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Abstract

Background: The human DHRS4 gene cluster consists of three genes, DHRS4, DHRS4L2 and DHRS4L1. Among them,
DHRS4 encodes NADP(H)-dependent retinol dehydrogenase/reductase. In a previous study, we investigated the
alternative splicing of DHRS4 and DHRS4L2. DHRS4L1 was added to the gene cluster recently, but little is known about
its structure and expression. To reveal the regulatory mechanism of the DHRS4 gene cluster expression, we studied the
structure and transcription of DHRS4L1 in the context of the transcriptional behaviors of the human DHRS4 gene
cluster. Based on the results of bioinformatics analysis, we propose a possible mechanism for the transcriptional
regulation of the human DHRS4 gene cluster.

Results: The homologous comparison analysis suggests that DHRS4, DHRS4L2 and DHRS4L1 are three homologous
genes in human. DHRS4LT and DHRS4L2 are paralogues of DHRS4, and DHRS4L2 is the most recent member of the
DHRS4 gene cluster. In the minus strand of the human DHRS4 gene cluster, a gene transcribed in an antisense direction
was found containing a 5' sequence overlapping the region of exon 1 and promoter of DHRS4. By cloning the full
length of RNA variants through 5'RACE and 3'RACE, we identified two transcription start sites, within exon a2 and exon
1, of this newly named gene DHRS4L1 using neuroblastoma cell line BE(2)-M17. Analysis of exon composition in the
transcripts of DHRS4 gene cluster revealed that exon 1 was absent in all the transcripts initiated from exon a of
DHRS4L2 and exon a2 of DHRS4L1.

Conclusions: Alternatively spliced RNA variants are prevalent in the human DHRS4 gene cluster. Based on the analysis
of gene transcripts and bioinformatic prediction, we propose here that antisense transcription may be involved in the
transcriptional initiation regulation of DHRS4 and in the posttranscriptional splicing of DHRS4L2 and DRHS4L1 for the
homologous identity of DHRS4 gene cluster. Beside the alternative transcriptional start sites, the antisense RNA is novel
possible factor serving to remove exon 1 from the transcripts initiated from exon al and exon a2.

tein had strong retinol oxidation and retinal reduction
activities and was a crucial enzyme in the metabolism
and synthesis of retinoic acid [1], an important intracellu-
lar signaling molecule involved in the regulation of cell
growth, differentiation of embryonic cells, and the regu-
lation of immune functions. The presence of NRDR in

Background

DHRS4, the fourth member of the dehydrogenase/
reductase (SDR) family, is a gene encoding NADP(H)-
dependent retinol dehydrogenase/reductase (NRDR).
Prior to December of 2008, an examination of the DHRS4
gene on chromosome 14q11.2 in GenBank revealed that

the human DHRS4 gene cluster consisted of two genes,
DHRS4 and DHRS4L2. In 1997, we identified the NRDR
proteins from rabbit liver tissues, and found that this pro-
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other species was confirmed recently and the enzyme was
shown to have similar carbonyl reductase activity but
with different substrates [2-4]. In previous studies, we
also found the alternative spliced RNAs of DHRS4 and
DHRS4L2 [5-7], and identified exon al both as a novel
exon contained in the RNA variants of DHRS4L2 and an
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alternative transcription start site (TSS) for DHRS4L2 [7].
Exon al matches with a special intergene sequence,
approximate 19 kb upstream of the first exon of
DHRS4L2 and 559 bp downstream of the last exon of
DHRS4 in the genomic DNA.

Due to an information update of GenBank in December
of 2008, the gene LOC728635, located downstream of
DHRS4 and DHRS4L2 and similar to the peroxisomal
short-chain alcohol dehydrogenase, was renamed
DHRS4L1. The human DHRS4 gene cluster is now com-
posed of DHRS4, DHRS4L2 and DHRS4L1. To investigate
the transcription of DHRS4L1 and the transcriptional
regulation of DHRS4 gene cluster, we cloned the full
length RNA variants of DHRS4L1 in this study, and found
that DHRS4L1 initiated its transcription from two TSS,
exon a2 and exon 1. Exon a2 matches with the intergene
sequence between DHRS4L2 and DHRS4LI, and is
homologous to exon al located upstream of DHRS4L2.
Through the analysis of the gene structures and tran-
scriptional behaviors of the DHRS4 gene cluster, we pro-
pose a possible mechanism involving the antisense
transcripts from C14o0rf167 and the alternative TSS for
the transcriptional regulation of the human DHRS4 gene
cluster.

