized by subsequent UV irradia-
tion (120 mJ/cm2) (UVP) and baked in an oven at 80°C
for 30 min. The membranes were probed with specific
oligodeoxynucleotides (ODNs) complementary to the
annotated mouse miRNAs miR-9, -9*, -93, -29a, -29b,
-124, -132, -137, -191, -496, -1 and -206 (miRBase) and to
21-nt siRNAs generated from shRNAs (Additional file 1:
Supplemental Table S3). The ODNs were labeled with
[g32P] ATP (5000 Ci/mmol, Hartmann Analytics) using
OptiKinase (USB) according to the manufacturer’s instruc-
tions. Pre-hybridizations and hybridizations were carried
out under the same conditions at 37°C overnight in buffer
containing 5 × SSC, 1% SDS and 1 × Denhardt’s solution.
After hybridization, the membranes were washed three
times in a low-stringency buffer solution (2 × SSC and
0.1% SDS) for 20 minutes. Radioactive signals were quanti-
fied by phosphorimaging (Multi Gauge v3.0, Fujifilm).

Additional material

Additional file 1: Supplemental tables S1, S2 and S3.
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