Results and discussion

Comparative analysis of the DHRS4 gene cluster

In the three copies of the DHRS4 gene cluster, DHRS4 is
common in mammals and aquatic animals, while
DHRS4L1 is only found in primates and DHRS4L2 in
humans. Humans, therefore, are the only species that
contain all three genes in the DHRS4 gene cluster. The
phylogenic tree of the DHRS4 gene cluster across differ-
ent species (Figure 1A) and comparative analysis of the
human DHRS4 gene cluster (Table 1 and Table 2) suggest
that DHRS4L2 and DHRS4L1 are paralogues of DHRS4,
and that DHRS4L2 is the most recent member of the
DHRS4 gene cluster. The gene sequence identity between
DHRS4L2 and DHRS4L1 is lower than that of DHRS4L2
and DHRS4, indicating that DHRS4L2 was duplicated
directly from DHRS4, not from DHRS4L1.
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In our previous study, a novel exon al was identified at
the 5'end of the DHRS4L2 transcripts, and the sequence
of exon al matches with the intergene sequence between
DHRS4 and DHRS4L2 in genomic DNA [7]. Through
sequence BLASTing, two other homologous sequences of
exon al were found and each was localized downstream
of the DHRS4L2 or DHRS4L1 sequences. In this study,
we named these three homologous sequence of exon a as
exon al, exon a2 and exon a3, each located downstream
of DHRS4, DHRS4L2 and DHRS4L1 respectively. The
spaces between an exon a and its upstream gene was
named as insertion al, insertion a2 and insertion a3 while
the spaces between exon a and its downstream gene was
named as insertion 1, insertion 2 and insertion 3, respec-
tively (Figure 1B). The analysis of the gene structure and
homology of the DHRS4 gene cluster suggested that
DHRS4 duplication was initiated from the "insertion,"
leading to the formation of a copy unit, "insertion-DHRS4
gene-insertion a-exon a", which was copied twice in chro-
mosome 14 (14q11.2) with the resultant formation of the
DHRS4 gene cluster (Figure 1B). Genome duplications
are considered as the results of long-term biological evo-
lution and accounting for the bulkiness and complexity of
the human genome [8,9]. Through the comparative anal-
ysis, we identified the general structure of DHRS4 gene
cluster, and designed the following assays to provide
insights into the transcriptional regulation of this gene
cluster.

Transcription of the human DHRS4 gene cluster

The reference sequences of the human DHRS4 and
DHRS4L2 cDNA are 1289 bp and 1382 bp respectively,
each consisting of 8 exons. DHRS4L1 has a full length of
1249 bp and is composed of 10 exons (Table 2). Based on
analysis of the RNA variants of DHRS4 and DHRS4L2
identified in our previous studies and related data from
GenBank, we found that the alternative splicing was
prevalent in DHRS4 and DHRS4L2 (Table 3), moreover,
DHRS4L2 harbored two alternative TSS (exon al and
exon 1), while DHRS4 initiated its transcription only from
one site (exon 1). To explore the transcriptional regula-
tion mechanism of the human DHRS4 gene cluster, we

Table 1: Homologous comparison of the human gene DHRS4, DHRS4L2 and DHRS4L1.

DNA cDNA

Insertion* Gene* Insertion a Exona
DHRS4 vs DHRS4L2 62.0% 97.5% 98.7% 98.9% 90.9%
DHRS4 vs DHRS4L1 38.0% 77.8% 70.5% 78.9% 87.4%
DHRS4L2 vs DHRS4L1 42.9% 77.7% 70.3% 79.2% 81.7%

* Long repeat sequences were removed before comparison.
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Table 2: Exons composition and the homologous relationship of them among the DHRS4 gene cluster.
* Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 Exon 6 Exon 7 Exon 8
DHRS4 161 178 102 71 52 135 56 534
DHRS4L2 258 178 102 71 52 134 56 531
** Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 Exon 6 Exon 7 Exon 8 Exon 9 Exon 10
DHRS4L1 128 178 54 50 7 71 52 135 56 518

* corresponding exon number of DHRS4, DHRS4L2, ** corresponding exon number of DHRS4L1

first tested the presence of the DHRS4L1 RNA variants in
this study since little was known about the transcription
of DHRS4L1.

Through 5RACE, 3RACE and RT-PCR (Figure 2),
three full length and four partial RNA sequences of
DHRS4L1 were amplified and identified in human neuro-

blastoma cell line BE(2)-M17. The sequences of these
novel transcript variants were submitted to NCBI and
recorded as GQ871921, GQ871922, GQ871923,
GQ871924, GQ871925, GQ871926 and GQ871927. The
analysis of the full length RNA variants indicates that
DHRS4L1 starts its transcription from two alternative
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Figure 1 The homologous comparison of DHRS4 gene cluster. (A) Evolutionary relationships of DHRS4, DHRS4L2 and DHRS4L 1 among various spe-
cies. The phylogeny of DHRS4, DHRS4L2 and DHRS4L1is shown as a neighbor-joining tree with bootstrap. The scale bar represents 5% sequence diver-
gence. Positions of genes in the corresponding species are shown as vertical hatches. Horizontal bars and the values on them represent the length of
the DNA sequence after alignment. (B) The context and composition of the human DHRS4 gene clusters.
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Table 3: Alternative splicing variants of the human DHRS4 gene cluster.

DHRS4 DHRS4L2 DHRS4L1
No. Exon No. Exon No. Exon No. Exon
NM_ 021004  1-2-3-4-5-6-7-8  NM 198083  1-2-3-4-5-6-7-8 NM_0010824  1-2-3-4-5-6-7-8-9-10
AB045131 1-2-3-4-5-6-7-8  AK301373 1-2-6-7 AY616183  al-2-3-7-8 AA255746 8-9-10
AF044127 1-2-3-4-5-6-7-8  BC000663 1-2-3-4-5-6-7-8  AY943857  al-2-7-8 AV762338 1-8-9-10
Al087304 3-7-8 BC006125 1-2-3-4-5-6-7-8  CD244539  al-2-3-4-5-6 BC171914 1-8-9-10
AK308436 1-2-3-7 BC101812 1-2-3-4-5-6-7-8  DN237879  al-2 BC171918 1-8-9-10
AK314448 1-2-3-4-5-6-7-8  BC101814 1-2-3-4-5-6-7-8  DN237881  al-2-3-6-7-8 BX117130 1-2
AY071856 1-2-3-7-8 DB449220 1-2 DN237882  al-2-3-7-8 GQ0871921 a2-8-9-10
AY358638 1-2-3-4-5-6-7-8  DN237888 2-3-4-5-6-7 DN237883  al-2-3-7-8 GQ871922 1-8-9-10
AY616182 1-2-3-5-7-8 DN237893 2-4-5-6-7 DN237884  al-2-3 GQ0871923 1-8-9-10
BC003019 1-2-3-4-5-6-7-8  DN237895 2-3-5 DN237885  al-2-3-5 GQ0871924 a2-2-8-9-10
BU529016 1-2-3-7-8 DN237896 2-3-7-8 DN237886  al-2-3-4-5-6-7  GQ871925 a2-8-9-10
DN237893 2-3-4-5-6-7-8 B0030242 8 DN237887  al-2-3-5 GQ871926 1-9-10
D0325464 1-2-4-5-6-7-8 DQ088987 3-4-5-6-7-8 DN237890  al-2-3-4-5 GQ871927 10
DQ338571 1-2-4-5-7-8 DQ088988 3-4-5-6-8 DN237891  al-2-3-5
DQ344810 1-2-3-4-5-6-7-8 DN237892  al-2-4-5

sites, exon a2 and exon 1. This suggests that the sequence
upstream exon a2 has the potential promoter activity,
similar to exon al, to initiate the transcription of
DHRS4L1. Exon a3, the homologous sequence of exon al
downstream of DRHS4 and exon a2 downstream of
DHRS412, is located downstream of DHRS4L1 and only
629bp away from the last exon of DHRS4L1, while the
mRNA sequences in GenBank indicates that exon a3 is
within the first exon of the LRRCI16B (leucine rich repeat
containing 16B) gene not related to DHRS4 gene cluster.

Alternative splicing patterns often show specificity
related to tissue types, development stages and physio-
logical conditions of the cells [10]. It is evident in nerve
tissue that alternative splicing is correlated with the com-
plex functions of the brain [11,12]. The results of RT-PCR
to amplify the RNAs from exon 1 to exon 10 and exon a2
to exon 10 of DHRS4L1 showed that the DHRS4L1 RNA
isoforms existed not only in cell lines from the nervous
system, but also in cells from the cervical, hepatic and
esophageal tissues, while different first exon (exon a2 and
exon 1) may be utilized to initiate the transcription of
DHRS4L1 among these cell lines (Figure 2).

Through analyzing the homologous identity of DNA
and the exon composition in the transcripts variants of
the DHRS4 gene cluster, we found that exon 1 was absent
in all the spliced variants of DHRS4L2 and DHRS4L1 ini-
tiated from exon al and exon a2 respectively (Table 3).
To verify if the absence of exon 1 is just one example
found accidentally in cloned sequences or true for all the

transcripts of DHRS#4 cluster, we used forward primer in
exon a (completely matching the sequences of exon al
and exon 42) and reverse primer in exon 1 of DHRS4L2
and DHRS4L1 respectively to perform RT-PCR in the
human neuroblastoma cell lines BE(2)-M17 and cervical
carcinoma cell line HeLa. No amplifications was
observed (data not shown), suggesting that exons al/a2
and exon 1 were mutually exclusive.

In humans, majority of genes are alternatively spliced to
express multiple proteins [13]. The analysis of the pre-
dicted proteins based on different DHRS4 RNA isoforms
showed that most of them contained a domain centre of
the short-chain dehydrogenase/reductase(ADH-short)
family signature, possibly pointing to the functional con-
servation of the spliced variants. In our previous study,
only one protein isoform of DHRS4 was identified and
found to be correlated with the tumorigenesis of the cer-
vical epithelia [5], while most of the spliced RNA iso-
forms of the DHRS4 gene cluster lacked an obvious open
reading frame. Moreover, the full length RNA sequences
of DHRS4L2 in the previous study [7] and that of
DHRS4L1 in present study were investigated using the
software RNAStructure4.5. This analysis predicted that
low minimum free energy was required for them to form
a double-stranded RNA structure. Considering the
potential to form a stable secondary RNA structure and
the lack of open reading frame, we speculate that most
RNA variants of the DHRS4 gene cluster might function
as non-coding RNAs to regulate gene expression.
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Figure 2 Transcription of DHRS4L1. Lane 1. BE(2)-M17, 2. SK-SY5Y, 3.
SK-N-SH, 4. Hela, 5. Eca-109, 6. Hep G2, 7. HL-7702, M. marker(100 bp
DNA ladder). (A) B-actin shown as a control of RT-PCR. (B) RT-PCR am-
plifying the exon 1-exon 10 of DHRS4L1. Product of 493 bp is com-
posed of exon 1-part of intron 2-exon 8-exon 9-exon 10. (C) RT-PCR
amplifying the exon a2-exon 10 of DHRS4L1. Product of 469 bp is com-
posed of exon a2- exon 8-exon 9-exon 10. Product of 648 bp is com-
posed of exon a2-part of insertion 3-exon 8-exon 9-exon 10.

Transcriptional regulation of the DHRS4 gene cluster
Focusing our work on the alternative splicing of the
DHRS4 gene cluster and the roles of these alternatively
spliced RNAs, we have also been interested in alternative
transcriptional regulation of the DHRS4 gene cluster.
DHRS4L2 and DHRS4L1 initiate their transcription from
two alternative TSS, and exon 1 is absent in all the tran-
scripts initiated from the exons al and a2 of DHSR4L2
and DHSR4L1 respectively. Previous studies reported
that alternative promoter was accompanied by alternative
splicing of the initial exon [14,15]. Analysis of the
sequence upward the exon 1 of DHRS4L2 and DHRS4L1
indicates that exon 1 lacks a canonical splice site of AG at
its 5' end. It seems that the transcripts initiated from exon
alla2 is spliced directly to the next available splice accep-
tor site, resulting in the removal of exon 1.

In addition, the homologous comparison of the DHRS4
gene cluster and analysis of the positional relationship of
DHRS4 with the antisense gene CI140rf167 indicate a pos-
sible mechanism for the transcriptional regulation of the
DHRS4 gene cluster via an antisense transcribed gene.
Firstly, C140rfl167 is a typical naturally occurring anti-
sense gene to DHRS4. These two genes have overlapped
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promoters and 5' 1332 bp coding regions (Figure 3) that
belongs to the cis head-to-head bidirectional transcrip-
tion [16-19]. Given such a positional relationship in the 5'
sequence, we propose that DHRS4 and Cl4orfl67 will
interfere with each other in transcription initiation (Fig-
ure 4). Secondly, antisense RNAs may also participate in
the transcriptional regulation of the trans-encoded RNAs
transcribed from different loci [20,21]. Previous studies
suggest that antisense RNA sequences matching with
exon-intron border of the primary transcripts may pre-
vent the binding of the splicesome to the splice site, and
consequently affecting the posttranscriptional splicing
[22-24]. Due to the homologies within the DHRS4 gene
cluster (Table 1 and Table 2), the transcripts of C14orfl167
match with exon 1 in the primary transcripts of
DHRS4L2 or DHRS4LI1, and possibly take part in the
splicing out of exon 1 from the transcripts initiated from
exon al/a2 (Figure 4). Although the alternative promoter
may affect the splicing of RNA as described above, sev-
eral subclass models of the splice sites were reported in
mammalian pre-mRNAs and they functioned more fre-
quently on the first or second intron than on the other
order intron [25-28]. The sequence at the 5'end of
DHRS4L2 exon 1 is consistent with the submodel splice
acceptor AC, instead of the typical AG sequence. AC
functioned as a real splice acceptor site in our previous
identified RNA variants (DN237887) of DHRS4L2. If the
splice acceptor sequence at the 5'end of exon 1 in the
DHRS4 gene cluster is efficient, the masking by antisense
RNAs is a likely mechanism to explain the removal of
exon 1 from the transcripts initiated from exon al or
exon a2, although it needs further study to verify.

Conclusions

The human DHRS4 gene cluster consists of DHRS4,
DHRS4L2 and DHRS4L1. DHRS4L2 and DHRS4L1 initi-
ate their transcription from two transcription start sites.
Furthermore, exon 1 is absent in the transcripts initiated
from alternative transcription start sites exon al of
DHRS4L2 or exon a2 of DHRS4L1. Based on the analysis
of the sequence relationship between Cli4orfl67 and
DHRS4, we propose that transcriptional process of
Cl4orfl67 may affect the transcriptional initiation of
DHRS4. Given the homologous identities of genes within
DHRS4 gene cluster, antisense RNAs of CI4orf167 may
take part in the posttranscriptional splicing regulation of
DHRS4L2 and DHRS4L1 through masking the splicing
sites and removing of exon 1 from RNA transcripts. This
is a rare example of one antisense transcript regulating
the transcription of different gene in cis and trans manner
simultaneously, though antisense RNA and bidirectional
transcription have been the focus of extensive studies
recently.
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Figure 3 The antisense gene C140rf167 and its relationship to DHRS4.

Methods

Databases and software

The DNA, cDNA and EST sequences of the DHRS4 gene
cluster were retrieved from the NCBI GenBank http://
www.ncbi.nlm.nih.gov and UCSC Genome Browser
http://www.genome.ucsc.edu. Jellyfish3.2 http://www.jel-

lyfishsoftware.com and BLAST online http://blast.
ncbi.nlm.nih.gov were employed for analyzing the

homologous identity of the human DHRS4, DHRS4L2
and DHRS4L1. The sequences of the DHRS4 gene cluster
in different species were aligned with Clustal X1.83 http:/
/www.clustal.org/ and all the positions containing gaps
were eliminated. A bootstrapped biological phylogenic
tree was constructed using MEGA4 with the neighbor-
joining method. The RNA secondary structures were pre-
dicted and analyzed with RNAstructure4.5 http://rna
.urmc.rochester.edu/rnastructure.html.

Cell culture and RNA extraction

Human neuroblastoma cell lines BE(2)-M17, SK-N-SH,
SH-SY5Y, human cervical carcinoma cell line HelLa,
human esophageal carcinoma cell line Eca-109, human
hepatocarcinoma cell line Hep G2 and human hepatocyte

cell line HL-7702 were all obtained from the Cell Bank of
Chinese Academy of Sciences (Shanghai, China). The cell
lines were maintained in DMEM medium supplemented
with 10% (v/v) fetal bovine serum in a humidified 37°C
incubator with 5% CO,. Total RNAs of the cell lines were

extracted with TRIzol reagent (Invitrogen) and RNA
quality was examined by OD260/0D280 and RNA elec-
trophoresis.

5'RACE, 3'RACE and RT-PCR

The 5'end amplification of DHRS4L1 splicing variants in
the human neuroblastoma cell line BE(2)-M17 was car-
ried out with SMARTer™ RACE kit (Clontech), which
generated a complete cDNA copy of the original mRNAs
with the additional SMARTer sequence at the 5'end by
the joint action of the SMARTer II A oligonucleotide and
SMARTScribe reverse transcriptase. It was then used to
amplify 5'end of DHRS4L1 through 5RACE touchdown
PCR.

The 3'end amplification was carried out using the
3'RACE system (Takara), which depended on the poly A
to ligate the adaptor on the 3'end of mRNAs from the
neuroblastoma cell line BE(2)-M17 for the reverse tran-
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Figure 4 The effects of antisense transcription from C140rf167 on the transcriptional regulation of the DHRS4 gene cluster. (1) Bidirectional
transcription of C14orf167 inhibits the initiation of the DHRS4 transcription through impeding the binding of RNA polymerase Il and transcriptional
factors to DHRS4. (2) The antisense RNAs from C14orf167 match with exon 1 in the primary transcripts initiated from exon al/a2, and possibly resulting

in the removing of exon 1 in the spliced RNAs. DHRS4L2 and DHRS4L1 are under the same condition to C14orf167 RNAs.

scription into cDNA and subsequent amplification of the
3'end of DHRS4L1 through 3'RACE nest PCR.

RT-PCR of DHRS4L1 in cell lines BE(2)-M17, SK-N-
SH, SH-SY5Y, HeLa, Hep G2, Eca-109 and HL-7702 were
performed using Platinum 7zqg DNA Polymerase mixture
(Invitrogen) after the RNA samples were reverse tran-
scribed into cDNA with QuantiTect Reverse Transcrip-
tion Kit (Qiagen) according to the manufacturer's
protocol.

All the PCR primers used are listed in Table 4. Ampli-
fied products of PCR were electrophoresed in 1.2% aga-
rose gels and visualized with ethidium bromide
(Amresco) staining. The bands of PCR product from the
neuroblastoma cell line BE(2)-M17 were cut and DNA
was purified using the Gel Extraction Kit (Promega).
Then the PCR products were cloned into the pGEM-T
Easy vector (Promega) for sequence identification in an
Applied Biosystems 3100 DNA sequencer.
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Table 4: Primers used to amplify DHRS4L1T mRNA.
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usage

Primer

Sequence (5'—>3)

5'RACE
(touchdown PCR)

3'RACE
(1st round of nest PCR)

3'RACE
(2nd round of nest PCR)

UPA-F

DHRS4L1E10-R

DHRS4L1 outer F

Adaptor 3'outer R

DHRS4L1 inner F

Adaptor 3'inner R

CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT (long)
CTAATACGACTCACTATAGGGC (short)

GAGCACAGGAAAGACACGATGCCAAGAG

GGATGGACAAGGAAAAAGAGG

TACCGTCGTTCCACTAGTGATTT

TTAGGCGAGCCAGAGGATTCTCTT

CGCGGATCCTCCACTAGTGATTTCACTATAGG

RT-PCR DHRS4L1EaF CAAGCCCACCGTGGAGCTCATCTGA
DHRS4L1E10-R GAGCACAGGAAAGACACGATGCCAAGAG
RT-PCR DHRS4LT1E1 F ATGCACAAGGCGCGGCTACGAG
DHRS4LTE10R GAGCACAGGAAAGACACGATGCCAAGAG
RT-PCR B-actin F AAATCGTGCGTGACATTAA
B-actinR CTCGTCATACTCCTGCTTG
Abbreviations 2. Endo 'S, Matsunaga T, Nagano M, Abe H, Ishikura S, Imamura Y, Hara A:

DHRS4: dehydrogenase/reductase (SDR family) member 4; DHRS4LT: DHRS4 like
1; DHRS4L2: DHRS4 like 2; NRDR: NADP(H)-dependent retinol dehydrogenase/
reductase; RACE: rapid amplification of cDNA ends; RT-PCR: reverse transcrip-
tion- polymerase chain reaction; TSS: transcription start site.
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